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Abstract

Background: We present results from a computational analysis developed to integrate transcriptome and metabolomic
data in order to explore the heat stress response in the liver of the modern broiler chicken. Heat stress is a significant
cause of productivity loss in the poultry industry, both in terms of increased livestock morbidity and its negative influence
on average feed efficiency. This study focuses on the liver because it is an important regulator of metabolism, controlling
many of the physiological processes impacted by prolonged heat stress. Using statistical learning methods, we identify
genes and metabolites that may regulate the heat stress response in the liver and adaptations required to acclimate to
prolonged heat stress.

Results: We describe how disparate systems such as sugar, lipid and amino acid metabolism, are coordinated during the
heat stress response.

Conclusions: Our findings provide more detailed context for genomic studies and generates hypotheses about dietary

interventions that can mitigate the negative influence of heat stress on the poultry industry.
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Background

Obtaining biological insight from large-scale transcriptome
and metabolome data is challenging due to biological and
technical variance. Careful experimental design can limit
unwanted noise. However, when properly harnessed, bio-
logically driven variation can be used to prioritize signals
that elude traditional enrichment analysis. For example,
biological variation relating to a treatment response de-
pends on many variables that are not easily controlled such
as allelic or physiological variants. This fact can be inform-
ative because many compounds involved in the same
process will have similar patterns of regulation, which can
be detected as recognizable signatures in high dimensional
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omics data. This can be used to identify relationships be-
tween elements of the same pathway, even when their
scales of expression and variance differ considerably, by
relying on multi-tiered statistical learning strategies. This
approach allows the combination of transcriptome and
metabolome data to gain a more comprehensive biological
understanding of a system. This is particularly helpful in
identifying significant features from the large, complex
datasets now common in dual or multi-omics studies.

The modern broiler chicken is a fundamental source
of poultry meat. It has been under strong artificial selec-
tion during the past several decades for increased breast
muscle yield [1]. This is thought to be at the expense of
other systems, resulting in decreased heat tolerance and
increased mortality during heat stress. The relationship
between the altered physiology of the broiler and suscep-
tibility to heat stress is not fully understood, however. It
is believed to involve altered appetite and preferential
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routing of resources to muscles tissue. Such changes are
systemic, influenced by both behavior and metabolism.

One organ capable of exerting strong influence on both
bird growth and thermoregulation is the liver. This organ
has recently proved effective as a subject for studies that
leverage multi-omics approaches including transcripto-
mics and metabolomics [2]. Such work has shed light on
differentially regulated genes and metabolites. However, a
systems level understanding in which fluxes in metabolites
are related to gene expression, are lacking. This is partly
because computational approaches exploring the totality
of a biological response including gene expression and
metabolite production is lacking. We combine RNA-seq
(Ribonucleic Acid Sequencing) expression and metabolites
from the liver to identify genes and compounds that
function as biomolecules associated with heat stress.
While metabolomics data identifies changes in bio-
logically active compounds, RNA-Seq data identifies
genes that regulate metabolic changes. We offer a
geometric interpretation for our statistical pipeline,
composed of k-means, random forest and hierarchical
clustering, describing how each algorithm contributes
to a pipeline that recapitulates novel biology.

Our analysis applies statistical learning approaches on
metabolite and gene expression data, restricting tran-
scriptome analysis to a core module of liver enriched
genes. These are determined by a definition we propose
that proves more stringent than other types of relative
expression analysis. Sub-setting in this fashion isolates
tissue-enriched genes that reflect unique biology specific
to the liver in a tissue diverse dataset, across a number
of bird lines. The approach of sub-setting by tissue
enriched genes and focusing on classifying power and
clustering patterns when combined with metabolite
measurements provides a framework to integrate metab-
olite and transcriptome data. This approach of combin-
ing data from different high-throughput technologies
makes it possible to identify important features of the
high dimensional dataset.

Finally, extending the work of earlier GWA (gen-
ome wide association) studies that sought to model
ratios of metabolites as functions of SNP’s, (single nu-
cleotide polymorphisms) we model metabolite ratios
in terms of other metabolites. The original purpose of
these GWA metabolite studies was to detect the gen-
etic basis of metabolic changes [3]. However, model-
ing ratios as function of metabolites allows detection
of metabolic forks, or small network motifs where
precursors are selectively routed to different meta-
bolic fates under heat stress. The compounds used to
compose triplets representing possible metabolic forks
are selected from hypotheses developed through the
combined k-means [4] random forest [5] and a hier-
archical clustering pipeline [6]. A triplet is defined as
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a function of the form cor(A, 2) where A, B and C are any
combination of metabolites. Candidates for A, B and C
were chosen from amino acids known to be catabolized
under heat stress [2] and sugar and fat molecules that may
incorporate these molecules, and which are prioritized by
our pipeline.

The combination of RNA-Seq with metabolite data
identifies novel shifts in gene regulation that reflect
pathway changes influencing metabolite levels.

Our combined informatics strategy identifies elements
under biological regulation and which could be targets
for selective breeding. Additionally, the identification of
heat stress responsive metabolites produces candidates
for feed supplementation studies.

Methods

The heat stress response is multi-tiered and involves input
from multiple tissues. At the cellular level, the heat stress
response unfolds across an intricate program of organelle
specific changes. Which changes are causal, and which
merely correlative with underlying signal or sensing
pathways, thus becomes a complex question. However, the
variability associated with most basal regulators of the heat
stress response should be most closely related to the
variation in the downstreamm heat stress response. By the
transitive nature of biological communication, the intro-
duction of noise into the signal diminishes the capacity of
downstream molecules, which correlate with, but do not
cause the heat stress response, to discriminate between
treatment and control samples. From this perspective, the
problem of identifying causal molecules from expression
profile is well posed as a statistical learning problem that
can be addressed through random forests. Random forests
can rank candidates on their ability to correctly identify the
class of samples as assigned to control or experimental
treatment groups. Our approach follows sorting com-
pounds into initially crude clusters using k-means cluster-
ing, prior to application of the random forest algorithm.
Finally, these top biomolecules are related to one another
using hierarchical clustering. Genes and metabolites were
standardized by z-score in order to prevent differences in
the scale of data from skewing the results. All genes
submitted to the pipeline had been previously sub-setted
as liver enriched across a tissue-diverse dataset.

Subsetting of transcriptome data
Liver enriched genes were defined as those genes
whose z-score as calculated in the formula

x(tissue lntirﬁcizrg/:yggackground) | is greater than 5.
The background samples were acquired from a tissue di-
verse chicken dataset of 799 libraries utilized over a range
of experiments in the various lines of chicken studied by

the lab. Only genes which passed this z-score test for
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initial enrichment in the liver were admitted to the down-
stream statistical learning pipelines. Ultimately, focusing
on liver enriched genes reduced the set of transcripts be-
ing utilized for downstream analyses from ~ 26,000 to 347
(Additional file 4).

Biomolecules were identified and prioritized to extract
pathways from whose elements triplets could be calculated.
(Fig. 1) Triplets showing differential behavior selected,
which demonstrate equilibrium shifts at state assumptions
and thus indicate behavior of a metabolic fork.

Geometric and biological consideration of K-means step

A goal of first leveraging k-means analysis was to build
more biologically interpretable random forests, with com-
pounds initially separated by expression patterns. This re-
flects the idea that pathways involving essential biological
compounds occur across a spectrum of expression pro-
files, but may crowd one another out in downstream ana-
lyses. First grouping compounds by k-means prevented
compounds from one expression profile crowding out
those demonstrating another pattern, especially when they
possessed similar capacities for classifying samples as con-
trol or heat stress during random forest analysis. Thus,
the optimal partitioning, for this purpose, should produce
clusters that are similar in explanatory power. Selecting
k =3 accomplishes this goal by distributing compounds
across clusters that are as similar to one another as pos-
sible in terms of their explanatory power (Fig. 2a and b).

Metabolic forks

Metabolic forks, in which ratio of metabolites represent ac-
tivities of competing biological processes are an adaptation
of concepts introduced by Gieger et. al, in which ratio of me-
tabolites represent biological activity of processes influence
by genotype. We refer to these regulatory triplets as such, be-
cause they represent divergent fates for metabolites. Candi-
dates for components of metabolic forks were determined
via prior knowledge as compounds established in the broiler
heat stress response through r previous work [2] and which
were biomolecules prioritized by the statistical learning com-
ponents of the pipeline or known to be related to these
biomolecules.

Such functions, relying on ratios, serve as a more realistic
description of the biochemistry of pathway steps than sim-
ple correlations with raw measurements. For example, in
pathway reactions where one enzyme regulates the forward
reaction and another the reverse, the regulation through
gene expression can cause relative increases in the product
metabolite compared to the precursor metabolite. This
shifts the favorability of the pathway step towards either the
products or reactants. Similarly, a shift in favorability of a
precursor towards one metabolic fate, at the expense of
another, under regulation thus represents a “metabolic fork”
(Fig. 3). Having hypothesized that amino acids from
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catabolized proteins fuel production of sugar and fats by
providing carbon backbones, we calculated “metabolic
forks” that included lipids, sugar and amino acids priori-
tized by the statistical learning pipeline. P-values were de-
termined from the interaction term of the resulting linear
model of the metabolic fork, in order to identify a
significant difference in the slope between control and ex-
perimental conditions. Among metabolic forks with a sig-
nificant interaction p-value, one was identified which
represents the intersection of lipid, sugar and amino acid
metabolism.

Bird and tissue handling

Male broiler chickens (Gallus gallus) were obtained from
Mountaire hatchery (Millsboro, DE) on day of hatch and
divided into thermoneutral and experimental houses on
the University of Delaware farm. This protocol has been
previously described in Jastrebski et al,, [2] and Hubbard
et al,, [7]. As described in these studies, birds were raised
under a light cycle of 23 h of light and 1 h of dark. Stand-
ard management and husbandry procedures were
followed, as approved by the Animal Care and Use Com-
mittee (AACUC #(27) 03-12-14R). Birds were given ad
libitum access to water and fed the same diet (corn-soy)
which met all NRC requirements [8]. Both groups were
raised at 35°C until one-week post hatch. Temperature
was decreased 5 °C each week thereafter until temperature
reached 25°C at day 21 post hatch. The thermoneutral
house was then maintained at 25°C and the heat stress
house was subject to 35-37 °C for 8 h per day, to mimic
an environmental heat wave. Birds were kept in houses
with sawdust bedding during the experiment including
during the heat stress treatment. Eight individuals were
collected for control as well as experimental treatments.
Average mass at time of necropsy was 1.453 kg for heat
stressed birds, while mass of control birds was 1.711 kg
for control birds. Temperature in both houses was main-
tained by a computerized system controlling heaters and
ventilation fans (Chore-time Equipment, Milford, Indiana)
. Temperature ranged between 35 and 37 °C during the 8
hours of heat stress. This yields an internal body
temperature (cloacal) of 43.5°C within 2 hours of the
onset of heat stress. This body temperature can induce a
heat stress response in chicken cells [9]. In the control
(thermoneutral) house the temperature ranged between
23 and 25 °C during this same period. Both houses were
maintained at 23-25 °C during the thermoneutral period
(16 h) of the day. Birds were euthanized via cervical dis-
location and necropsied at day 28 post hatch, following 1
week of cyclic heat stress. In terms of bird internal tem-
peratures, heat stress individuals averaged a temperature
of 43.5 C while control birds averaged a lower 41 C. Livers
were flash frozen in liquid nitrogen, and stored at — 80 °C
for further processing.
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Mlumina TruSeq Stranded mRNA Sample Preparation
Kit (Illumina, San Diego, CA) per manufacturer instruc-
tions and sent to DBI for sequencing. All reads were
mapped to the latest NCBI release of the chicken gen-
ome at the time of data collection and accompanying
annotation, GalGal4. Mapping was done with Tophat2
and Cufflinks2, with raw counts quantification by fea-
tureCounts and differential expression accomplished
with edgeR. Differentially expressed genes were identi-
fied as those with a p-value < .05 using edgeR.

Metabolome sample preparation

As described in [2, 7] 50 mg of 12 thermoneutral and 11
heat stress liver samples were sent to Metabolon (Durham,
NC), for analysis of the metabolome. All of the samples used
for the transcriptome analysis were included in the metabo-
lomic sample set. Samples were analyzed as previously de-
scribed [10]. Samples were prepared using the MicroLab
STAR system from Hamilton Company (Reno, NV) using in
house recovery standards prior to extraction for QC pur-
poses. Extract was divided into fractions for two reverse
phase (RP)/UPLC-MS/MS methods (positive and negative
jon mode electrospray ionization), and one for HILIC/
UPLC-MS/MS with negative ion mode ESI. Several control
were used, including the use of technical replicates, extracted
water samples as blanks, and in house QC samples to
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monitor chromatographic alignment. All UPLC-MS/MS
methods used a waters ACQUITY UPLC and Thermo Sci-
entific Q-Exactive high-resolution mass spectrometer. Each
sample extract was dried and reconstituted with solvents
compatible to each method and solvents included a series of
standards at fixed concentrations. Metabolon used hardware
and software extract created by the company to extract,
peak-identify, and QC process the raw data. Compounds
were identified using a Metabolon maintained library of puri-
fied standards or recurrent unknown entries. Data is pro-
vided as a Additional file 1. A total 527 compounds have
been identified and registered in Metabolon’s library and
quantified in our dataset. The data was statistically analyzed
using a Welch’s two-sample t-test following a log transform-
ation and imputation of missing values with the minimum
observed value for each compound. The company provided
an analysis that included pathway visualizations. These path-
way analyses were then incorporated with the transcriptome
data to create a more complete view of changing pathways.

Results

Output from K-means, random forest, and subsequent
hierarchical clustering

The figures above (Figs. 4, 5, 6, 7, 8, 9, 10) depict imple-
mentations of the statistical procedures as described in
the methods (Figs. 1, 2 and 3). Figures 8, 6, 10 are results

2D representation of the Cluster solution

Component 2

relevant groups to prevent overcrowding in subsequent analyses

Component 1
These two components explain 31.97 % of the point variability.

Fig. 4 K-means clustering of all compounds. Despite overlap between clusters, these groupings provide an initial separation of biologically
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for hierarchical clustering on the top 29 biomolecules
(Figs. 5, 7and 9) from the transcriptome and metabo-
lome ranked by classifying power as determined by ran-
dom forest, in each of the clusters from k-means.
Hierarchical clustering was conducted on these priori-
tized biomolecules in order to separate out biologically
important clusters with similar patterns of measurement
across the birds. These biologically meaningful units are
highlighted in the Figs. 8, 6, 10.

In each k-means cluster this workflow prioritizes
broad groups of biologically related compounds such as
sulfur containing compounds related to amino acid me-
tabolism (taurine, hypotaurine, cysteinylglycine) (Figs. 5
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and 6), sugars (fructose-6-phosphate, glucose-6-
phosphate) (Figs. 7 and 8), lipids (stearoyl ethanola-
mide, various sphingomyelins) (Figs. 8 and 9) and (Figs.
4, 5, 6). Importantly, elements of these three axes of
regulation are spread across the k-means clusters. The
arrangement of these clusters in PC-space can be seen
in Fig. 4. Cluster 3 contains many biomolecules such as
sugars and antioxidants whose levels are increased
under heat stress, owing to the orientation of these bio-
molecules with the first principal component. Clusters
1 and 3, however, contain many lipids and sulfur-
containing intermediate species which are lower under
heat stress. For example, sphingomyelin species whose
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sphingomyelin__d18_1_22 1_d18_2 22 0_ d16_1
sphingomyelin__ d18_1 21 0 d17_1.22 0_ d16_1
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levels are lower under heat stress (p <.05) are found in
clusters 1 and 3 (Fig. 6).

The biomolecules associated with energy production
in cluster 2 and which are consistently prioritized by
random forests include sugars (fructuose-6-phosphate,
glucose-6-phospahte) and anti-oxidant molecules such
as reduced glutathione and cysteinylglcine) (Fig. 7).
Meanwhile, many of the heat impacted compounds in
cluster k=1 describe products of sulfur metabolism
and amino acid catabolism (taurine, hypotaurine, N-
stearoyltaurine) whose levels are lower under heat
stress (p <.05) (Fig. 9). The first iterative combination
of statistical learning approaches (k-means followed
by random forests) is effective at separating biologic-
ally functional classes of compounds (lipids, sugars
and sulfur containing amino acids).

Hierarchical clustering further organizes these biomol-
ecules by relationships between genes and metabolites.
This degree of resolution captures regulation across the
transcriptome and metabolome. For example, the com-
pounds methyl GABA and hypotaurine in k-means clus-
ter 1 are among the top biomolecules prioritized by
random forests (Fig. 5). They subsequently cluster next
to one another in hierarchical clustering (Fig. 6). These

two compounds are related to the gene SLC6A13 as ei-
ther substrates (hypotaurine) or derivative of a substrate
(N_methyl_ GABA) [11]. Mouse knockouts of SLC6A13
are known to have 50% lower taurine levels in the liver
compared to wildtype individuals [12]. The downregu-
lated gens SLC6A13 is additionally prioritized by ran-
dom forests by its expression pattern (Fig. 5). In addition
to the relationship between hypotaurine and N_methyl
GABA as substrates of the SLC6A13 transporter, hier-
archical clustering resolves relationships between deriva-
tives of energy related sugar molecules.

For example, glucose-6-phosphate, fructose-6-phosphate,
and glucosamine-6-phosphate cluster together (Fig. 8).
These are all compounds prioritized by random forests and
found in k-means cluster 2 (Fig. 7). Additionally, an entire
trio of co-enzyme A derived compounds (coenzyme A, 3_
dephosphocoenzyme A, phospohopantetheine) from this k-
means cluster are grouped together under hierarchical clus-
tering (Fig. 8). In addition to its role in the citric acid cycle,
Coenzyme A is critical to fatty acid oxidation.

Sulfur species found in clusters 1 and 2 that are cata-
bolic intermediates to anti-oxidant production (hypo-
taurine, taurine) or lipid derivatives of taurine (N_
acetyltaurine, N_palmitoyltaurine, N_stearoyl_taurine)
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(Fig. 10) and are lower under heat stress and group to-
gether under hierarchical clustering in their respective
clusters. Sulfur metabolism end-products such as anti-
oxidants in k-means cluster k=2 glutathione and
cysteinylglycine whose levels increase under heat stress,
meanwhile, cluster together (Fig. 8). In this cluster of
k=2, a suite of upregulated lipids similarly cluster to-
gether, representing general products of myristoylation
and palmitoylation (myristoleate-14-1n15 and various
palmitoyl-olyeol species) (Fig. 8). The presence of
metabolically important palmitoylate and myristoylated
lipids in k-means =2 whose levels are increased by heat
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stress contrasts with the signaling and structural sphingo-
myelin lipids in k-means = 2 and k-means = 1 cluster.
Consistent with the involvement of multiple bio-
logical systems in the heat stress response identified
through the statistical learning methods, the model
of a potential “metabolic fork” (Fig. 11) described in

the model F6P~(;220) (Fig. 12) represents differen-

tial behavior under heat stress (p-value of interaction
term < .05). This model incorporates elements from
lipid metabolism (G3P), sugar metabolism (F6P) and
amino acid catabolism (glycine). The model describes
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a potential regulatory mechanism whereby sugar me-
tabolism is associated with changes in amino acid
and lipid metabolism (Additional file 3). The gene FBP2
which encodes a rate-limiting enzyme in gluconeogenesis
is upregulated during heat stress (p-value < .05).

Discussion

Our complete analysis, which combines statistical learn-
ing techniques with hypothesis-free modeling of metab-
olite ratios, is able to propose novel hypotheses while
recapitulating significant known biology from the liver
metabolome and transcriptome (Fig. 1). Importantly, this
perspective identifies changes in compounds with roles
across organelles that are increasingly thought to have
important functions in the heat stress response.

Much interesting biology, for example, relates to
changes in the cell membrane. Our pipeline prioritizes
widespread shifts in levels of constituent lipids, for
example. The exact mechanisms by which these shifts
occur remain unclear, but accumulating evidence suggests
these changes in the cell membrane exert important

downstream effects on heat stress responsive genes and
metabolites. Hierarchical clustering identifies groups of
these compounds such as the many sphingomyelin species
which cluster together in their respective k-means clusters
k=2 and k =3 (Figs. 6 and 10), suggesting shared regula-
tion of their changes under heat stress. At least some of
these may be driven by dietary changes that result from
heat stress such as decreased feed consumption. Linoleic
acid levels are lower under heat stress, for example, and
the compound must be acquired by diet., Linoleic acids is
a precursor to arachidonic acid and the latter emerges as a
strong heat stress associated biomolecule and whose de-
tected levels are lower under heat stress. Downstream ara-
chidonic acid derivatives are similarly decreased, many of
which have roles in inflammatory response. Several ara-
chidonic acid derivatives prioritized by random forests
from k-means cluster k=3 group together under hier-
archical clustering, consistent with shared upstream regu-
lation, possibly through linoleic acid. These compounds
are highlighted in Fig. 10 and include arachidonate and
various stearoyl arachidonate among other compounds.
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Other biomolecules prioritized by random forests and
which cluster together under hierarchical clustering in-
clude additional lipids related to signaling and fatty acid
oxidation — such as adipoylcarnitine and the taurine re-
lated endocannabinoids N-oleoy N-Stearoyl taurine
(Figs. 9 and 10). These compounds, derived from tau-
rine, thus represent a possible intersection between sig-
naling lipids and sulfur metabolism via coupling with
taurine. All of these compounds occur at lower
concentrations under heat stress. The similarities in
their metabolic profiles is supported by the adjacent
clustering of N-palmitoyltaurine, N-acetyltaurine and N-

stearoyltaurine the dendrogram (Fig. 10). While the spe-
cific mechanisms of their regulation remain an area of
active research, lipid changes are increasingly recognized
as potential regulators of heat stress at a fundamental
level [13] .

Recent studies have focused on nuances of the heat
stress response by revising the model that it is primarily
triggered by the presence of unfolded proteins [14]. For
example, lipids in the cell membrane may detect mem-
brane disorder and other physical consequences of heat
stress and trigger signal cascades [13]. The evolutionary
value of using a thermo-sensitive organelle such as the cell
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membrane to refine the heat stress response lies in the ad-
vantage of being able to regulate homeostasis through
sensitive adjustments that have meaningful influences on
cell fate [15]. Many compounds prioritized by our pipeline
are lipids that may be involved in such processes at a cel-
lular level, and consequently influence bird metabolism.

Heat stress, membranes and lipids

The sophisticated signaling environment created by the cell
membrane is comprised of a diverse set of lipids and pro-
teins. Among these is an abundance of sphingolipids that
form rafts in the membrane and possess important signal-
ing roles [15]. The organization of the cell membrane is in-
tricate and becomes dynamic under stress response.
Important structural changes occur through interactions

with membrane proteins, the gating of which possess ther-
mal sensitivity [16] Additionally, heat causes changes in
physical attributes such as diffusion and dimerization rates.
Measurements suggest these characteristics change in a
predictable fashion during even mild heat stress events
[16]. Thus, the cell membrane is well equipped to sense
relative temperature changes.

Not surprisingly, among the compounds prioritized
by our pipeline are many lipids with a diverse set of sig-
naling and structural roles. During episodes of heat
stress, mechanisms to endure temperature shifts focus
generally on maintaining the integrity of cellular pro-
cesses and such pathways can be causally regulated by
changes in cell membrane disorder [17] . For example,
regulation of heat shock factors can be influenced by
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addition of saturated and unsaturated fatty acids, with
the former inducing expression and the latter suppress-
ing it [18].

The possibility that the qualities of the cellular
membrane make it an ideal substrate in which to
store ‘memory’ or serve as a ‘control center’ for a
physiological response in terms of the composition of
density and sensing molecules is extremely interesting
biologically. This could prove extremely important in
terms of identifying the most upstream mechanistic
regulators of the overall response. Indeed, changes in
membrane fluidity induced via alcohols triggers sys-
temic responses paralleling those caused by heat
stress, albeit in the absence of any thermal activation.
Such changes include hyperpolarization of the mito-
chondrial membrane [19]. Such experimental work
confirms the role of lipids from a regulatory perspec-
tive and the influence of the heat stress response
across organelles.

Among the cell membrane lipids influenced by heat
stress and which are prioritized among their respective
clusters is a number of sphingomyelin species (Figs. 5
and 6). These are substantially down regulated under
heat stress and emerge as strong classifiers in clusters
one and three. Importantly, these compounds are
broadly similar to one another under hierarchical clus-
tering (Fig. 5). This is an interesting observation in the

context that sphingolipids are up-regulated in the early
phases of acute heat stress in studies of yeast [20] .
Many of these sphingomyelin species group together
under hierarchical clustering along with suppressed in-
flammatory arachidonic acid derivatives (Fig. 10). Their
general attenuation may be an important aspect of
physiological adaptation to the long term heat stress ex-
perienced by the birds, with the pattern of variance in
their levels indicative of bird acclimatization.

Anti-oxidants and energy burden

Heat stress entails a number of challenges that endanger
cell function and which must be addressed in order to
preserve homeostasis. The management and deployment
of downstream protective systems such as antioxidants
can be quite independent from the initial sensory cap-
acity of the cell membrane and its heat sensing path-
ways. These changes, for example, must mitigate cellular
damage that could result from ongoing heat stress. Such
pathways are essential to the heat stress response, as
they manage of general consequences of oxidative dam-
age. Several precursors of anti-oxidants, as well as such
compounds themselves, are identified as strong classi-
fiers of heat stress treatment within each k-means clus-
ter. These compounds, such as glutathione and its
derivative cysteinylglycine (Fig. 8), manage the effects of
toxic intermediates resulting from increased energy
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production, mitigating their ability to damage DNA or
organelles. Their production may exploit the carbon
backbones of amino acids released by catabolized protein.
The importance of tight coupling between sulfur and anti-
oxidant metabolism is supported by the close grouping of
various sulfur derivatives (reduced gluthathione, cysteinyl-
glycine, gamma-glutamylcysteine) under hierarchical clus-
tering (Fig. 8).

Not surprisingly, given the relationship between oxida-
tion and energy production, some of these biomolecules
are associated with changes in mitochondrial activity.
Even slight changes in cell resting state can have dra-
matic changes on the production of reactive oxygen
species and the behavior of the mitochondria [21]. Mole-
cules associated with mitochondrial performance are
computationally recognized as potential biomolecules of
the heat stress response. This suggests that mitochon-
drial conditions are closely related to heat stress in
general, and that the cell adjusts antioxidant levels
accordingly.

At the same time that sugars and other energy-
related metabolites show upregulation, an important
class of lipids involved in the carnitine shuttle system
that transports fatty acids to the mitochondria shows
consistent downregulation. These carnitine species
(stearoylcarnitine, adipoylcarnitine) are identified as
strong heat stress associated biomolecules among
their clusters and group tightly under hierarchical
clustering (Fig. 6). Such patterns suggest sweeping
downregulation of fatty acid oxidation pathways, as
metabolism is increasingly driven by gluconeogenesis.
Transcriptome changes in heat stress have been
established as supporting a coordinated shift in lipid
and sugar management [2].

Genes that emerge from the k-means cluster containing
gluconeogenesis biomolecules include NAD kinase

(NADKD1) and S100 Calcium Binding Protein Z (S100Z)
These genes cluster next to one another, while also close to
core upregulated gluconeogenesis compounds F6P and
G6P. NADKDI is a Nicotinamide Adenine Dinucleotide
(NAD) kinase responsible for Nicotinamide Adenine Di-
nucleotide Phosphate.

(NADP) production, while S100Z is a calcium binding
protein. Calcium released.

During oxidative stress can trigger cell death [22]. Thus,

upregulated S100Z may be important to mitigating
apoptosis.

NADKDI1, however, may play a role in lipid metab-
olism, by producing NADP that will be reduced to
NADH by the pentose phosphate pathway and thus
providing reducing power for lipid production [23].
Thus, NADKD1 production provides a potential link
between gluconeogenesis and lipid production, at the
same time lipid oxidation is decreased. The shift away
from lipid oxidation is consistent with increases in
coenzyme A.

The shift towards gluconeogenesis is supported
strongly from a mechanistic standpoint by the meta-
bolic fork (Fig. 11). The metabolic fork provides evi-
dence of large-scale redirection of carbon resources
released from the catabolized glycine. to complement
purely correlation-based strategies with mechanistic
hypotheses.

Metabolic forks resulting from gene regulation

One of the top differentially regulated triplets contains
two compounds prioritized through hierarchical
clustering on top biomolecules on a k-means cluster.
This is consistent with gene important expression
changes, such as those involving FBP2. The three mem-
bers of the triplet span gluconeogenesis (fructose-6-
phosphate), glyceroneogenesis (glycerol-3-phosphate)
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and amino acid catabolism (glycine). Pairwise correlations
between each node are provided on the corresponding
edge. A proposed mechanism for the observed pattern is
that catabolized glycine is preferentially shunted towards
gluconeogenesis under heat stress, thus contributing to
F6P production. Increasingly fueled by carbon backbones
provided by amino acids from catabolized proteins, gluco-
neogenesis decouples from glyceroneogenesis under heat
stress.

The ratio of G3P to glycine represents the tendency of
catabolized amino acids to become backbones for fats,
as opposed to sugars. This changes as a function of
increased demand for sugar under heat stress and is
corroborated by increase in the gene Fructose-
Bisphosphatase-2 (FBP2) encoding the rate-limiting gene
for gluconeogenesis.

Conclusions

Interest in the heat stress response is broad, stretching
from plant physiology to human clinical research, with
insights potentially applicable across taxa due to the
deep conservation of cell signaling pathways. Next
generation sequencing technologies provide new ex-
perimental perspectives from which to explore such
systems. During the past several years, the advent of
next generation sequencing tools has produced a del-
uge of data. However, methods to process that data
have been lacking. Combining the information from
transcriptome and metabolite data, and multi organ
datasets compounds this challenge. The capacity to
link patterns of heterogeneity to pathway importance
is an approach that can ease the burden of prioritiz-
ing compounds in such a setting. Here, we do so and
leverage a combination of relative tissue enrichment
and statistical learning approaches to prioritize
compounds based on their ability to identify samples
as belonging to heat stress or control conditions. We
demonstrate signatures of the heat stress response
across several important systems. Importantly, this is
a very general strategy that works with any type of
continuous data, rendering it applicable to both me-
tabolome and transcriptome data and flexible enough
to accommodate future “-omics” data.

While recapitulating known biology, our analysis
also proposes new hypotheses about heat stress regu-
lation that relates to systems controlled by a diverse
range of organelles. These can be explored through
future experimentation. Additionally, the metabolic
fingerprint of heat stress provides candidates for feed
supplementation studies. Thus, this study proposes a
general workflow to integrate high dimensional, com-
plex datasets in order to yield testable hypotheses
about biology.
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