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Abstract

Background: Bovine viral diarrhea virus (BVDV) is an economically important viral pathogen of domestic and wild
ruminants. Apart from cattle, small ruminants (goats and sheep) are also the susceptible hosts for BVDV. BVDV
infection could interfere both of the innate and adaptive immunity of the host, while the genes and mechanisms
responsible for these effects have not yet been fully understood. Peripheral blood mononuclear cells (PBMCs) play
a pivotal role in the immune responses to viral infection, and these cells were the target of BVDV infection. In the
present study, the transcriptome of goat peripheral blood mononuclear cells (PBMCs) infected with BVDV-2 was
explored by using RNA-Seq technology.

Results: Goat PBMCs were successfully infected by BVDV-2, as determined by RT-PCR and quantitative real-time RT-
PCR (qRT-PCR). RNA-Seq analysis results at 12 h post-infection (hpi) revealed 499 differentially expressed genes
(DEGs, fold-change ≥ ± 2, p < 0.05) between infected and mock-infected PBMCs. Of these genes, 97 were up-
regulated and the remaining 352 genes were down-regulated. The identified DEGs were found to be significantly
enriched for locomotion/ localization, immune response, inflammatory response, defense response, regulation of
cytokine production, etc., under GO enrichment analysis. Cytokine-cytokine receptor interaction, TNF signaling
pathway, chemokine signaling pathway, etc., were found to be significantly enriched in KEGG pathway database.
Protein-protein interaction (PPI) network analysis indicated most of the DEGs related to innate or adaptive immune
responses, inflammatory response, and cytokine/chemokine-mediated signaling pathway. TNF, IL-6, IL-10, IL-12B,
GM-CSF, ICAM1, EDN1, CCL5, CCL20, CXCL10, CCL2, MAPK11, MAPK13, CSF1R and LRRK1 were located in the core of
the network and highly connected with other DGEs.

Conclusions: BVDV-2 infection of goat PBMCs causes the transcription changes of a series of DEGs related to host
immune responses, including inflammation, defense response, cell locomotion, cytokine/chemokine-mediated
signaling, etc. The results will be useful for exploring and further understanding the host responses to BVDV-2
infection in goats.
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Background
Bovine viral diarrhea virus (BVDV) is the prototypic mem-
ber of the genus Pestivirus in the family Flaviviridae, and
two main different BVDV species have been recognized as
BVDV-1 and BVDV-2 [1]. BVDV infection decreases pro-
ductive performance and causes considerable economic
losses in cattle industry worldwide [2]. Infections with
both species of BVDV can induce similar diseases, from
subclinical infections to severe clinical diseases including
acute diarrhea, respiratory diseases, reproductive failures,
congenital defects, and increased mortality due to
immunosuppression [2–4]. Persistent infection is the
common type of infection in cattle and the persistently
infected (PI) animals are considered the main source of
BVDV transmission [2, 5]. PI animals had also been
detected in heterologous species, which amplify and fa-
cilitate the reservoirs for BVDV [6, 7]. Evidence of BVDV
infection exists in 7 families (over 50 species) of Artio-
dactyla including Antilocapridae, Bovidae, Camelidae,
Cervidae, Giraffidae, Suidae, and Tragulidae [6]. The
circulation of BVDV-1 and BVDV-2 in cattle, pigs had
been identified in China [8–10]. Our previous study has
identified the prevalence of BVDV-1 in Chinese goat herds
[11]. The infection of BVDV-2 in goat or sheep has been
confirmed in India, Korea [12–14]. Therefore, the risk and
prevalence of BVDV-1 and BVDV-2 in goat/sheep herds
needs urgent attention.
Recently, high-throughput RNA-Sequencing (RNA-

Seq) technologies give the opportunity to produce large
numbers of sequence data in non-model organisms, and
this method is better than the traditional microarray
analysis [15, 16]. It provides a thorough understanding
of the host defense mechanisms and immune evasion
strategies of viral infection [17]. The transcriptional
landscape in the host upon virus infection facilitates the
understanding of host immune responses and defense
mechanisms upon the pathogenic microorganism infec-
tion at whole mRNA level, and provides new approaches
to the potential control of virus infections.
Two biotypes of BVDV are recognized: cytopathic (cp)

and non-cytopathic (ncp) strains. In experimental in-
fected calves, BVDV-specific antibody is first detected
shortly after viral clearance for both biotypes. T cell pro-
liferative responses are detectable by 3–4 weeks post-
infection with cpBVDV; while delayed to about 6–8
weeks after ncpBVDV infection [18]. The primary site of
BVDV replication is immune tissue, viral replication
results in altered cell function or cell death in different
lymphoid populations. The resulting immune suppres-
sion occurs in all acute BVDV infections [19]. Peripheral
blood mononuclear cells (PBMCs), including lym-
phocytes, monocytes and macrophages, play a pivotal
role in the host innate or adaptive immune responses to
viral infection. PBMCs were the main target of BVDV

infection, infection of lymphocytes and monocytes by
BVDV resulted in lymphoid depletion of B cells, T
helper cells, cytotoxic T cells and γ-δ T cells [20, 21].
PBMCs have been proved to be a suitable model for
characterizing the host immune responses to virus infec-
tion and have been utilized for the evaluation of immune
responses to animal viruses [17, 22, 23]. Global tran-
scriptome analysis has been employed to explore the
molecular events of host interaction with BVDV in
bovine originated cells [24–27]. However, no report on
BVDV-goat interactome is available to date. In this study,
Illumina sequencing method was used to identify the tran-
scriptome changes in BVDV-2 infected goat PBMCs. For
the first time, we obtained the differentially expressed
transcriptome profile in the goat PBMCs during BVDV-2
infection. The results will be helpful for better under-
standing the host responses to BVDV-2 infection and its
relationship to viral pathogenesis in goats.

Results
Determination of BVDV-2 replication in goat PBMCs
To confirm the replication of BVDV-2 in goat PBMCs,
RT-PCR and qRT-PCR were performed. As shown in Fig.
1a, 5’-UTR fragment with ~ 290 bp was amplified in in-
fected goat PBMCs from 6 to 24 h post- infection (hpi).
qRT-PCR detection showed similar results, the BVDV
genome copy numbers increased from 6hpi and reached
high levels at 12 and 24 hpi (Fig. 1b). These results
confirmed the BVDV-2 infection in goat PBMCs. To ex-
plore the effect of early BVDV replication on gene expres-
sion, 12 hpi was selected for sampling and RNA-Seq.
In addition, BVDV nucleotide was not detected in the
mock infected PBMCs at any of the experimental
time points.

Transcriptome quantification
After RNA-seq, a total of 122,154,110 raw reads (B2:
62679448; N: 59474662) were obtained. After removing
low-quality reads and reads with adaptor sequences, 113,
957,630 clean reads (B2: 58748222; N: 55209408) were
obtained (Table 1). We then queried the clean reads against
the latest reference genome (Gallus_gallus-5.0, https://
www.ncbi.nlm.nih.gov/assembly/GCF_001704415.1) and
mapped using TopHat (http://tophat.cbcb.umd.edu/). For
B2 and N samples, 50,308,617 and 47,349,951 reads were
mapped to the reference genome with mapped rate of
85.63 and 85.76%, respectively. Among the matched 13,974
target genes for B2, 9883 with RPKM≥1; For N, 13905 tar-
get genes were matched and 9952 with RPKM≥1 (Table 1).

DEGs analysis and functional annotation
After the gene mapping and the Cuffdiff analyses in terms
of FRKM, a total of 449 genes were identified as signifi-
cantly differentially expressed for infected group (B2), when
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comparing with the mock-infected control group (N, fold
change (FC) ≥ ± 2, p < 0.05). Among the 449 genes, 97 were
up-regulated and 352 genes were down-regulated (Fig. 2,
Additional file 4: Figure S1, Additional file 1: Table S1).
The 449 DEGs were annotated to 54 different GO

terms. The up-regulated DEGs were annotated to 38 GO
terms and the down-regulated DEGs were annotated to
53 GO terms (Fig. 3). The most annotated GO terms
were metabolic process (BP), cellular process (BP),
response to stimulus (BP), biological regulation (BP),
localization (BP), cell (CC), cell part (CC), membrane
(CC), membrane part (CC), extracellular region (CC),
organelle (CC) and binding (MF), etc. (Fig. 3).

Functional and PPI analysis of DEGs
After GO enrichment analysis, DEGs were enriched into
different GO terms. For immune related DEGs, signi-
ficant enrichment was observed in regulation of loco-
motion/ localization, immune response, inflammatory
response, immune system process, defense response,
regulation of cytokine production of BP group and in
cytokine activity, chemokine activity, receptor binding of
MF group. (Fig. 4 and Additional file 2: Table S2).
To further define DEGs function, KEGG pathway/en-

richment analysis was performed. Among the fifteen sig-
nificantly enriched pathways, cytokine-cytokine receptor
interaction, TNF signaling pathway, chemokine signaling

pathway, complement and coagulation cascades and
NOD-like receptor signaling pathway were found to be
enriched to canonical pathways (Fig. 5, Table 2 and
Additional file 3: Table S3). The cytokine-cytokine re-
ceptor interaction pathway was the pathway enriched
with most number of DEGs (n = 29). For the 29 DEGs,
CCL4, CCL3, CXCL10, CCL5, CCL22, CCL20, GM-CSF,
TNF, IL-6, IL-17A, IL-12B, IL-19, IL-10, TNFRSF13C,
TNFRSF8, TNFRSF9 and XCL1 were up-regulated;
while TNFSF12, CSF1R, TNFRSF21, CSF3R, regakine-
1(LOC102170772), CCL2, CCL24, CCL17, CCL14,
CCL25, IL-5RA and PPBP were down-regulated. In
addition, TNF, IL-6, CXCL10, CCL4, CCL3, CCL5,
CCL20, CCL2 and regakine-1 were enriched in at least
three of the six pathways mentioned above (Table 2).
STRING analysis was used to explore the potential

interaction network of the DEGs. As shown in Fig. 6,
most of the DEGs related to innate or adaptive immune
responses, inflammatory response, cytokine/chemokine-
mediated signaling pathway, etc. Among the up-
regulated genes, TNF, IL-6, IL-10, IL-12B, GM-CSF,
ICAM1, EDN1, CCL20, CXCL10 and CCL5 were located
in the core of the network and linked to lots of other
DGEs; for the down-regulated genes, the key points in-
cluded CCL2, MAPK11, MAPK13, CSF1R and LRRK1,
etc., which linked to more genes. In addition, not all
DEGs showed connection with others because their

Fig. 1 Identification of viral infection in goat PBMCs. a Amplification of 5’UTR by RT-PCR at 6 h, 12 h and 24 hpi in BVDV-2 infected goat PBMCs. 1:
Mock-infected PBMC at 12hpi; 2: Infected PBMC at 6 hpi; 3: Infected PBMC at 12 hpi; 4: Infected PBMC at 24 hpi; 5: DNA Marker DL-2000 plus. b
Detection of viral genome copy numbers in goat PBMCs by qRT-PCR at different time points

Table 1 Summary of reads quality and mapping results of RNA-Seq

Sample Total raw reads Total clean reads Mapped reads Mapped rate (%) FPKM> 0 FPKM> 1 FPKM> 5 FPKM> 10

B2 62,679,448 58,748,222 50,308,617 85.63 13,974 9883 7089 5160

N 59,474,662 55,209,408 47,349,951 85.76 13,905 9952 7120 5162
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Fig. 2 Summary of the differentially expressed genes between mock and BVDV-2 infected samples at 12hpi

                                                                                                                         Number of genes ( Up/Down )
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Fig. 3 GO annotation for the DEGs between mock and BVDV-2 infected goat PBMCs
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functions were either unrelated or have not yet been
clarified (Additional file 5: Figure S2). These DGEs were
not included in Fig. 6 during the analysis.

Partial validation of RNA-Seq data
To further validate the RNA-Seq data, DEGs with anno-
tations associated with immune responses from RNA-
seq were selected for qRT-PCR analysis. As shown in
Table 3, eighteen selected genes exhibited a concordant
direction both in RNA-Seq and qRT-PCR analysis. The
correlation coefficient between RNA-Seq and qRT-PCR
results was high (R2 = 0.91). Some of the DEGs were fur-
ther determined by Western blot or ELISA, as shown in
Fig. 7, the expression of Annexin A2 decreased obviously
(Fig. 7a) and the expression of TNF-α, GM-CSF and IL-
6 were increased significantly (Fig. 7b). In addition,
Viperin (used as a control) expression showed no change
between infected and mock-infected group, which was
consistent with the RNA-Seq result. These results con-
firmed that the differential expression genes identified
by RNA-Seq is reliable.

Discussions
BVDV is one of the most important viral diseases of
various species of domestic animals. Regardless of
clinical presentation, all BVDV infections result in sig-
nificant loss of immune tissue, the resulting immune
suppression and increased severity of subsequent infec-
tions [28]. The different genotypes and biotypes of
BVDV, wide spectrum of susceptible host, ability to in-
duce persistently infection, as well as its ability to inter-
fere both innate and adaptive immunity of the host,
make it difficult for prevention and control.
Microarray and RNA-Seq analysis are the two main

techniques for transcriptome analysis. There were many
reports about transcriptome changes upon animal virus
infection by microarray analysis [29–31]. As a revolu-
tionary tool, RNA-Seq has been widely used in recent
years, such as BTV, PRRSV, PPRV and NDV [22, 32–34].
Several studies had explored the effect of BVDV infec-
tion on mRNA expression changes in different bovine
cells [25, 27, 35], but understanding of BVDV-host inter-
action is still far from complete. Comparing to the
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Fig. 4 GO enrichment analysis for the DEGs between mock and BVDV-2 infected goat PBMCs. Circles indicate numbers of enriched genes and
colors depict the P value
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Fig. 5 Top 30 pathways enriched in KEGG database for the DEGs between mock and BVDV-2 infected goat PBMCs. Circles indicate numbers of
enriched genes and colors depict the P value

Table 2 Lists of the significantly enriched KEGG pathways associated with immune responses

Pathways ID DEGs
No.

p-value Up-regulated genes Down-regulated genes

Cytokine-cytokine
receptor interaction

ko04060 29 5.04E-06 CCL4,CCL3,CXCL10,IL17A,IL12B,IL19,IL10,
XCL1,CCL5,CCL22,IL6,CCL20,GM-CSF,TNF,
TNFRSF13C,TNFRSF8, TNFRSF9

TNFSF12,CSF1R,regakine-1,CCL2,TNFRSF21,
CSF3R,CCL24,CCL17,CCL14,IL5RA,CCL25,
PPBP

NOD-like receptor
signaling pathway

ko04621 11 1.01E-05 TNFAIP3,NFKBIA,IL6,TNF,CCL5 CARD9,MAPK11,NLRP1,CCL2,MAPK13,NOD1

TNF signaling
pathway

ko04668 15 5.59E-05 TNF,NFKBIA,CCL5,IL6,TNFAIP3,EDN1,PTGS2,
CCL20,ICAM1,GM-CSF,CXCL10

MAPK11,CREB3L2,CCL2,MAPK13

Chemokine
signaling pathway

ko04062 19 0.000168 CCL3,CCL20,CXCL10,CCL4,CCL5,CCL22,
XCL1,NFKBIA, GNG7

CCL17,CCL24,PAK1,CCL25,
regakine-1,CCL2,CCL14,GNB4,GNG12,PPBP

Complement and
coagulation
cascades

ko04610 11 0.000286 C3,SERPING1,CR2 C1QA, C1QB,C1QC, CFD, F13A1,C5AR1,
CD55, LOC102185401

Toll-like receptor
signaling pathway

ko04620 13 0.000434 IL12B,CCL3,CXCL10,TNF,NFKBIA,CCL4, CCL5,IL6 CD14,MAPK11,CD86,regakine-1,MAPK13
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studies in cattle little is known regarding the cellular
impact of BVDV-2 infection in goats. Herein, in the
present study, goat PBMCs were infected with a ncp
BVDV-2 strain, and the transcriptome was evaluated at
12 hpi to identify the global gene expression changes, to
understand and delineate the mechanism of early
responses induced by virus infection. Transcriptional
changes of the DEGs involved in immunological pro-
cesses were analyzed specially. The results from GO,
KEGG and PPI analysis indicated that various numbers
of DEGs were involved in different biological processes
of host immune responses.
The innate immunity is the first defense line against

infectious disease. The PBMCs were the gatekeeper of
virus spread during systemic viral infections and include
several subpopulations that may cooperate in the acti-
vation processes [36]. These cells play important role in
innate and adaptive immune responses. The pathogen-
associated molecular pattern receptors (PAMPs) such as
Toll-like receptors (TLRs) or RIG-I-like receptors
(RLRs) recognize pathogens, then released a series of
related antiviral cytokines. In this study, under BVDV-2
infection, the expression of TLRs, RLRs, interferon
(IFN) and the ISGs were not significant induced.
Contrarily, the mRNA levels of lysozyme, beta-defense,
competent of complement system (C1q, C1r, C1s, CFD)
and IFITM3 (one of the ISGs) was found to be down-

regulated. A previous study showed that TLR3, type I
IFN gene was up-regulated in ncp BVDV-infected
monocytes at 1hpi but not at 24hpi [37]. It has also been
reported that ncpBVDV dose not induce type I IFN in
vitro and block the induction of type I IFN by dsRNA or
other viruses and interferon tau-stimulated ISGs expression
[18, 38]. The interaction of ncp BVDV with its host cells
impairs both of the innate and adaptive immunity
[39]. During BVDV infection, viral RNA firstly trig-
gers IFN synthesis, while the viral RNase Erns protein
inhibits IFN expression; in addition, Npro promotes
the degradation of IRF-3, which effectively blocks IFN
expression in BVDV-infected cells [39–41]. So, the
inhibition of immune genes mentioned above might
result from the interference of BVDV-2 infection on
the related immune pathways. The inhibition of IFN
synthesis and other competent of innate immunity
might play an important role in escaping innate immunity
and the establishment of effective infection for BVDV in
host cells.
The complement system, which consists of both so-

luble factors and cell surface receptors, is one of the
major innate defense systems. The main role of comple-
ment system is to protect against infections, it also links
the innate and adaptive immune responses [42]. In the
present study, C1q, C1r, C1s, CFD were down-regulated,
while C3 was up-regulated; imply that BVDV-2 infection
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in goat PBMCs may inhibit the classical or alternative
pathways of the complement system activation.
Inflammation was one of the important anti-micro-

organism responses upon infection. Once exposed to in-
fectious agents, host cells produced certain cytokines,
such as TNF-α, IL-1 and IL-6, resulting in the develop-
ment of inflammation. TNF-α is an essential mediator of
inflammation and also facilitates the transition from in-
nate to adaptive immunity. IL-6 affects both inflammation
and adaptive immunity. It promotes some aspects of
inflammation, especially in response to tissue damage and
severe infections since it is a major mediator of the acute

phase reaction and of septic shock. Many viruses, includ-
ing BVDV, could induce inflammation after infection.
Studies in cattle and sheep have shown that the pathology
of BVDV associated with the replication of virus and the
production of pro-inflammatory cytokines and induced in-
flammatory responses [43–45]. One study examined the
mRNA expression in tracheo-bronchial lymph nodes of
BVDV infected beef calves and found that high virulence
BVDV-2 strain induced pro-inflammatory (TNF-α, IL-12,
IL-1β, IL-2, IFN-γ) and anti-inflammatory (IL-4 and IL-
10) cytokines, while low virulence BVDV-1a strain only
up-regulated IL-12 and IL- 15 gene expression [46]. In an

Table 3 The immune responses related DEGs and partial validation of RNA sequencing data by qRT-PCR

Gene ID Gene name Function annotation FC log2(B2/N)

RNA-Seq qRT-PCR

Down-regulated

NC_030809.1_gene90 C1QA complement C1q subcomponent subunit A −3.03

NC_030809.1_gene93 C1QB complement C1q subcomponent subunit B −2.29

NC_030809.1_gene91 C1QC complement C1q subcomponent subunit C −1.42

NC_030814.1_gene546 CFD complement factor D −2.35

NC_030812.1_gene428 S-LE lysozyme −3.03

NC_030836.1_gene709 IFITM3 interferon-induced transmembrane protein 3 −1.36

NC_030834.1_gene266 LOC102188015 beta-defensin 103A −1.05 −0.5

NC_030810.1_gene1245 S100A4 protein S100-A4 −1.76

NC_030808.1_gene1009 S100B protein S100-B −1.23

NC_030818.1_gene1111 FCN1 ficolin-1 −1.56

NC_030818.1_gene586 ANXA4 annexin A4 −1.54 −0.7

NC_030813.1_gene593 ANXA3 annexin A3 −1.49 −0.9

NC_030817.1_gene452 ANXA2 annexin A2 −1.29 −1.9

NC_030826.1_gene194 CCL2 C-C motif chemokine 2 −1.61 −2.2

Up-regulated

NC_030828.1_gene424 NFKBIA NF-kappa-B inhibitor alpha 1.27 1.3

NC_030836.1_gene157 LOC102168428 serum amyloid A protein 1.31 2.2

NC_030836.1_gene161 LOC100860781 serum amyloid A3 1.62

NC_030826.1_gene156 CCL3 C-C motif chemokine 3 1.48 1.5

NC_030825.1_gene308 CCL22 C-C motif chemokine 22 1.48

NC_030826.1_gene155 CCL4 C-C motif chemokine 4 1.95 1.8

NC_030826.1_gene163 CCL5 C-C motif chemokine 5 1.80 1.6

NC_030809.1_gene360 CCL20 C-C motif chemokine 20 3.12 2.7

NC_030813.1_gene567 CXCL10 C-X-C motif chemokine 10 1.16 1.2

NC_030814.1_gene1059 ICAM1 intercellular adhesion molecule 1 1.54

NC_030830.1_gene594 TNF tumor necrosis factor alpha 1.62 3

NC_030823.1_gene84 IL-10 interleukin-10 2.16 2.5

NC_030830.1_gene686 IL-17A interleukin-17A 2.18 1.6

NC_030811.1_gene808 IL-6 interleukin-6 2.28 2.4

NC_030814.1_gene174 IL-12B interleukin-12 subunit beta 2.80 2.2

NC_030814.1_gene828 GM-CSF granulocyte-macrophage colony-stimulating factor 3.30 2.45
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other study, both cp and ncp BVDV biotypes suppressed
pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, but
did not change IL-12 and INF-γ gene expression in bovine
PBMCs [37]. As a member of pestivirus, virulent CSFV
infection in pigs resulted in the secretion of cytokines
associated with inflammation or apoptosis such as TNF-α,
IL-2, IL-4, IL-6, and IL-10 [47]. The BVDV-2 strain used
in this study induced fever, viremia and lymphopenia in
experimentally infected goats (unpublished data). The
clinical signs, together with the pattern of increased TNF-
α, IL-6, IL-12, IL-10 and IL-17 mRNA level observed in
BVDV2-infected goat PBMCs in this study, suggested that
BVDV-2 induced an acute inflammatory response in the
early stage of infection. The enriched pathways related to
cytokine/chemokine signaling provide obvious evidence
that specific immune responses are activated during that
acute phase of BVDV infection.
The serum amyloid A (SAA) family comprises a num-

ber of apolipoproteins, which include acute-phase SAAs
(A-SAAs) and constitutive SAAs (C-SAAs). A-SAAs
have been identified in all vertebrates and could be
induced as much as 1000-fold during inflammation [48].
Transcription of SAAs members LOC102168428 (SAA
like) and LOC100860781 (SAA3) were found to be up-
regulated in this study. Members of A-SAAs have been
identified to be activated upon infection and proven
useful as an inflammatory marker for many viral
diseases of animals [49–51]. Similarly, Ganheim C. et
al. reported a significant acute phase response with ele-
vated values of SAA and other acute phase proteins in
calves experimentally infected with BVDV [52]. So,
SAA might be considered as a diagnostic marker for
BVDV induced inflammation.
Viral infection usually induces the recruitment of inflam-

matory cells to the infection site, and this activity is regu-
lated by various cytokines and chemokines. Chemokines

are a great superfamily of at least 50 small (8- to 10-kDa)
structurally related chemoattractant proteins, which play a
key role in initiating the innate and subsequently adaptive
immune responses. Chemokines have many roles in the
regulation of leukocyte development, angiogenesis, tumor
growth and metastasis [53]. They coordinate the migration
of leukocytes and hence dictate the course of many
inflammatory and immune responses by recruiting
different immune cells toward sites of infection [54].
Monocytes/macrophages are part of the first line of
defense and have been shown to release a variety of
chemokines in response to infection [31]. Studies have
determined chemokines expression upon the infection
of several viruses, such as PRRSV, PEDV and PCV2 [30,
32, 55]. Study by Helal et al. showed that low expres-
sion of CXCR4 and high expression of IL-10 is asso-
ciated with the production of PI calves in a herd level
[56]. Trzeciak-Ryczek A. et al. reported that ncpBVDV
infection increases CXCR4, CXCL12 mRNA expression
in bovine PBMCs [57]. In another study, detection of
chemokine profile in cp and ncp BVDV infected bovine
monocytes/macrophages demonstrated up-regulation of
several key chemokines of the CCL and CXCL families
to cpBVDV, but not ncpBVDV [31]. In our study,
BVDV-2 infected goat PBMCs showed increased tran-
scription of CCL3, CCL4, CCL5, CCL20, CXCL10 and
decrease of CCL2, suggesting that such chemokines may
contribute to the recruitment and regulation of macro-
phages or other inflammatory cells to the infected sites
after infection.
GM-CSF was another up-regulated DEG found in our

study. It is not only an inducer of differentiation and
proliferation of granulocytes/macrophages but also
involved in a wide range of biological processes in both
innate and adaptive immunity [58]. GM-CSF has been
widely used as adjuvant for vaccines and has been shown

Fig. 7 Partial validation of RNA-Seq data by Western blot and ELISA. a The expression of Annexin A2 and Viperin in the samples was determined
by Western blot using rabbit anti-Viperin polyclonal antibody (Abcam) and mouse anti-AnnexinA2 antibody (Santa Cruz). b The concentration of
GM-CSF, TNF- and IL-6 present in the samples were determined by commercial ELISA kit and calculated with the formula derived from the
standard curve. Data was shown as the mean ± S.D. Columns marked with * (P < 0.05) are significantly different from each other
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powerful as an important therapeutic target in several
autoimmune and inflammatory diseases [58, 59]. The in-
duction of GM-CSF expression has been identified in
several viruses and shown to alter pathogenic “M1-like”
macrophage inflammation after influenza A virus in-
fection [60–62]. The high expression of GM-CSF in
goat PBMCs indicated the regulation role of it in host
immune responses after BVDV-2 infection.

Conclusions
In conclusion, the changes of a series of immunity
related genes in BVDV-2 infected goat PBMCs were
observed by RNA-Seq analysis. The results will be useful
for exploring and further understanding host responses
to BVDV-2 infection in goats.

Methods
Virus and cells
MDBK cells were (purchased from the China Institute of
Veterinary Drug Control) cultured in DMEM (Hyclone,
USA) supplemented with 10% fetal bovine serum (FBS,
Transgen, Bio, Inc.,China) and kept at 37 °C. For the
production of stock virus, MDBK cell monolayer was in-
oculated with the ncpBVDV2 strain C201604 (GenBank
No. MG420995, identified and kept in our lab) with
multiplicity of infection (MOI) of 0.1. At 3 days post
infection, the infected cells were harvested, lysed by
three cycles of freeze-thaw, centrifuged at 8000×g and
4 °C for 10 min and then aliquoted and stored at − 70 °C
until use.

Goat, PBMCs culture and virus infection
Goats used for blood collection were purchased from a
goat farm (private farm, 210 goats) located in Jurong
county, Jiangsu province. The goats were vaccinated
against goat pox virus, foot and mouth disease virus,
peste des petits ruminants virus and Mycoplasma
mycoides subsp.capri. The animal was further screened
for BVDV and viral specific neutralizing antibodies using
RT-PCR and virus neutralization test, respectively. EDTA
anticoagulant whole blood were collected from the goats
(n = 3) and PBMCs were separated using Histopaque-1077
(Sigma) by density gradient centrifugation at 500×g for 20
min, then washed three times with RPMI-1640 medium at
500×g for 10min. Cells from each animal were suspended
to 1× 106 cells/mL with complete RPMI 1640 medium
(RPMI 1640 containing 10% FBS) and seeded in six
well plates (n = 4, 8 wells/animal). Two plates were
infected with BVDV2 (2 × 105 TCID50/mL, MOI = 0.1)
and the other two plates were served as mock-
infected control. Samples from one infected plate and
one mock-infected plate were collected at 6, 12 and
24 hpi for virus replication detection. At 12 hpi,
medium was discarded and the cells of the left two

plates (infected and mock-infected) were washed twice
with PBS, mixed and pelleted for RNA-Seq.

RNA extraction, library preparation and RNA sequencing
(RNA-seq)
Total RNA was extracted from the infected (B2) and
mock-infected (N) PBMCs using TRIzol reagent (Invi-
trogen) according the manufacturer’s instructions and
genomic DNA was removed using DNase I (TaKara).
RNA quality (RNA integrity number, RIN) was deter-
mined using Agilent 2100 Bioanalyser and quantified
using the ND-2000 (NanoDrop). High-quality RNA sam-
ple (OD260/280 = 1.8~2.2, OD260/230 ≥ 2.0, RIN ≥ 6.5,
28S:18S ≥ 1.0, > 10 μg) was used to construct sequencing
library.
RNA-Seq transcriptome libraries were prepared by

TruSeqTM RNA sample preparation Kit from Illumina
(San Diego, CA), using 1 μg of total RNA. Shortly,
mRNA was isolated with polyA selection by magnetic
oligo (dT) beads and fragmented into small pieces using
fragmentation buffer. cDNA synthesis, end repair, A-
base addition and ligation of the Illumina-indexed adap-
tors were performed according to Illumina’s protocol.
Libraries were then selected for cDNA target fragments
of 200–300 bp on 2% Low Range Ultra Agarose followed
by PCR amplified for 15 cycles using Phusion DNA poly-
merase (NEB). After quantified by TBS380, paired-end
libraries prepared for both the infected and mock-
infected samples (B2 and N) were sequenced with the
Illumina HiSeq PE 2X151bp read length. RNA-Seq was
performed by Shanghai Biozeron Biotech Co. Ltd.

Reads quality control and mapping
The raw paired end reads were trimmed and quality
controlled by Trimmomatic with default parameters
(http://www.usadellab.org/cms/index.php?page=trimmo-
matic). Clean reads were then separately aligned to the
reference caprine genome (https://www.ncbi.nlm.nih.
gov/assembly/GCF_001704415.1) with orientation mode
using TopHat software (http://tophat.cbcb.umd.edu/),
which can align RNA-Seq reads to a genome in order to
identify gene expression and exon-exon splice junctions.
It is built on the ultrafast short read mapping program
Bowtie2 to map with default parameters.

Differential expression genes (DEGs) analysis and
annotation
To identify DEGs between the two samples, the expression
level for each transcript was calculated using the fragments
per kilobase of exon per million mapped reads (FPKM)
method. Cuffdiff (http://cufflinks.cbcb.umd.edu/) was used
for differential expression analysis and the DEGs were se-
lected using the following criteria: the logarithmic of fold
change was greater than 2 and the p-fdr should be less than
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0.05. All DEGs were subjected to Gene Ontology (GO) an-
notation based on GO database.

Functional and protein-protein interaction (PPI) analysis
of DEGs
To understand the functions of the DEGs, GO func-
tional enrichment and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis were carried out by
Goatools (https://pypi.org/project/goatools/) and
KOBAS (http://kobas.cbi.pku.edu.cn/). DEGs were sig-
nificantly enriched in GO terms and KEGG pathways
when their p-value was less than 0.05.
PPI network among the DEGs was analyzed using the

STRING (http://string-db.org/) database, which included
direct and indirect associations of proteins. After analyz-
ing the result from STRING analysis and expression
change information for each DEG, the network figure
was drawn for the selected DEGs (connected with one
or more DEGs) by using Cytoscape software.

RT-PCR and quantitative real-time RT-PCR (qRT-PCR)
Total RNAs were extracted from infected and mock-
infected PBMCs using TransZol UP reagent (Transgen, Bio,
Inc.,China) according to the manufacturer’s instruction.
The RT-PCR was performed to identify the repli-

cation of BVDV and carried out with EasyScript one-
step RT-PCR supermix (Transgen, Bio, Inc., China) in
a 20 μl reaction mixture containing 10 μl of 2 × R-Mix,
20 pM of each primer (F: 5'-ATGCCCWTAGTAGGAC-
TAGCA-3', R: 5'-TCAACTCCATGTGCCATGTAC-3'),
0.4 μl of E-Mix, 2 μl extracted RNA and 6.6 μl ddH2O.
The reaction was run in a thermocycler (Mjmini, BIO-
RAD) with the following program: reverse transcrip-
tion at 45 °C for 30 min; denaturation at 94 °C for 5
min, 35 cycles composed of denaturation at 94 °C for
30 s, annealing for 30 s at 54 °C and extension at
72 °C for 30 s; and was terminated with a final exten-
sion of 10 min at 72 °C. Amplification products were
detected by electrophoresis in 1.2% agarose gels.
The qRT-PCR amplification was carried out with

TransScript one-step qRT- PCR supermix (Transgen,
Bio, Inc., China) in a 20 μl reaction mixture containing
10 μl of 2 × Supermix, 20 pM of each primer (Table 4),
0.5 μl of E-Mix, 0.4 μl of passive reference Dye and 2 μl
extracted RNA. The reaction was run in ABI Step One
instrument as the following procedure: samples were
incubated at 45 °C for 5 min firstly; then heated at
94 °C for 30 s and a two-step cycle (5 s at 94 °C, 30 s
at 60 °C) was repeated for 40 cycles. GAPDH was
used as the internal control and relative quantification
of target gene expression was the target transcript in
infected group to that of mock-infected group and
expressed as –ΔΔCt.

Virus titration
For titration of virus stock, four replicates of 10-fold
serially diluted virus (starting from 1/10) were inoculated
on MDBK cell monolayer in 96-well culture plates. After
48 h incubation, the culture plates were fixed at 4 °C for
30 min with ice cold absolute ethyl alcohol and subjected
to immunofluorescence staining with BVDV-specific
mouse monoclonal antibody Mix (RAE2020, AHVLA,
UK; 1:200 diluted in PBS) and FITC-conjugated goat
anti-mouse IgG (BOSTER, Wuhan, China; 1:200 diluted
in PBS). The fluorescence signals were observed undera
fluorescence microscopy (ZEISS) and viral titers was
expressed as the 50% tissue culture infective dose
(TCID50)/mL by Reed-Muench method.

Western blot
Cell lysates samples were separated by 12% SDS-PAGE
and transferred onto nitrocellulose membranes (Pall)
using a semi-dry transfer cell (Bio-Rad) at 1 V/cm2 for
40 min. The membrane was treated sequentially with 5%
skimmed milk in PBST (PBS containing 0.05% Tween-
20) at 37 °C for 2 h, with different primary antibodies (1/
200 diluted rabbit anti-Viperin polyclonal antibody
(Abcam), 1/400 diluted mouse anti-AnnexinA2 antibody
(Santa Cruz), 1/1000 diluted anti-β-actin/GAPDH
monoclonal antibody (Transgen, Bio, Inc., China)) at
37 °C for 2 h, and with different secondary antibodies (1/
1000 diluted rabbit anti-mouse or goat anti-rabbit IgG
antibody conjugated to HRP (Transgen, Bio, Inc., China)).

Table 4 Primers used for qRT-PCR
Gene Name Forward primer 5′-3′ Reverse primer 5′-3′

TNF TCGTATGCCAATGCCCTCA GATGAGGTAAAGCCCGTCAGT

GM-CSF GACACTGCTGCTGTGATGAA CCCTGCTTGTACAGCTCCA

IL-6 TGGATGCTTCCAATCTGGGT CTGCTCTGCAACTCCATGAC

IL-10 ATGGGCCTGACATCAAGGAG ACTCTCTTCACCTGCTCCAC

IL-12B AAACCAGACCCACCCAAGAA TGAGGTTTGGTCCGTGAAGA

IL-17A TCTGAGTCTGGTGGCTCTTG TGGAGTTCGTGTTCCGGTTA

CCL2 CGCTCAGCCAGATGCAATTA GTCCTGGACCCATTTCAGGT

CCL3 CCTGCTGCTTCTCCTATGC TGGAAGATGACACCAGGCTT

CCL4 TCCTCGCAGCTTTGTGATTG TCAGTTCGAGGTCATCCATGT

CCL5 CCATGGCAGCAGTTGTCTTT CACCCACTTCTTCTCTGGGT

CCL20 CTCCTGGCTGCTTTGATGTC ATGTCACAGGCTTCATTGGC

CXCL10 ATACACGCTGTACCTGCATC TGTGGCAATAATCTCGACACG

SAA ATCACAGACCCTCTGCTCAAG CCATTCGTTGGCAAACTGGT

NFKBIA CCTTCAGACACTGCCAGAGA CTCCAAGCACACAGTCATCG

Beta-Defense ACCTTCTCTTTGCGTTGCTC CGTAACCCGCTTATGATGCC

ANXA2 CACACCTCCAAGTGCATACG ACCTCATCCACACCTTTGGT

ANXA3 AACGGCAGCTGATTGCTAAG GGCTACCATGAGACCCTTGA

ANXA4 TGAGGGCTGCTTGATTGAGA GCCCATATTGCAGCTGGTAG

GAPDH ATGATTCCACCCACGGCAA ATCACCCCACTTGATGTTGGC
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After three washes with PBST, the color development was
performed using enhanced chemiluminescence luminal
reagent (Thermo Scientific Pierce).

Elisa
The concentration of GM-CSF, TNF-α and IL-6 present
in the infected and mock-infected PBMCs samples were
determined by commercial ELISA kit (Jiangsu Yutong
Biotech Co., Ltd., China) according to the manufac-
turer’s instructions and calculated with the formula
derived from the standard curve.
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