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Abstract

of DR occurrence and stability maintenance.

Background: It is hypothesized that the highly conserved inverted repeats (IR) structure of land plant plastid

genomes (plastomes) is beneficial for stabilizing plastome organization, whereas the mechanism of the occurrence
and stability maintenance of the recently reported direct repeats (DR) structure is yet awaiting further exploration.
Here we describe the DR structure of the Selaginella vardei (Selaginellaceae) plastome, to elucidate the mechanism

Results: The plastome of S. vardei is 121,254 bp in length and encodes 76 genes, of which 62 encode proteins, 10
encode tRNAs, and four encode rRNAs. Unexpectedly, the two identical rRNA gene regions (13,893 bp) are
arranged in a direct orientation (DR), rather than inverted. Comparing to the IR organization in /soetes flaccida
(Isoetaceae, Lycopodiopsida) plastome, a ca. 50-kb trnN-trF inversion that spans one DR copy was found in the
plastome of S. vardei, which might cause the orientation change. In addition, we find extremely rare short dispersed
repeats (SDRs) in the plastomes of S. vardei and its closely related species S. indica.

Conclusions: We suggest that the ca. 50-kb inversion resulted in the DR structure, and the reduction in SDRs plays
a key role in maintaining the stability of plastomes with DR structure by avoiding potential secondary
recombination. We further confirmed the presence of homologous recombination between DR regions, which are
able to generate subgenomes and form diverse multimers. Our study deepens the understanding of Selaginella
plastomes and provides new insights into the diverse plastome structures in land plants.
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Background

Chloroplasts in land plants have generally conserved
genome structure, due to the constantly high selective
pressures of photosynthesis [1]. Most plastomes are
characterized by a quadripartite structure, which com-
prises two copies of an inverted repeat (IR) separating
the large (LSC) and small (SSC) single copy regions [2].
The size of land plant plastomes usually ranges from
108 to 165 kb, and they generally contain 110-130 dis-
tinct genes including about 30 transfer RNA (tRNA)
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genes, four ribosomal RNA (rRNA) genes, and approxi-
mately 80 protein-coding genes involved in photosyn-
thesis or other metabolic processes [2, 3]. The typical IR
is usually 20-30 kb and the genes that form the core of
the IR encode the ribosomal RNAs (23S, 16S, 5S, and
4.5S) [4]. While plastomes of most land plants possess
the typical IR structure, several lineages of land plants
only retain one copy of the IR, such as Carnegiea gigan-
tea (Cactaceae) [5], Erodium (Geraniaceae) [6], and an
IR-lacking clade of Fabaceae [7], as well as conifers [8],
in which one IR has been either extremely shortened or
completely lost.

The conserved IR structure across land plants is
hypothesized to function in stabilizing the plastomes
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against major sequence rearrangements [9]. Palmer and
Thompson [10] showed that rearrangement events were
extremely rare in genomes with an IR, but increased
remarkably in frequency when one IR copy was absent.
Their hypothesis is supported by some recent studies
using next generation sequencing. For example, Trifo-
lium [11] and Erodium texanum [12] lack one copy of
the IR and have highly rearranged plastomes. However,
plastomes of Pelargonium [13] and Trachelium [14] are
also highly rearranged, despite the presence of the IR
structure, so that the existence of the IR appears to be
insufficient to stabilize plastome structure [15]. A related
hypothesis suggests that the incidence of short dispersed
repeats (SDRs) is in fact more correlated with plastome
instability [15]. Organellar DNA sequences of around 30
bp in length that may occur in direct or inverted forms
are usually referred to as SDRs, and constitute, for
example, more than 20% of the plastome of Chlamydo-
monas reinhardtii (green alga)[16]. Repeats larger than 1
kb can frequently recombine intra- or intermolecularly,
and homologous recombination also occurs sporadically
between short repeats larger than 50 bp [17]. Extensive
studies have shown that genomes with massive re-
arrangement events tend to contain a high frequency of
SDRs (e.g., Trifolium [11]; Trachelium [14]; Pelargonium
[13]), whereas genomes containing virtually no SDRs
have the conserved organization (Erodium [12]; algae
[18, 19]).

Variation in number and orientation of rRNA-
encoding repeats has been shown to be much more vari-
able in algae than in land plants [20]. One to five copies
of rRNA-encoding repeat are tandemly arranged in Eu-
glena (green algae) [21], whereas in Porphyra purpurea
(red alga), the two copies of the rRNA-encoding region
are arranged into a direct repeat (DR) [22]. The mechan-
ism of creating and maintaining this diversity remains
unknown.

The lycophyte species Selaginella tamariscina and S.
kraussiana have been recently reported to possess
plastomes with two copies of rRNA-encoding repeat
arranged into DR [23, 24]. The DR structure was proposed
to have originated from the canonical IR via a large-scale
inversion [24]. Here we confirmed plastomes with DR
structure in Selaginella subg. Rupestrae sensu Weststrand
and Korall [25]). We discovered that the two copies of DR
were probably caused by a ca. 50-kb trnF-truN inversion
containing one DR copy. We also found SDRs to be rare in
lycophyte plastomes with the DR organization in compari-
son to those with an IR. Considering the generation of sub-
genomes by the recombination between DR regions, we
predict that the reduction of SDRs, co-occurring with the
DR structure, plays an important role in maintaining the
stability of plastome and surviving over long evolutionary
history.
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Results
The Unconventional Structure of the S. vardei Plastome
We sequenced the plastome of S. vardei (Fig. 1;
MG@G272482) using Illumina HiSeq 2500 sequencing and
assembled reads using de novo assembly methods.
Coverage of the S. vardei plastome sequence is shown in
Additional file 1: Figure S1lc. The assembly result in Ban-
dage 0.8.1 [26] was identical with the de novo methods,
resulting in a circular plastome with the same
organization (Additional file 1: Figure S1d). The plas-
tome of S. indica (MK156801) was also sequenced and
assembled; the organization and gene content are basic-
ally identical to that of S. vardei, therefore, we only de-
scribed the detailed plastome characteristics of S. vardei.
The plastome of S. vardei is 121,254 bp long and con-
tains 76 genes, including 62 protein-coding genes, four
rRNA genes, and 10 tRNA genes (Additional file 6: Table
S1). It is, therefore, much smaller than those of S. unci-
nata [27] and S. moellendorffii [28], apparently owing to
gene losses of, for example, all the 11 ndh genes and two
tRNA genes (trnQ and trnR). The plastome of S. vardei
is similar to that of most land plants in having a quadri-
partite structure of two single-copy regions separated by
two copies of a large rRNA-encoding repeat (13,893 bp).
However, the two repeat copies were arranged into dir-
ect rather than inverted orientation, and the two single-
copy regions are almost equal in size (47,676 bp and 45,
792 bp, respectively).

Confirmation of the Plastome Structure of S. vardei

The long PCR experiments across the whole plastome
resulted in 12 products of the expected length (ca. 7-11
kb; Additional file 1: Figure Sla) using 12 pairs of
primers (Additional file 7: Table S2) and the sequences
were obtained using newly designed internal primers
(Additional file 8: Table S3). We mapped the sequences
of the long PCR products to the assembled plastome of
S. vardei (Fig. 1). All the intergenic regions were covered
by Sanger sequencing.

In addition, the amplification results of the DR struc-
ture and the 50-kb inversion, including six primer pairs
for positive control and six for negative control, also
supported the assembled plastome structure of S. vardei
(Additional file 1: Figure S1b). The amplified fragments
of positive control were consistent with the DR structure
(1-2: rpsd-rrn5 and 3-4: petN-rpl2; 7-8: ccsA-rrn5 and 9-
10: petN-rpoB) and the ca. 50-kb inversion (1-2: rps4-
rrn5 and 5-6: atpE-chiL) in S. vardei. Accordingly, the
negative control consistent with amplification of a ca-
nonical IR structure (1-3: rps4-petN and 2-4: rru5-rpl2;
7-9: ccsA-petN and 8-10: rrn5-rpoB) and without the ca.
50-kb inversion structure (1-5: rps4-atpE and 2-6: rrn5-
chlL) yielded no PCR product. We further checked the
sequences at boundaries of the DR region and the ca.
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Fig. 1 Unit-genome map of S. vardei shown as circular. The middle ring shows the mapping results of long-range PCR data with assembled
sequence. The arrows point to the endpoints of the ca. 50-kb fragment (from trnN to trnF) inversion. The black triangular and numbers showed
the position of primers for confirming the boundaries of DR regions and the 50-kb inversion for positive and negative controls

50-kb inversion. The assembled sequences from NGS
were identical with sequences from Sanger sequencing.
The congruent results from Sanger sequencing with those
from our assembly strongly support the DR structure and
the ca. 50-kb inversion in the S. vardei plastome.

PCR Confirmation of DR Structure in Representatives of
subg. Rupestrae

The PCR experiments on one additional individual of S.
vardei, two individuals of S. indica, and one individual of S.
dregei (all from Selaginella subg. Rupestrae; Table 1) yielded
the expected products with consistent length (Additional
file 2: Figure S2a). PCR products were consistent with DR
structure and the ca. 50-kb inversion. The aligned se-
quences of the four samples showed several indels (Add-
itional file 2: Figure S2b). Sequences in S. dregei is much
more divergent in the number of indels and nucleotide sites
when compared with S. vardei and S. indica. For example,
a 475 bp deletion occurred at the region of ccsA-rrn5 in the
S. dregei (collected from Kenya, Africa), which also exhibits

a smaller PCR product than the other species (Additional
file 2: Figure S2b: 26698, 7-8).

Gene Order of Plastomes in S. vardei and Other
Lycophytes

Dot plot analysis (Additional file 3: Figure S3) showed that
plastomes of Huperzia serrata and Isoetes flaccida are
basically syntenic, except the translocation of yc¢f2 and in-
version of chlL-chiN in I flaccida (Additional file 3: Figure
S3a), whereas, plastomes of S. vardei were quite divergent
from both of them (Additional file 3: Figure S3b). A large

Table 1 Representatives related for confirmation of plastome
structure of S. vardei

Species Voucher Locality

S. vardei Zhang X. C. 6948 (PE) Sichuan, China

S. vardei Zhang X. C. et al. 836 (PE) Tibet, China

S. indica Zhang X. C. 5868 (PE) Sichuan Province, China
S. indica Zhang X. C. 6255 (PE) Yunnan Province, China
S. dregei Liu B. 26698 (PE) Kenya
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inversion was present in S. vardei that encompasses a
ca. 50-kb region from truN to trunF, its endpoints
lying between rps4 and trnN at one end and between
trnF and chiL at the other (Figs. 1 and 2). In L flac-
cida, two tRNA genes, trnL-UAA and trnT-UGU were
situated between rps4 and #rnF in LSC region,
whereas frnN was at the border of the IRb/SSC adja-
cent to ycf2. In S. vardei, however, trnlL-UAA and
trnT-UGU were absent, trnF was located in the SSC,
and truN was located at the border of DRb/LSC next
to rps4. Thus, we infer that the DR in S. vardei was
caused by this ca. 50-kb inversion, which spans one
copy of the DR (truN-trnC). In addition, S. vardei has
an expanded DR with genes originally located in LSC
(psbM to trnC) being included, and rpoB was located
at the start position of LSC region. Gene ycf2 relo-
cated to LSC, and chlL/chIN relocated to be adjacent
to yefl in S. vardei, which was consistent with the
plastome of H. serrata.
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Plastomes of S. vardei, S. indica, S. kraussiana, and S.
tamariscina have DR structure and are basically syntenic
in gene organization (Additional file 3: Figure S3c),
whereas those of S. lepidophylla, S. moellendorffii,
and S. uncinata possess canonical IR structure, but
with rearrangement events among them (Fig. 2 and
Additional file 3: Figure S3d, e, f). One remarkable
difference between the plastomes of S. uncinata and
S. moellendorffii is that S. moellendorffii lacks a ca.
20-kb inversion (from ¢rnC to psbl), which exists in
S. uncinata (Fig. 2 and Additional file 3: Figure S3f).
This inversion is absent from all other published lycophyte
plastomes, suggesting that the absence of this trnC-psbl
inversion might be the ancestral state in lycophytes (Fig. 2).
Two inversions (ndh]-psbD region and clpP-psb] region)
exist in S. moellendorffii plastome in comparison with S.
tamariscina (Additional file 3: Figure S3e). A 65-kb inver-
sion (trnD-psaC region) exists in S. lepidophylla in com-
parison with S. vardei (Additional file 3: Figure S3d).
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Fig. 2 Linear maps of plastomes between S. vardei and other lycophytes showing the rearrangements. Upper arrow indicates genes transcribed
in forward direction; lower arrow indicates genes transcribed in reverse direction. The red ycf2 indicates the translocation from LSC to SSC and
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Short Dispersed Repeats (SDRs) in Plastomes of S. vardei
and Other Species

Repeat analyses showed that fewer SDRs exist in the
Selaginellaceae plastomes in comparison with those in
other lycophytes (Isoetaceae and Lycopodiaceae; Fig. 3,
Table 2 and Additional file 10: Table S5), and many
fewer SDRs exist in Selaginellaceae with DR plastid
structure in comparison with those with the IR struc-
ture. Huperzia serrata had the most SDRs (31; Fig. 3a),
whereas S. indica contained the fewest (5; Fig. 3f). Fur-
thermore, no SDRs were found at the endpoints of the
inversions in plastomes with the DR structure, and all
the SDRs was basically less than 50 bp, except one in S.
kraussiana. In the plastome of S. lepidophylla, 16 copies
of a 17 bp repeat unit dispersed in the intergenic region
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of truF-chiL (Additional file 10: Table S5-9). The 16 cop-
ies of repeat units can pair into a number of repeats,
which are not displayed in the circular layouts (Fig. 3).
In S. uncinata, a pair of SDR (46 bp) was located be-
tween the psbl and the trnC-psbK intergenic region,
flanking the ca. 20-kb inversion from psbl-trnC (Fig. 3¢
and Additional file 10: Table S5-3). Another pair of 98
bp SDR located between petA-psb]/rpl20-psbB in
plastome of S. wuncinata could also potentially cause
inversions (Fig. 3c and Additional file 10: Tables S5-3).

The Evolution of DR in Plastomes of Land Plants

Phylogenetic relationships based on 32 plastid protein-
coding genes (Fig. 4) showed that subg. Rupestrae
containing S. vardei and S. indica, subg. Lepidophyllae
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Table 2 Representatives related for confirmation of plastome
structure of S. vardei
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Compared to the plastomes of the early diverged ferns,
such as Hymenophyllales, Marattiales, Psilotales, Ophio-

Species No. SDRs >=16 bp >=30 bp >=50bp  glossales, and Equisetales, the rRNA genes in the IR re-
S. uncinata 14 11 1 2 gion were arranged in reverse order in Schizaeales and
S moellendorfii 18 14 3 1 core leptosporangiates [31-33], with plastomes still main-

- taining the IR structure. To sum up, the plastomes with a
S. tamariscina 11 11 0 0 X . X

DR structure only occurred in Selaginellaceae (Fig. 4).

S. indica 5 5 0 0
S. vardei 6 6 0 0 Discussion
S. lepidophylla 6 6 0 0 The Characterization of the DR Structure in the Plastomes
S. kraussiana 6 4 1 1 of Selaginellaceae
| flaccida 29 2 5 1 The plastomes with DR structure, first reported in a red
U serata 5 4 6 : alga [22], originated independently in the phylogenetic-

Note: species are listed following phylogenetic relationships

and subg. Gymnogynum formed into one clade and was
sister to the remaining Selaginella species with sequenced
plastomes (S. tamariscina, S. moellendorffii and S. unci-
nata), which is congruent with the recent published
phylogenies of Selaginellaceae [29, 30] (Fig. 4). When we
mapped the simplified structure of plastomes onto the
phylogenetic tree, it is clear that most sequenced land
plant plastomes possess the typical IR structure.

ally distant Selaginellaceae. Considering the ancestral
plastome in lycophytes (Lycopodiopsida; PPG 2016 [34])
likely has the canonical IR as shown in plastomes of
Lycopodiaceae [35-37] and Isoetaceae [38], we propose
that the innovative DR structure of plastomes in Selagi-
nellaceae [23, 24] originated in the stem lineage of the
family.

The DR structure in S. vardei, S. indica, and S. dregei
(Table 1, Additional file 2: Figure S2), suggest that the DR
structure is a shared characteristic in subg. Rupestrae.
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Fig. 4 Phylogenetic reconstruction and simplified structure of plastomes of each species. The red star represents the origination of DR structure,
whereas the blue stars represent the independent origination of IR structure in Selaginellaceae
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and Korall [25], plastomes from subg. Gymnogynum (S.
kraussiana) and subg. Rupestrae (S. vardei and S. indica)
possess the DR structure, subg. Lepidophyllae (S. lepido-
phylla) possesses the IR structure, whereas subg. Stachygy-
nandrum possesses both DR (S. tamariscina) and IR (S.
moellendorffii and S. uncinata) structure. Therefore, two
primary potential explanations exist for DR structure
origin: 1) DR structure is the ancestral state of Selaginella-
ceae plastomes with at least two independent origins of IR
structure (in S. lepidophylla and the clade including S.
moellendorffii and S. uncinata); 2) IR structure is the an-
cestral state and at least three independent origin events
are necessary for the three clades possessing DR structure
(or two evolutions of DR and a subsequent re-evolution of
IR). Since the gene organization in plastomes with the DR
structure is basically congruent, and the organization of
the plastomes with the IR structure is divergent (Fig. 2),
we propose that the first hypothesis is more reasonable
(Fig. 4).

The inversion of ca. 50-kb truN-trnF region detected
in S. vardei and other plastomes with a DR structure
presumably resulted in the change to a DR structure.
The ca. 50-kb inversion starts from the LSC and termi-
nates at the border of DRb/SSC, spanning one DR copy,
thus, results in the orientation change from inverted to
direct (Fig. 1).

Conformation of the Plastome with DR Structure of
Selaginellaceae

The standard depiction of the plastome is a genome-
sized circular DNA molecule, and plastomes with IR
structure are able to generate two potentially equimolar
isomers [9, 39]. The two isomers differ only in the rela-
tive orientation of their single-copy regions, which was
hypothesized to occur through interconversion within
the two IR regions intramolecularly [9, 39]. However, it
is now recognized that most plastomes display a great
structural diversity existing as linear/concatemeric/
highly branched complex molecules [40]. The orienta-
tion change of single-copy regions has been reinter-
preted as the results of a BIR (break-induced
replication)-like, recombination-dependent replication
(RDR) mechanism among linear plastome templates [17,
41]. However, the recombinational activities of plastomes
with DR structure have not been discussed. As proposed
in mitogenomes, the existence of direct repeats could
promote multipartite chromosomal architecture of mas-
ter chromosomes and subgenomes [42]. Repeats larger
than 1 kb appear to mediate high frequency, reciprocal re-
combination that can result in subgenomes of the genome
in approximately equal stoichiometry (the quantities of
DNA molecules in different form) [17], as shown in the
mitogenome of Ginkgo biloba L. [43]. Thus, progress in
understanding the structure of both mitogenomes and
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plastomes suggest that both linear and circular forms of
Selaginella plastomes exist in vivo, and recombination
between the two copies of DR region could promote the
generation of subgenomes following the RDR mechanism,
with master chromosomes and subgenomes potentially
occurring at similar stoichiometries. Two alternative read
assemblies mapped at both ends of two copies of DR
region reflect the existence of subgenomes in the
plastome of S. vardei (Additional file 4: Figure S4).
Furthermore, we screened the PacBio reads of the S.
tamariscina plastome from GenBank and selected seven
reads spanning the whole DR with both ends adjacent to
genes from the LSC, and two reads spanning the DR with
both ends adjacent to genes of the SSC (Additional file 5:
Figure S5) confirming the recombination between DR
regions and the existence of subgenomes in plastomes
with DR structure. Either the master chromosome or
subgenomic chromosomes could form head-to-tail multi-
mers or branched complexes based on the RDR mechan-
ism [40] (Additional file 4: Figure S4e).

The Co-occurrence of DR structure with reductions in
SDRs in the Plastomes of Selaginellaceae

Remarkably, there are extremely few SDRs in Selaginel-
laceae plastomes with DR structure (Fig. 3). No SDRs
are located at the ends of this ca. 50-kb inversion and
the size of almost all the SDRs is less than 30 bp in
plastomes with DR structure. Repeats less than 50 bp is
only possibly able to invoke microhomology-mediated
recombination, whereas as repeats larger than 50 bp is
mostly able to mediate homologous recombination
intermolecularly and intermolecularly in plastomes and
mitogenomes [17]. A low frequency of illegitimate
recombination can be presumably induced by the micro-
homologous repeats (less than 30 bp) only at the
absence of plant-specific single-strand DNA (ssDNA)-
binding protein the Whirlies, which is related to the
recombination surveillance machinery [44]. In addition
to the recombination of DR region, other repeats large
enough to recombine efficiently often result in unin-
tended secondary homologous recombination events
[45]. The secondary recombination caused by direct or
inverted short repeats could result in plastome fragmen-
tation or gene loss, which may have the potential to
destabilize the plastome of land plants [17]. Therefore,
we hypothesize that plastomes with DR structure are
possibly susceptive to SDRs scattered in single copy
regions [43, 46], thus, the recombinational SDRs are
selected against to maintain the integrity and stability of
plastomes.

Conclusions
We documented the unconventional DR structure in
plastomes of subg. Rupestrae and hypothesize that the
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DR structure is the ancestral state of Selaginellaceae
plastomes. We propose that the ca. 50-kb truN-truF
inversion resulted in the DR structure, and the DR
regions could mediate the recombination activity, gener-
ating approximately equimolar subgenomes. Subse-
quently, the extreme reduction in SDRs of lineages with
the DR structure is presumably the result of selection to
avoid the potential secondary recombination and plays a
key role in maintaining the integrity and stability of the
unconventional plastomes with DR structure.

Materials and Methods

Taxon Sampling, DNA Extraction, Sequencing and
Assembly

Selaginella vardei is a member of the monophyletic
subg. Rupestrae sensu Weststrand and Korall [25], char-
acterized by having monomorphic and helically arranged
vegetative leaves and tetrastichous strobili. We collected
a sample of S. vardei from the wild in Sichuan Province
and the closely related S. indica from Yunnan Province
for this study and deposited the voucher specimens of
this collection in the Herbarium of Institute of Botany,
CAS (PE) (Table 1).

Total genomic DNA was isolated from silica gel-dried
materials with a modified cetyl- trimethylammonium
bromide (CTAB) method [47]. Library construction was
performed with the NEBNext DNA Library Prep Kit
(New England Biolabs, Ipswich, Massachusetts, USA)
and sequencing was performed on the Illumina HiSeq
2500 (Illumina, San Diego, California, USA). Illumina
paired-end reads of 150 bp were mapped to S. uncinata
(AB197035) [27] and S. moellendorffii (F]755183) [28],
with medium-low sensitivity in five to ten iterations in
Geneious 9.1.4 (Biomatters, Inc., Auckland, New Zea-
land; https://www.geneious.com) [48]. The mapped
reads were then assembled into contigs in Geneious.
Additionally, the cleaned reads were assembled de novo
with SPAdes v. 3.10.1 [49] using a range of kmer sizes
from 21 to 99. Putative plastome contigs were identified
using BLASTN 2.2.29 [50], with the previously published
S. uncinata and S. moellendorffii plastomes as reference.
We also used bandage v. 0.8.1 [26], a program for visual-
izing de novo assembly graphs, to help select plastome
contigs and analyze de novo assembly results by import-
ing the fastg file created by SPAdes. The contigs
obtained above were then combined and imported into
Geneious to extend and assemble into the complete
plastomes.

Gene Annotation

Gene annotation was performed using local BLAST with
default parameter settings [51]. Putative start and stop
codons were defined based on similarity with genes of
published plastomes [27, 28]. The tRNAs were verified
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using tRNAscan-SE version 1.21 [52] and ARAGORN
[53]. Circular and linear genome maps were drawn with
OGDraw version 1.2 [54].

PCR Confirmation of S. vardei Plastome

To confirm the accuracy of our S. vardei plastome as-
sembly, we designed 12 primers pairs (Additional file 7:
Table S2) using Primer v 3.0 [55] based on the assem-
bled sequence of S. vardei for long-range PCR. We also
designed five additional primers pairs (Additional file 9:
Table S4) at the boundaries of the DR structure and the
ca. 50-kb inversion (marked on Fig. 1) to confirm the ac-
curacy of assembly. Both positive (50-kb inversion and
DR structure) and negative (without 50-kb inversion and
IR structure) controls were carried out using these five
primer pairs (Additional file 1: Figure S1b). The PCR
amplifications were performed in a total volume of 20
pL containing 4 pL of 5X PrimeSTAR GXL Buffer, 1.6
pL of ANTP Mixture (2.5 mM each), 1.2uL of each pri-
mer (5 mM), 0.4 uL of PrimeSTAR GXL DNA Polymer-
ase and 20 ng of template DNA. Cycling conditions
were 98 °C for 3 min, followed by 40 cycles of 98 °C for
10 s, 58 °C for 30 s and 72 °C for 5 min for long-range
PCR and 1.5 min for normal PCR, and a final extension
of 72 °C for 10 min. The PCR products were verified by
electrophoresis in 0.8% agarose gels stained with
ethidium bromide. Then, we designed internal primers
(Additional file 8: Table S3) to get sequences of these
long-range PCR products using Sanger sequencing. The
PCR products of the DR and inversion confirmation
were sequenced by Majorbio, Beijing, China.

PCR Confirmation of DR Structure in Related
Representatives of subg. Rupestrae

To further test whether the structure found in S. vardei
existed in other species of subg. Rupestrae, PCR amplifi-
cation using primers designed at the boundaries of the
DR structure and the ca. 50-kb inversion in plastome of
S. vardei (marked on Fig. 1, Additional file 9: Table S4)
were carried out with another individual of S. vardei,
two individuals of S. indica, and one individual of S. dre-
gei (Table 1). Only positive control was carried out in
these species. The PCR procedure follows the conditions
of normal PCR mentioned above. The PCR products
were verified by electrophoresis in 0.8% agarose gels
stained with ethidium bromide. The PCR products were
sequenced by Majorbio, Beijing, China.

Comparison of the Plastomes of S. vardei and Other
Lycophytes

Dot plot analyses of the plastomes of S. vardei and other
lycophytes (S. lepidophylla, S. kraussiana, S. tamaris-
cina, S. uncinata, S. moellendorffii, Isoetes flaccida, and
Huperzia serrata) were performed using Gepard [56] in
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f)rder to ldentl‘fy the putative StrUCtl{ral rearrangen}ents Additional file 2: Figure S2. Plastome structure confirmation and
in the S. vardei plastome. The syntenic analyses of linear sequence alignments of related representatives. a: PCR confirmation
plastome maps of S. vardei and other lycophytes were results of DR structure in another individual of S. vardei and two

. . representative species within subg. Rupestrae. Primer pairs used are
carried out based on the dot plOt analyses' The first site indicated at the top of each lane. Size markers are in bp. Species name

of the LSC at the border of the LSC/IRa was considered and gene names of these fragments are as follows: 836: S. vardei; 5868: S.
as the starting point. indica; 6255: S. indica; 26698: S. dregei; 1-2: rps4 — rrn5; 3-4: petN — rpl2; 5-
6: atpk — chiL; 7-8: ccsA - rn5; 9-10: petN — rpoB; b: Alignment results of
sequences from each product in a, the light grey color represents regions
Repeat Analyses with identical base pairs among individuals, whereas the dark color high-
. . . . lights regions with mismatched base pairs. (PDF 115 kb)

Short dispersed repeats (SDRs) were identified using
RepeatsFinder [57] with default parameters. The circular
layout of SDRs in plastomes was then visualized using the Additional file 4: Figure S4. Reads coverages of putative subgenomes
circlize package [58] in Rv. 34.1 (R Development Core and alternative reads assemblies in S. vardei. a, b: Two alternative reads
Team?2012). The locations of SDRs were marked outside assemblies at LSC/DRa and SSC/DRb boundaries: the unmatched reads in

he circle i d find bl lati ith black box in a is consistent with assembled sequence in black box in b,
the circle in order to find possible correlations with rear- the unmatched reads in red box in b is consistent with assembled

rangements. Nine plastomes (S. lepidophylla, S. vardei, S. sequence in red box in a; ¢, d: Two alternative reads assemblies at DRa/
indica, S. kmussiana, S. tamariscina, S. uncinata, S. moel- SSC and DRb/LSC boundaries: the unmatched reads in black box in ¢ is

. . . consistent with assembled sequence in black box in d, the unmatched
lendorffii, 1. flaccida and H. serrata) were included. One reads in red box in d is consistent with assembled sequence in red box

copy of the IR/DR was removed from all plastomes used. in c. e: the simplified structure for master chromosomes and
subgenomes based on a, b, ¢, d in this figure. We define the arrow end
as B, and the other end as A. End B of either LSC (a) or SSC (b) can be
Phylogenetic Analyses assembled with end B of DR. End A of either LSC (c) or SSC (d) can be
assembled with end A of DR. (PDF 1549 kb)

Additional file 5: Figure S5. Screened PacBio reads of S. tamariscina
showing evidence of the existence of subgenomes in plastomes with DR.

Additional file 3: Figure S3. Dot-plot analyses of plastomes between S.
vardei and other lycophyte species. (PDF 489 kb)

Thirty-two conserved plastid protein-coding genes were
used to reconstruct the phylogenetic framework using

19 species from previously published plastomes of land a: the simplified plastome structure of S. tamariscina based on Xu et al.

plants (from bryophytes to seed plants; Additional file (2018); b, c: the simplified subgenome structure of plastomes with DR,

11: Table 56) For S. tamariscina, we downloaded the supported by the screened PacBio reads of S. tamariscina plastome as
. . g )

listed. (PDF 29 kb)
raw reads from GenBank (SRR6228814, SRR7135413) Additional file 6: Table S1. Genes present in the plastome of S. vardei.

[23], assembled plastid contigs and extracted the 32 gene (DOCX 15 kb)

sequences since the complete plastome has not been re- Additional file 7: Table S2. Primers designed for long range PCR
leased on GenBank. A total of 19,248 bp sequences were amplification of plastome of S. vardei. (DOCX 14 kb)

aligned at the protein level by MAFFT [59] using the Additional file 8: Table S3. Internal primers designed for Sanger
translation-aligned function in Geneious v. 9.1.4. Poorly | se9uencing of long-range PCR products of 5. vardel. (DOCX 18 ko)
aélgnel\c}[ rgglons ﬁeli?hrelgoﬁi usm{g GblOCks V'f 0'912 PCR confirmation of Selaginella subg. Rupestrae. (DOCX 14 kb)

[ . ] aximum-ikel O(,) ( ) analysis was Per orme Additional file 10: Table S5. Detailed dispersed short repeats in
using RAXML v. 7.4.2 with 1000 bootstrap replicates and plastomes of each species. (DOCX 45 kb)

the GTR+G model [61] based on Akaike information Additional file 11: Table S6. Species selected in the phylogenetic
criterion (AIC) in jModeltest 2.1.7 [62]. The simplified analyses. (DOCX 15 kb)

structure of the plastome of each species (Additional file

11: Table S6) was then mapped on the phylogenetic tree  Abbreviations

showing the direction of rRNA—enCOding repeat. AIC: Akaike information criterion; BIR: Break-induced replication; CTAB: Cetyl-
trimethylammonium bromide; DR: Direct repeat; IR: Inverted repeat;
LSC: Large single copy; ML: Maximum likelihood; NGS: Next-generation
Additional files sequencing; RDR: Recombination-dependent replication; rRNA: Ribosomal
RNA; SDRs: Short dispersed repeats; SSC: Small single copy; ssDNA: single-
strand DNA; tRNA: Transfer RNA

Additional file 9: Table S4. Primers designed for Sanger sequencing of

Additional file 1: Figure S1. Confirmation of S. vardei plastome
structure. a: Long-range PCR amplification results of S. vardei. Primer pairs
used are indicated at the top of each lane. Size markers are in bp. Gene
names of these 12 products are as follows: 1: rpoB — rps2; 2: rps2 — chlB;
3: chlB - ycf2; 4: ycf2 — psaB; 5: psaB — r23; 6: 23 — pl2; 7: rpl2 — petB;
8: petB — petE; 9: petkE — atpB; 10: atpB — ycf1; 11: ycfl — rrn23; 12:

23 - rpoB. b: PCR confirmation results of DR structure and Inversion.
Primer pairs used are indicated at the top of each lane. Size markers are
in bp. Gene names of these 12 fragments are as follows: positive control:
1-2, rps4 — rm5; 3-4, petN — 1pl2; 1-2, rps4 — rn5S; 5-6, atpkE — chil; 7-8, ccsA
- rr5; 9-10, petN — rpoB; negative control: 1-3, rps4 — petN; 2-4, rrn5 —
1pl2; 1-5, rps4 — atpk; 2-6, rrn5 — chil; 7-9, ccsA — petN; 8-10, ri5 — rpoB; ¢
Reads coverage of S. vardei plastomes; d: The assembled graph in Ban-
dage showing DR structure of S. vardei. (PDF 175 kb)
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