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Background: Accurate classification of breast cancer using gene expression profiles has contributed to a better
understanding of the biological mechanisms behind the disease and has paved the way for better prognostication

Results: We found that miRNA profiles largely recapitulate intrinsic subtypes. In the case of HER2-enriched tumors a
small set of miRNAs including the HER2-encoded mir-4728 identifies the group with very high specificity. We also
identified differential expression of the miR-99a/let-7c/miR-125b miRNA cluster as a marker for separation of the
Luminal A and B subtypes. High expression of this miRNA cluster is linked to better overall survival among patients
with Luminal A tumors. Correlation between the miRNA cluster and their precursor LINC00478 is highly significant
suggesting that its expression could help improve the accuracy of present day's signatures.

Conclusions: We show here that miRNA expression can be translated into mRNA profiles and that the inclusion of
miRNA information facilitates the molecular diagnosis of specific subtypes, in particular the clinically relevant sub-
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Background

Breast cancer is a heterogeneous disease and accurate
classification of tumors into clinically relevant subgroups
is critical for prognostication and treatment selection.
The clinical management of breast cancer relies on pa-
rameters such as age, tumor size, and lymph node status,
as well as on histopathological biomarkers including
histological grade, expression of the hormone receptors
estrogen receptor o (ER) and progesterone receptor
(PR), and the presence or absence of amplification and
concomitant overexpression of the human epidermal
growth factor receptor 2 (HER2/ERBB2/neu, hereafter
called HER2). But these biomarkers are still insufficient
for accurate classification of patients into groups with
high or low risk of recurrence and for identification of
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subgroups resistant to therapies. Technical advances
during the last decades allowed for molecular stratifica-
tion based on global gene expression. Messenger RNA
(mRNA) expression profiles determined using microar-
rays demonstrated that breast tumors display unique in-
trinsic fingerprints that can be used to group tumors
into intrinsic molecular subtypes [1-3]. This informa-
tion has greatly improved our understanding of the
heterogeneity of breast cancer and the different bio-
logical programs followed by the disease. Breast can-
cer can thus broadly be classified into five different
molecular subtypes: Luminal A, Luminal B, HER2-
enriched, Basal-like and a Normal breast-like group.
Later, a subtype named Claudin-low has also been de-
scribed [4]. The biology of these intrinsic subtypes
reflects differences in incidence, response to treatment
and survival and therefore specific genes can be
tested as markers for each subtype to direct treatment
options. Although great advances have been done in
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this field, there is still a need for new markers to re-
fine classification, especially for certain subtypes.
Most luminal tumors are ER-positive and HER2-
negative (ER+/HER2-) but a subgroup of luminal B
tumors is HER2+. Luminal A tumors are associated
with a favorable clinical outcome, while luminal B tu-
mors are clinically more aggressive with a higher rate
of recurrence and lower survival rates. Still, luminal
tumors are biologically heterogeneous and there are
no clear-cut differences between the two major lu-
minal subtypes. Luminal B tumors are more aggres-
sive and higher expression of proliferation-related
genes has been used as a positive marker for this dis-
ease type. However, no specific biomarkers have yet
been proposed to discriminate tumors of luminal A
type from luminal B and the group is therefore, on
this point, largely defined by the absence of expres-
sion of proliferative genes. Comparisons of different
gene signatures in breast cancer have been reported
since long [5, 6]] and even for commercial tests
agreement in classification has been suggested to be
moderate in many instances [7] [8].

In this study, we wanted to explore whether miRNA
expression could be informative for refinement of mo-
lecular subtypes. Expression profiles of miRNAs have
previously been tested to help improving breast cancer
subtyping, alone or integrated with mRNA profiles. In
some instances they were suggested to be more inform-
ative than protein-coding RNA [9]. Iorio et al. showed
that miRNA expression profiles produced by microar-
rays could clearly separate normal from cancer tissues
[10]. Using bead-based flow cytometry, Blenkiron et al.
[11] found that miRNA expression could accurately clas-
sify Basal versus luminal tumor subtypes. Later, Dvinge
et al. [12] reported one of the most comprehensive stud-
ies of miRNA expression in breast cancer, including
1302 tumor samples from the Molecular Taxonomy of
Breast Cancer International Consortium (METABRIC)
study [13]. This project used microarrays for miRNA de-
tection and created a resource that promoted a large num-
ber of follow-up studies. In recent years, next-generation
sequencing of small RNAs has substituted all previously
existing techniques for miRNA expression analysis. Next-
generation sequencing offers the advantages of higher sen-
sitivity and a less biased view of the small RNA transcrip-
tome since it is not limited to a set of predetermined
miRNA genes. Importantly, the introduction of next-
generation sequencing has led to a dramatic increase in
the number of known human miRNAs, most of which
were not present on the microarrays that were used in
earlier studies of miRNA expression in cancer. In the
present study we have therefore applied next-generation
sequencing to study the small RNA expression profiles of
a collection of 186 tumors from the Sweden Cancerome
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Analysis Network — Breast (SCAN-B) initiative [14] to
identify miRNA profiles that could improve classification
of breast cancer subtypes.

Results

MicroRNA expression in the cohort

We performed small RNA sequencing for a total of 186
tumor samples from the SCAN-B initiative, including sam-
ples representing all intrinsic subtypes except for Normal-
like (Table 1). lllumina sequencing produced an average of
4.9 million aligned reads per sample, with 77% of all aligned
reads between 19 and 25 nt in length and 73% correspond-
ing to miRNAs (Additional file 2: Figure S1 and S2). The
mean number of expressed miRNAs per sample was 684
and the most highly expressed miRNA was miR-21-5p,
overexpressed in most cancers and one of the best-
characterized oncogenic miRNAs in breast tumors. Mean
expression profile was calculated and plotted to compare
the complexity of miRNA expression profiles among indi-
vidual samples (Additional file 2: Figure S3). The expression
profiles of the cohort are highly uniform with a comparable
number of expressed miRNAs within different expression
intervals.

Unsupervised clustering analysis identifies functionally
distinct tumor subtypes

A ConsensusCluster analysis based on miRNA expres-
sion revealed the presence of three major clusters of
tumor samples (Fig. 1 and Additional file 2: Figure S4).
We tested for significant association between these

Table 1 Characteristics of the study cohort. Number of patients
classified according to PAM50 subtypes (Basal, HER2, Luminal A
or Luminal B), estrogen receptor, progesterone receptor and
HER?2 receptor status

Basal ER- HER2- PR- 45
Basal ER- HER2+ PR- 4
Her2 ER- HER2- PR- 1
Her2 ER- HER2+ PR- 29
Her2 ER+ HER2- PR- 1
Her2 ER+ HER2- PR+ 3
Her2 ER+ HER2+ PR- 5
Her2 ER+ HER2+ PR+ 3
LumA ER- HER2- PR- 1
LumA ER+ HER2- PR+ 30
LumA ER+ HER2+ PR+ 9
LumB ER- HER2- PR- 1
LumB ER+ HER2- PR+ 36
LumB ER+ HER2+ PR- 4
LumB ER+ HER2+ PR+ 12
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Fig. 1 Consensus clustering identified three main tumors clusters with distinct sample composition. Enrichment of PAM50 subtypes and clinical
parameters within cluster was evaluated using the ¥ test and p-values are given in parenthesis

groups and commonly used clinical markers and found
that PAM50 subtype had the most significant enrich-
ment. Also ER, PR and HER?2 status are highly signifi-
cantly associated with sample clustering. Consensus
cluster 1 is enriched for Luminal A samples and few of
tumors with this subtype are located in the other two
clusters. Luminal B samples are concentrated in consen-
sus cluster 2, but are also found in cluster 1 along with
the Luminal A subtype. HER2-enriched tumors form
small sub-clusters within consensus cluster 1 but princi-
pally concentrate in cluster 2. Strikingly, all samples of
the Basal subtype cluster together in consensus cluster 3
(Fig. 1). A small number of samples from other PAM50
subtypes also cluster together with the Basal-like tumors
in consensus cluster 3, but most of these have lower
item consensus scores, indicating a less confident cluster
membership. Genomic Grade Index (GGI) has been
shown to be associated with PAMS50 classes and is a
measurement strongly associated with cellular prolifera-
tion [15]. Almost all GGI high samples are distributed
among consensus clusters 2 (mainly HER2-enriched and
Luminal B/ER+) and 3 (mainly Basal-like tumors), while
GGI low samples are located in consensus cluster 1, co-
incident with the lower proliferative activity of Luminal
A tumors (data not shown). These results show that our
miRNA expression data reflect the functional differences
behind subtypes and clinical characteristics of these
breast tumors.

MicroRNA expression clusters associated with PAM50
subtypes

Next, we wanted to identify miRNAs that were associ-
ated with different tumor subtypes. Two samples were
excluded from this analysis since they displayed low cor-
relation to subtype centroids and was not assigned to a
PAMS50 class, the other samples were distributed as fol-
lows: Basal-like = 49, HER2-enriched = 42, Luminal A =
40, and Luminal B =53 (Table 2). Differential miRNA
expression analysis was performed using edgeR [16],
both for comparisons between respective subtype and
the rest, as well as for all possible pairwise combinations
of subtypes. These results are summarized in Additional
file 1: Table S1.

Table 2 Characteristics of the study cohort. Number of patients
according to age and TNM staging. T1-T4 increasing tumor size
and extent. T1 =smallest tumor. N = lymph node status, NO=no
tumor in the lymph nodes, N1-N3 = increasing number of
nodes affected. MO-M1 = No distant mestastases (0) or distant
metastases have been found (1)

pam50 meanage T1 T2 T3 NO NT N2 N3 NX MO M1 MX
Basal 65 23 351 50 9 0 O O 5 0O 9
Her2 66 22 23 0 25 15 3 1 1 41 1 3
LumA 63 21181 32 6 2 0 0 33 0 7
LumB 65 25 30 2 4 9 1 0 0 53 1 3
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Previously published work failed to find a significant
correlation between miRNA profiles and the intrinsic
subtypes. For example, in The Cancer Genome Atlas
(TCGA) basal tumors could be classified according to
miRNA expression, while the Luminal A, Luminal B and
HER2-enriched tumors formed a mixed group with no
or low correlation with the PAM50 subtypes [17]. Here,
we used the entire list of miRNA genes registered in
miRbase 22 [18] to identify signatures of differentially
expressed miRNAs associated with the different sub-
types. We identified a total of 655 unique microRNAs
that were significantly differentially expressed between
the intrinsic subtypes. We focused our analysis on the
most significant miRNAs and identified 73 unique miR-
NAs that were clearly differentially expressed between
intrinsic subtypes. When this set of selected miRNA was
used for supervised clustering the tumors formed four
well-defined clusters and the genes formed five separate
miRNA clusters (Fig. 2).

As expected, clusters with luminal tumors are associ-
ated with ER-positivity, while clusters with the Basal-like
and most HER2-enriched tumors are ER-negative (Fig.
2). ER+ tumors are mainly characterized by high expres-
sion of mir-26, mir-5681a, mir-5695, mir-887, mir-149,
mir-375, mir-342, mir-190b, mir-29¢, mir-29b and mir-
499a (miRNA cluster 1). Some of these genes has already
been observed to be upregulated in breast cancer and
seems to be a characteristic of ER+ cancers [19]. Con-
comitant with the upregulation of these genes, downreg-
ulation of mir-455-3p, mir-934, mir-135b and mir-577
can be observed among ER+ samples (miRNA cluster 2).
These miRNAs are in turn upregulated among ER- tu-
mors. ER- tumors are also characterized by overexpres-
sion of mir-18a (cluster 3). Mir-18a is encoded by the
pri-mir-17~92 locus and the mature product, miR-18a-
5p, represses expression of ERa directly by binding to its
mRNA [20]. The ER+ miRNA expression signature is
the driving force that segregates luminal tumors into a
separate branch.

Basal-like tumors form a relatively homogenous group
characterized by high expression of mir-548a0, mir-584,
mir-138, mir-135b, mir-455, mir-577, and mir-934 (miRNA
cluster 2). The basal-like cluster can in turn be subdivided
by the expression of mir-516a, mir-519a, mir-520b, mir-
522, and mir-1283, which are all part of a large primate-
specific miRNA cluster on chromosome 19 referred to as
C19MC [21]. Further subdivision of the Basal-like tumors
depends on the expression of the mir-99a/let-7¢/mir-125b-
2 miRNA cluster. Basal-like tumors are mostly triple nega-
tive (ER-/PR-/HER2-) and also have low expression of the
miRNAs that are part of the ER+ signature, such as mir-
29¢, mir-190b, and mir-499a. Interestingly, mir-548ao is ex-
clusively expressed in Basal-like tumors. This miRNA be-
longs to a large primate/human-specific family [22] of
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miRNA genes derived from the short miniature inverted-
repeat transposable elements Madel.

As previously reported [17], there is only partial over-
lap between the PAM50 HER2-enriched subtype and
clinically determined HER2+ tumors. Most of the tu-
mors classified as HER2-enriched using the PAM50 sig-
natures cluster together and are mainly defined by high
expression of three miRNA genes: mir-34a, mir-2115,
mir-4728, and mir-7158. MicroRNA-4728 is encoded in-
side the HER2 oncogene itself and has been shown to be
upregulated together with its host gene [23, 24]. Interest-
ingly, mir-7158 is strongly associated with the HER2-
enriched subtype and mainly ER- tumors, but not with
the histologically determined HER2+ samples. In fact,
just as for mir-548ao in triple negative tumors, mir-7158
is hardly expressed in any other tumor type, indicating a
strong functional association with the HER2-enriched
profile and not necessary with the overexpression of the
HER?2 oncogene itself. This miRNA is embedded inside
the non-coding RNA gene LINCO01105, a non-coding
RNA almost exclusively expressed in brain and probably
regulate the expression of HIF-1a [25, 26]. Expression of
mir-2115 is also associated with HER2-enriched tumors
but displays a gradient of expression with samples hav-
ing a luminal profile at the higher end of expression.
Contrary to mir-4728 [23, 24, 27-29], mir-2115 and
mir-7158 have been poorly characterized. We therefore
investigated their processing pattern using public data
and found that their reads originate from true miRNA
precursors [30](Additional file 2: Figure S5). HER2+ tu-
mors outside the HER2-enriched cluster always have
high expression of mir-4728. A group of HER2+ tumors
segregate together with Luminal B tumors and have a
distinct miRNA profile (miRNA cluster 3). All of these
tumors are ER+.

We used the microRNAs identified in our dataset to
cluster TCGA breast cancer samples as well as the normal
samples available. We found that mature microRNAs
from mir-4728, mir-2115 and mir-7158, were also
enriched in the pam50 HER2 classified samples. The basal
samples were also clustered strongly based on the selected
microRNAs. The luminal A/B samples cluster also well,
but with multiple distinct groups of the Luminal A sam-
ples (Additional file 2: Figure S6).

Tumors belonging to the Luminal A and B subtypes
have similar expression profiles, characterized by high ex-
pression of the previously mentioned set of ER-associated
miRNAs (miRNAs in cluster 1). But strikingly, the miR-
NAs grouped in expression cluster 5 are differentially
expressed between Luminal A and B tumors. These miR-
NAs could be useful for the separation of these two breast
cancer subtypes. Due to the clinical importance of this
distinction, we performed a focused analysis for these two

subtypes.
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Upregulation of miR-99a/let-7c/miR-125b is a
characteristic of luminal a tumors

Molecular classification of luminal ER+ tumors based on
mRNA expression profiles is not clear-cut; Luminal B tu-
mors typically have higher proliferation and PAMS50 clas-
sification is therefore mainly driven by the expression of
proliferation-related genes. Luminal A tumors are charac-
terized by high expression of ER and PR, but low expres-
sion of proliferation markers. Using molecular data, the
criterion is a relative comparison. The distinction between

luminal samples would benefit from Luminal A associated
and up-regulated genes that could provide positive
markers for the subtype, complementing the characteristic
of low expression of proliferation markers. Given the clus-
tering of tumors by subtype shown in Fig. 2, we wanted to
analyze if miRNA expression profiling could identify such
markers. As shown in Fig. 3a, the miRNA cluster mir-99a/
let-7c/mir-125b-2 is upregulated in Luminal A tumors
compared with Luminal B. This miRNA cluster is located
on chromosome 21 and the encoded miRNAs are
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candidate tumor-suppressors implicated in the regulation
of inflammation and stem-like properties [31-33]. Since
Luminal B tumors are associated with high expression of
proliferation-associated genes we wanted to test if this was
also the case for the classification of luminal tumors by
miRNA profiles. A x2 test for pathways registered in the
Molecular Signatures Database [34] confirmed that the
most significant pathways associated with the separation
of these tumors according to their miRNA expression are
related to proliferation (Fig. 3b).

Next, we performed a survival analysis within each
PAM50 Luminal subtype stratifying samples according to
high or low mir-99a/let-7c/mir-125b-2. The survival
curves are shown in Fig. 4a. Luminal A patients with low
expression of mir-99a/let-7c/mir-125b-2 have significantly
lower overall survival. There is no significant effect among
patients with Luminal B type cancer. Together, these re-
sults suggest that expression of mir-99a/let-7c/mir-125b-2
is a candidate biomarker for separating Luminal A and B
tumors, and that this miRNA cluster is a prognostic
marker within the Luminal A subtype.

The mir-99a~let-7c~mir-125b-2 cluster is expressed
from the primary miRNA cluster MIR99AHG, encoded
in a non-coding RNA host gene called LINC00478. We
find that the averaged expression of miRNAs in the clus-
ter is correlated with expression of MIR99AHG
/LINC00478 measured in our mRNA expression ana-
lysis. This correlation is highly significant (p-value <
1*10 7-15) with a slope of 0.40, indicating a better
dynamic range in the detection of the microRNAs
(Additional file 2: Figure S7). We therefore used
LINC00478 expression in the survival analysis of all pa-
tients in the mRNA cohort. The median LINC00478 ex-
pression was used as cutoff for the survival analysis. We
found the same significant result for the Luminal A
breast cancer patients, as for the miRNA cohort
(Fig. 4b). The stratification remained significant for lu-
minal A cases when restricted to node negative patients
who received endocrine treatment but no chemotherapy
or anti-HER2 treatment (Fig. 4c). Of note, we also found
that only patients who did not receive radiotherapy had
a survival benefit of having higher levels of mir-99a clus-
ter (Additional file 2: Figure S8).

Discussion

The discovery that breast cancer can be classified into
distinct intrinsic molecular subtypes has been important
both for research and in the clinic. Many different tech-
nologies for gene expression analysis have been tested
for identification of tumor subtypes. Several prognostic
gene signatures have been reported and some are com-
mercially available. However, there are certain discrepan-
cies regarding their accuracy and the reproducibility in
part due to differences of cohorts but also experimental
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platforms used [35]. In this study we have revisited the clas-
sification of breast tumors into intrinsic subtypes using
miRNA expression data from high-throughput sequencing
and comprehensive miRNA annotation. Early reports on
miRNA signatures in breast cancer were limited by the
number of human miRNAs that had been identified at the
time, and by the resulting probe sets printed on microarrays
or primers designed for quantitative reverse transcriptase
PCR (qRT-PCR). Moreover, much of the published miRNA
research has focused on broadly conserved miRNAs while
evolutionarily younger, species-specific miRNAs have been
largely disregarded. In humans only a few hundred miRNAs
are shared with the closest relatives outside the great apes
and the young, non-conserved miRNAs by far outnumber
conserved miRNA genes. The central repository of anno-
tated miRNAs in all species, miRBase, has a high-confidence
dataset that is limited to miRNAs which meet a number of
criteria regarding minimal expression levels and structure.
Not all reported human miRNA genes fulfill these criteria
and these are typically the non-conserved miRNAs that are
lowly expressed and sometimes restricted to specific tissues
or developmental stages. However, cancer is a disease of the
genome and genomic aberrations that can deregulate
miRNA expression are common [36, 37]. Here we show that
HER2-enriched tumors are characterized by high and spe-
cific expression of three normally lowly expressed, non-
conserved miRNAs: mir-2115, and mir-7158 and mir-4728.
We have previously reported that mir-4728 is encoded
within the HER2 oncogene and that it is co-amplified with it
in HER2+ breast cancer [23, 24]. Since this miRNA is poorly
conserved and very lowly expressed in most normal tissues,
it is often excluded from genome-wide studies. However,
both we and others have shown that mir-4728 is not only
co-expressed with HER2 but also act as an oncogene in
HER2+ tumors [23, 27, 38]. This is a reminder that miRNA
studies in cancer should consider all human miRNA genes,
not just a high-confidence set, since also non-conserved
miRNAs can serve as biomarkers and have equally import-
ant regulatory functions in disease. Moreover, previous work
has suggested that miRNA/host co-transcription in breast
cancer is limited to a small portion of the known intron-
encoded miRNAs [12]. Therefore, since clinically important
signatures in general are based on mRNA profiles, the ab-
sence of co-expression would prevent the direct translation
of miRNA expression into clinically relevant signa-
tures. Yet, we show here that just as mir-4728 is a
perfect surrogate marker for HER2 expression [39],
the miR-99a/let-7c/miR-125b cluster is co-transcribed
with the LINC00478 gene which may serve as an ex-
pression surrogate in luminal samples. This latter ob-
servation may also have clinical implications.

Tumors of the Luminal A and Luminal B subtypes ex-
press high levels of ER. Patients with these subtypes con-
sequently receive endocrine therapy and optionally in
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Fig. 4 a Survival analysis based on the mean expression of the
microRNAs in the miR-99a/let-7c/miR-125b miRNA cluster. We used
the median to split the patients into miR99a high (higher than
median expression) and miR-99a low (lower than median
expression). These groups were used in a survival analysis with R
survival package, stratified based on the pam50 group and plotted
using the survminer package in R. b We used the median to split
the patients into LINC00478 high (higher than median expression)
and LINC00478 low (lower than median expression). These groups
were used in a survival analysis with R survival package, stratified
based on the pam50 group and plotted using the survminer
package in R We found a significant benefit for Luminal A breast
cancer patients of having higher than median LINCO0478 expression.
c A focused analysis was done on the Luminal A samples, with ER+,
HER2-, node negative, endocrine treatment, no chemotherapy and
no anti-HER2 treatment. This subgroup represents 725 patients

combination with adjuvant chemotherapy. Accurate clas-
sification of ER+/HER2- Luminal tumors into low- and
high-risk groups is an important clinical issue since it
could help guide treatment decisions. The positive effects
of anti-hormonal treatment are well established for ER+
cancer, whereas chemotherapy, that is associated with
worse side effects and higher healthcare costs as well as
socioeconomic cost, should only be used in patients that
will benefit from the treatment. Luminal A tumors have a
low proliferation rate, while luminal B neoplasms are
more aggressive and associated with a significantly worse
prognosis. A better classification of luminal ER+/HER2-
tumors may therefore aid in minimizing overtreatment by
identifying those breast cancers that can be successfully
treated with endocrine therapy alone. The major discrim-
inator between the Luminal A and B subtypes is the ex-
pression of proliferation-associated genes but their
expression is not simply bimodal. They essentially display
a continuous gradient of expression values making it diffi-
cult to establish a clear cut-off between the two subtypes.
For lack of positively expressed biomarkers, Luminal A
samples are identified by the absence of a proliferative
gene signature [40]. Ki67 has been proposed as a prognos-
tic proliferation marker for luminal breast cancer, but its
clinical value remains uncertain due to problems with the
interlaboratory variability of immunohistochemistry and
scoring, as well as, since it too is a continuous variable,
the lack of an clear cut-off between high and low prolifer-
ation [41, 42]. Unfortunately, Ki67 staining was only avail-
able for a subset of the samples included in this cohort,
but the miRNA profiles of luminal A tumors were associ-
ated with lower GGI indexes, which is also a measurement
strongly associated with cellular proliferation. Here we
show that Luminal A miRNA expression signatures were
characterized by higher expression of miRNAs that act as
inhibitors of proliferation and which are known tumor
suppressors. We observed that luminal A tumors have
higher expression of the mir-99a/let-7c/mir-125b-2
miRNA cluster in comparison with luminal B samples.
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Patients with high mir-99a expression have better survival
than those expression low levels. This is consistent with earl-
ier observations by Bailey et al. [43]. The let-7 miRNA fam-
ily has been shown to be involved in the downregulation of
proteins in multiple pro-proliferative signaling pathways, in-
cluding JAK, STAT3, c-Myc and RAS. Also mir-99a is a
known tumor suppressor that controls cell proliferation by
inhibition of AKT/mTOR signaling. The third miRNA, mir-
125b may have oncogenic or tumor-suppressive effects de-
pending on the cell context, but has been shown to down-
regulate expression of pro-proliferative genes such as ETSI
[44]. In addition to these observations, correlation between
the miRNA cluster and their precursor LINC00478 is highly
significant, suggesting that its expression could help improve
the accuracy of present day’s signatures to help discriminat-
ing luminal samples. Taken together, the findings propose
that Luminal A patients with high LINC00478 expression
might not benefit from chemotherapy treatment and there-
fore could be spared this added treatment.

In summary, a comprehensive miRNA expression pro-
filing using the complete set of currently annotated hu-
man miRNAs from miRBase can help to refine subtype
classification in breast cancer. These results also indicate
that miRNA signatures can be directly translated to
mRNA surrogates, opening new opportunities for identi-
fying clinically applicable markers for improved stratifi-
cation and diagnostics of breast tumors.

Conclusions

Breast cancer is a heterogeneous disease. For appropriate
clinical management and to help develop better therap-
ies, classification of different subtypes should be based
on underlying biological properties. Molecular stratifica-
tion based on mRNA expression of an intrinsic gene list
uncovered five subtypes. We used microRNA expression
profiles to refine these major subtypes. Here we show
that miRNA expression can facilitate the molecular diag-
nosis of specific subtypes, in particular the clinically
relevant sub-classification of luminal tumors.

Methods

Collection of specimens

One hundred and eighty six samples were selected from
a larger cohort with the aim of creating four relatively
equally sized groups with respect to ER- and HER2-
status. To minimize variation between groups, tumors
with histological grade 1 and tumors of the normal-like
subtype were excluded. The final set contained 54 ER+/
HER2+, 53 ER+/HER2-, 24 ER-/HER2+, and 55 ER
—/HER2- tumors (Table 1).

PAM50 classification
The PAMS50 subtyping was performed by nearest-
centroid method using the centroids from Parker et al.
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[45] and using mRNA gene expression data from RNA-
seq. To avoid cohort dependency when assessing
nearest-centroid and assigning PAMS50 subtype, the gene
expression for each sample was normalized back to the
original training cohort by gene centering against a fixed
reference set of samples selected to match the clinical
characteristics of the cohort used by Parker et al. [45].

Small RNA sequencing

Small RNA sequencing was done as described in Persson
et al. [46]. Briefly, total RNA was extracted from aliquots
of the same tumor homogenates used for column-based
extraction and mRNA-sequencing in [14] but using TRI-
zol LS (Thermo Fisher Scientific) according to the man-
ufacturer’s instructions and concentrations were
measured on a NanoDrop ND 1000 spectrophotometer
(NanoDrop Tech). Small RNA sequencing libraries
where prepared from 500ng total RNA with custom
adapters to incorporate dual indexes. Pooled libraries
were sequenced on a NextSeq 500 with High Output v2
75 cycle-kits (Illumina).

Sequences were demultiplexed using Picard and
aligned against the hg38 human genome assembly using
Novoalign with settings -a TGGAATTCTCGGGTGC-
CAAGG -1 14 -h-1 -1 -t 90 -g 50 -x 15 -0 SAM -o
FullNW -r All 51 -e 51. These alignment settings allow
for mismatches, insertions or deletions of up to 3 nt to
accommodate for e.g. non-templated nucleotide addi-
tions. One sample with fewer than 500,000 reads was ex-
cluded from further analysis. MicroRNA expression
profiles were generated for miRBase version 22 [47]
using software developed in-house. Briefly, the mapped
coordinates of each read were compared to the anno-
tated positions of mature miRNAs and counts were
assigned to a given miRNA if the coordinates overlapped
with a maximum total deviation of 4 nt, excluding mis-
matches at the read start and end. Multi-mapping reads
were excluded unless all genomic matches mapped to
annotated miRNAs with the same mature miRNA se-
quence. Annotation errors in miRBase release 22 where
identical IDs were assigned to distinct primary miRNA
loci for mir-4477a, mir-4477b and mir-10,401 were cor-
rected in our input annotation files.

Data analysis

Counts per mature miRNA were normalized to counts
per million reads with addition of a pseudo-count to
avoid zero values before log,-transformation with the
function cpm(x, normalized.lib.sizes=TRUE, log-=
TRUE, prior.count = 0.25) of the edgeR R package [48].
The number of expressed miRNAs was calculated for
the expression interval from - 5 to 20 on the normalized
log,-transformed scale. The ConsensusClusterPlus [49]
R package was used with the following settings (maxK =
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6, reps = 1000, pltem = 0.8, pFeature = 1, innerLinkage = “
average”,  finalLinkage = “average”,  clusterAlg = “hc”,
distance = “pearson”). The item consensus matrix of the
consensus clustering was replotted with the Complex-
Heatmap [50] R package with annotation and x> p-values
for enrichment in the identified clusters. PAM50 subtyp-
ing was performed by nearest-centroid using centroids
from Parker et al. [45]. Before assessing nearest-centroid,
the expression data for each sample was adjusted by gene-
centering against a fixed reference cohort selected to
match the clinical characteristics of the original cohort
used by Parker et al. The gene centering was done to ac-
count for differences in cohort composition that may
otherwise result in biased subtype classifications [51]. The
edgeR package was used to identify miRNAs differentially
expressed between PAM50 subtypes. Two approaches were
used to find significant miRNAs; one-group vs rest and
pairwise contrasts between all groups. The ComplexHeat-
map package was used to make heatmaps with the settings
(clustering_distance_rows/columns = “Euclidean”,  cluster-
ing_method_rows/columns = “ward.D2”) and the dendex-
tend [52] R package was used to annotate and color the
dendrogram. The number of clusters for the rows/genes/
miRNAs was based on iterative plotting and evaluation.

Survival analysis

Overall survival was used as endpoint in survival ana-
lysis. Stratification of patients into groups of either high
or low expression was done by median expression value
as cut-point. Stratification based on miRNA expression
was done using average levels of the miR-99a~let-
7c¢~miR-125b cluster. Stratification based on mRNA ex-
pression was done using expression level of LINC00478.
A univariate survival analysis was performed using the
survival package in R. The survival curves were plotted
with the survminer package in R. Analysis was per-
formed stratified based on PAM50 molecular subtype. In
the focused analysis we selected patients with PAMS50
molecular subtype LumA that were: ER+, HER2-, node
negative, administered endocrine treatment but not
treated with chemotherapy nor anti-HER?2 treatment.

TCGA analysis

For calculation of miRNA expression for TCGA data,
miRNA isoform quantification files based on hg38 and
miRBase 21 were downloaded for all available samples
using the GDC command line client. All isoform coordi-
nates were then matched to miRBase 22 coordinates
allowing up to 4 bp deviation from the annotated mature
sequence. Isoform read counts were then reassigned to
each corresponding mature miRNA. Note that the TCGA
isoform quantification files use a unique coordinate sys-
tem (1-based, half-closed/half-open) which includes the
start coordinate and excludes the end coordinate.
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Additional file 1: Table S1. Summary of differentially expressed
microRNAs. The selected cutoff for significance was FDR 0.01. (XLSX 2878 kb)

Additional file 2: Figure S1. Boxplot summarising sequencing statistics
including total purity-filtered reads, uniquely aligned reads, multimapping
reads, unaligned reads and reads that were removed due to a very short
insert size (< 14 nt) across all libraries. Figure S2. Boxplot summary of the
insert size on top for the aligned reads and summary of the composition
based on RNA class. Figure S3. Cumulative counts of expressed miRNAs
in the expression interval — 5 to 20 log, counts per million reads (cpm)
show that all sequenced libraries have a high and similar miRNA profile
complexity. The intervals are spaced by 0.5 log, cpm. The individual
samples are plotted in grey and the mean sample is plotted in black.
Figure S4. Plots from consensusclustering analysis. The number of k
clusters (k= 3) was identified from the delta area plot. As observed the
increase in consensus with the number of clusters. The increase in
consensus is low for k=4 and therefore k=3 was used. Figure S5.
Expression pileups for mir-2115 and mir-7158 from miRCarta. Figure S6.
Clustering of TCGA breast cancer using the miRNAs identified in our
analysis. Figure S7. Correlation of an average of the microRNAs in the
MIR99AHG cluster (mir-99a, let-7c and mir-125b-2) and the LINC00478
(MIR99AHG) from the mRNA expression cohort. The values are mean
centered to ease the comparison. The slope is 0.4 indicating a better
dynamic range for the detection of the microRNAs. Figure S8. A focused
analysis on the Luminal A samples with stratification on whether or not
the patient has received radiotherapy. (DOCX 3368 kb)
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