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Abstract

Background: Long non-coding RNA (lncRNA) expression data have been increasingly used in finding diagnostic
and prognostic biomarkers in cancer studies. Existing differential analysis tools for RNA sequencing do not
effectively accommodate low abundant genes, as commonly observed in lncRNAs.

Results: We investigated the statistical distribution of normalized counts for low expression genes in lncRNAs and
mRNAs, and proposed a new tool lncDIFF based on the underlying distribution pattern to detect differentially
expressed (DE) lncRNAs. lncDIFF adopts the generalized linear model with zero-inflated Exponential quasi-likelihood
to estimate group effect on normalized counts, and employs the likelihood ratio test to detect differential
expressed genes. The proposed method and tool are applicable to data processed with standard RNA-Seq
preprocessing and normalization pipelines. Simulation results showed that lncDIFF was able to detect DE
genes with more power and lower false discovery rate regardless of the data pattern, compared to DESeq2,
edgeR, limma, zinbwave, DEsingle, and ShrinkBayes. In the analysis of a head and neck squamous cell
carcinomas data, lncDIFF also appeared to have higher sensitivity in identifying novel lncRNA genes with
relatively large fold change and prognostic value.

Conclusions: lncDIFF is a powerful differential analysis tool for low abundance non-coding RNA expression
data. This method is compatible with various existing RNA-Seq quantification and normalization tools. lncDIFF
is implemented in an R package available at https://github.com/qianli10000/lncDIFF.
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Background
Long noncoding RNAs (lncRNAs) are transcripts longer
than 200 nucleotides with no or limited protein-coding
capability. It is estimated that, in the human genome,
there are at least four times more lncRNA genes than
protein-coding genes [1]. Currently, there are more than
14,000 human lncRNAs annotated in GENCODE
(https://www.gencodegenes.org/). Overall, lncRNA genes
have fewer exons, lower abundance and are under select-
ive constraints compared to protein-coding genes.
LncRNAs are involved in diverse regulatory mechanisms
and in some critical pathways. For example, they can act
as scaffolds to create higher-order protein complexes, as

decoys to bind sequester transcription factors, and as
guides of protein-DNA interactions [2–4]. Emerging evi-
dence suggests that lncRNAs serve as essential regula-
tors in cancer cell migration and invasion, as well as in
other cancerous phenotypes [5, 6]. Therefore, lncRNAs
are becoming attractive potential therapeutic targets and
a new class of biomarkers for the cancer prognosis and
diagnosis. For example, the lncRNA PCA3 (prostate can-
cer antigen 3) is an FDA-approved biomarker for pros-
tate cancer prediction. The overexpression of lncRNA
HOTAIR in breast cancer patients is reported to be as-
sociated with patient survival and risk of metastasis [7].
Another important lncRNA ANRIL (CDKN2-AS1) is
one of the most frequently alerted genes in human can-
cers and has been reported to increase the risks of di-
verse cancers.
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Although a large number of lncRNAs have been iden-
tified, only a very small proportion of them have been
characterized for cellular and molecular functions. Simi-
lar to protein-coding genes, the biomarker discovery of
lncRNAs can start from a genome-wide differential ex-
pression (DE) analysis. One advantage of lncRNAs re-
search in cancer is that we can leverage the large
collection of previously published RNA-seq data and
perform secondary analyses. Unlike the miRNAs coun-
terparts, the expression of a large number of lncRNAs
can be detected by standard RNA-seq with sufficient se-
quencing depth. Through downloading RNA-seq BAM
files and recalling using GENCODE genomic coordi-
nates, more than 8000 human tumor samples across all
major cancer types in The Cancer Genome Atlas
(TCGA) and other published studies have been re-
analyzed for the lncRNAs expression profile [8, 9]. There
is a limited number of non-tumor samples sequenced
for RNA-seq in TCGA. If necessary, the database such
as the GTEx (http://gtexportal.org) can serve as add-
itional tissue-specific controls, which provides over 9600
RNA-seq samples across 51 tissues.
lncRNAs expression data have several features that

pose significant challenges for the data analysis, includ-
ing low abundance, large number of genes, and rough
annotations. To ensure detection reliability, a common
practice is to filter out lncRNA genes with low average
Reads Per Kilobase per Million mapped reads (RPKM),
e.g. < 0.3. We recommend using the two-step filter pro-
posed by Yan et al. [9]: first eliminates the genes with
50th-percentile RPKM =0, and then only keep the genes
with 90th-percentile RPKM < 0.1. About two-thirds of
lncRNAs are excluded after this filtering procedure.
Interestingly, excess zeros or low expression values are
still observed in the downsized dataset. It is well known
that excess zero read counts in RNAseq data can distort
model estimation and reduce power in differential ex-
pression analysis. The popular R packages DESeq2 and
edgeR assume a negative binomial (i.e. over-dispersed
Poisson) distribution for the count data. Methods based
on zero-inflated negative binomial (ZINB) and zero-
inflated GLM have been proposed to explicitly address
the issue of excess zeros in RNA-seq data [10]. These
methods have been recently applied to single-cell RNA-
seq (scRNA-seq) data, which has high dropout rates.
Since the difference in gene expression variance is bio-
logically interesting, multiple methods have been devel-
oped to incorporate the testing of variance in the
differential model. However, for biomarkers in clinical
settings, genes with pronounced group contrast in mean
expression level usually have more translation value.
Gene-wise expression variability can generate from dif-
ferent sources and vary widely from study to study, espe-
cially with different normalization methods. Hence, we

focus on the group comparison of mean gene expression
levels in this study.
In a large-scale secondary analysis of expression data

such as in lncRNAs studies, it is common to only have
access to normalized data (such as RPKM), due to either
limited data availability or less ideal performance of
other normalization methods [11, 12]. Packages such as
DESeq2, however, are not applicable to lncRNA normal-
ized counts because they do not allow non-integer nor-
malized expression or zero as input. In this case, a
plausible practice is to round continuous expression
values into integers and then to add 1 to each value to
remove zeroes. Another commonly-adopted approach is
using log2(x + 1) transformed normalized data in R pack-
age like limma [13], i.e., assuming a log-transformed
Gaussian distribution as in microarray intensity levels.
The core function in limma, which runs a moderated t-
test after an empirical Bayes correction, is more generic
and more suitable for the differential expression of proc-
essed lncRNA expression data. In a very recent study, a
total of 25 popular methods for testing differential ex-
pression genes were comprehensively evaluated with
special emphasis on low-abundance mRNAs and
lncRNAs [14]. It was observed that linear modeling with
empirical Bayes moderation (implemented in limma with
variance stabilizing transformation [15], voom [16] or
trend), and a non-parametric method based on Wil-
coxon rank sum statistics (implemented in SAMSeq)
showed overall good balance of false discovery rate
(FDR) and reasonable detection sensitivity. However,
none of the methods compared can outperform other
tools and all tools exhibited substandard performance
for lncRNAs in terms of differential testing, often with
higher FDR and true positive rate (TPR) than for
mRNAs. This study also concluded that accurate differ-
ential expression inference of lncRNAs requires more
samples than that of mRNAs. Even methods like limma
can exhibit an excess of false discoveries under specific
scenarios, making these methods unreliable in practical
applications.
In this paper, we first investigated the distribution of

lncRNA and low-abundance mRNA via the relation be-
tween gene-wise coefficient of variation and mean. The
patterns for these RNAs were compared with high abun-
dant mRNA, providing evidence for an underlying Expo-
nential distribution in most genes of lower expression,
especially those in lncRNA. Based on the assumption of
Exponential-distributed non-zero abundance for the ma-
jority of lncRNA genes, we presented the lncDIFF, an ef-
ficient and reliable toolset in a zero-inflated Exponential
quasi-likelihood strategy on the Generalized Linear
Model. The quasi-likelihood provides unbiased estima-
tions for biological group effect on lncRNA gene expres-
sion, including a small proportion of lncRNA genes with
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expression following Negative Binomial or Log Normal
distribution. It thus provides a simple and versatile ap-
proach to model gene expression data without making
strong distributional assumptions about the underlying
variation, but still being compatible with existing RNA-
Seq quantification and normalization tools. The flexibil-
ity in allowing for the estimation of calibration and vari-
ance parameters is especially important for lncRNAs
differential analysis. lncDIFF is thus able to integrate de-
sirable features from the aforementioned two top-
performing methods (limma and SAMSeq [14]) for
lncRNA differential analysis. lncDIFF is compared with
existing tools using an extensive simulation study and
lncRNA DE analysis on TCGA head and neck squamous
cell carcinomas (HNSC), with data downloaded from
TANRIC [8]. Results suggest that lncDIFF is powerful
and robust in a variety of scenarios and identifies DE
lncRNA genes of low expression with higher accuracy.

Results
Simulation study to assess lncDIFF performance
We conducted a comprehensive simulation study to as-
sess the performance of lncDIFF, and compared with
existing common tools DESeq2, edgeR and limma (with
log transformation), along with recently developed
single-cell tools zinbwave [17] incorporated in DESeq2
(i.e. zinbwave+DESeq2), and DEsingle [18]. We rounded
decimals to integers as input for DESeq2 and selected
the quasi-likelihood estimation method in edgeR.
lncDIFF and the compared methods were applied to
low-abundance RNA-Seq genes sampled from zero-
inflated NB or LN families. ShrinkBayes [19, 20] is a
Bayesian approach that also adopts zero-inflated NB for
low counts RNA-Seq DE analysis, designed for small
sample size studies but slower in computation compared
to other tools. Hence, ShrinkBayes was not applied to
simulated datasets, and was compared to lncDIFF only
based on TCGA HNSC datasets.
We adopted the gene-wise estimated dispersion or log

variance from TCGA HNSC [21] lncRNA RPKM as the
density parameters for data generation. Based on the dis-
persion and log variance estimate for the data in this
TCGA study, we used ϕ = 1, 2, 10, 20, σ2 = 0.01, 0.25, 1,
2.25, and fixed ϕ, σ2 values to generate RPKM of each
genes across all samples in the same simulation scenario.
Each scenario was defined by the unique gene-wise non-
zero proportion π = 0.5, 0.7, 0.9, sampling distribution
function (NB or LN) and value of ϕ, σ2, with sample size
varying at N = 100, 200, 300. In order to generate data
similar to lncRNA RPKM, we first obtained binary out-
comes (0–1) for all samples in one scenario from the
Bernoulli sampling, and then replace the 1’s by positive
abundance value sampled from NB or LN densities. The
HNSC study includes 40 pairs of matched normal-tumor

tissues. We used the 40 normal samples to calculate the
mean RPKM as baseline group parameter βi1 in simula-
tion. Similar to the common filtering criteria in existing
lncRNA analysis, we removed the genes in the real data
with mean RPKM < 0.3 [22, 23] and zero expression in
more than half of the samples, reducing to 1100 genes
used for simulation.
In the simulation study, we only considered two-group

comparison to illustrate the contrast between different
methods. RPKM of the first group was randomly gener-
ated by the specified density function and the baseline
parameter, while the second group had the mean param-
eter of the baseline times a shift, i.e., the tumor/normal
fold change in TCGA HNSC data. We manually set the
shift between two simulated groups at 1 if the absolute
log2 fold change for the corresponding gene is less than
0.5. Simulated genes with between-groups shift at 1 are
the null genes and the remaining are DE genes. For each
simulated scenario, we generated 100 replicates to assess
the performance of different methods by the mean of
false discovery rate (FDR) and true positive rate (TPR),
and area under the curve (AUC) of receiver operating
characteristics (ROC) with FDR threshold 0.05. We or-
dered the scenarios by the scale of variance (with 1–4
representing the smallest to the largest), proportion of
nonzero expression, and sample size to investigate the
impact of parameters on performance metrics. Figure 1
and Additional file 1: Figures S4-S5 presented the AUC,
FDR and TPR of all scenarios, illustrating that lncDIFF
outperforms the other methods, especially for scenarios
with LN density.
AUC for all methods in Fig. 1 decrease as the gene-

wise variation increases, and lncDIFF’s performance is
close to the optimal method (DESeq2) for NB density.
The change of AUC across different sample sizes implies
that adding more samples improves the performance of
lncDIFF and DESeq2, but does not have impact on
edgeR, limma and DEsingle. Furthermore, the AUC of
lncDIFF in NB density is equivalent to or slightly larger
than that of DESeq2 at sample size N = 300. According
to AUC and TPR, the outperformance of DESeq2 com-
pared to lncDIFF in NB sampling was not as pro-
nounced as the outperformance of lncDIFF compared to
DESeq2 in LN distribution. The single-cell RNA-Seq
tool zinbwave improves DE detection power of DESeq2,
but only for small gene-wise variance and many samples
having simulated counts > 4. TPR of limma was higher
than the other methods except for lncDIFF on LN dis-
tributed data in smaller sample sizes. On the other hand,
the FDR shows that lncDIFF has similar performance of
DESeq2 in most scenarios regardless of density and
greatly outperforms the other two methods, although
lncDIFF in large-variance LN scenarios presents per-
formance close to edgeR and limma. The change of
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performance of DESeq2 under either sampling distribu-
tion brought by zinbwave illustrates that it is the Expo-
nential likelihood rather than zero-inflated point mass
contributing towards the outperformance of lncDIFF. In
summary, lncDIFF is an ideal method for DE analysis of
lncRNA RPKM with different distributions, while
DESeq2 is a preferred tool if the non-zero counts are
relatively high and NB-distributed.

Application of lncDIFF to TCGA HNSC data
We employed the above methods along with Shrink-
Bayes to perform DE analysis on the TCGA HNSC
lncRNA data for matched (or paired) tumor and normal
samples, with results summarized in Figs. 2-3. The Venn
diagrams in Figs. 2-3(a) show the overlap and difference
of the DE genes identified by different methods. We do
not have prior knowledge about the ‘true’ DE genes for
HNSC tumor vs normal. Thus, the genes with log2 fold
change > 0.5, 1, or 1.5 were considered as ‘pseudo’ or
‘surrogate’ DE genes, respectively, labeled as Surrogate
Set 1–3 (SS1- SS3) of DE genes. For each set, the pro-
portion detected by each method is a surrogate true
positive rate (SS1.TPR-SS3.TPR), while the surrogate
false positive rate (SS1.FPR-SS3.FPR) is the percentage of

those not in surrogate DE genes set but detected as posi-
tive by each method, listed in Figs. 2-3(b). The signifi-
cance threshold for tumor vs normal DE gene is
adjusted p-value< 0.05. We further visualized the con-
trast between lncDIFF and the other methods by box-
plots in Figs. 2 and 3c-e, with each panel showing the
tumor vs normal group effect on the lncDIFF positive
genes identified as negative by other methods. We only
include the genes with upregulation for normal tissues
and LFC > 0.5 in the boxplots.
The results in Figs. 2-3(b) suggested that lncDIFF pro-

vided ideal power or alternative TPR (75%) in DE ana-
lysis for LFC < 0.5, with approximated FPR below 5%.
ShrinkBayes has detection power close to lncDIFF only
for DE genes in SS1. Figures 2 and 3c-e displayed the
group contrast on genes identified as DE (positive) by
one method but non-DE (negative) by the other method
using boxplot of RPKM at log2 scale per group. The
group contrast on the DE genes identified only by
lncDIFF was much larger than that in DE genes identi-
fied only by each of the compared methods. In other
words, lncDIFF identifies ‘true’ DE genes with more
power and is less likely to ‘miss’ the DE genes with pro-
nounced group contrast.

Fig. 1 AUC of ROC curve for DE analysis on simulated data. Scenarios are in the order of true density, proportion of non-zero expression values,
variance level. Labels ‘1, 2, 3, 4’ on x-axis represent gene-wise variance scales from the smallest to the largest
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We also applied the same analysis to the unpaired
tumor (N = 426) and normal (N = 40) samples in the
TCGA HNSC study by lncDIFF, and compared the top
significant genes in the paired and unpaired DE analysis
results (Table 1). There are 11 overlapped genes in the top
20 significant gene list of paired and unpaired analysis,
some of which are associated with overall survival time.
For each the overlapped significant genes, we divided the
426 HNSC tumor samples into two groups by the median
of RPKM per DE gene, and then apply Cox Proportional
Hazard model to survival association analysis. The
Kaplan-Meier curves and the log-rank test p-values reveal
marginal or significant associations between genes
ERVH48–1, HCG22, LINC00668, LINC02582 and the
overall survival months (Additional file 1: Figure S6). For
the same set of HNSC tumor samples, we also used the
mRNA normalized counts to select 20 mRNA genes

highly correlated with the 11 tumor-normal DE lncRNA
genes by Spearman correlation (Additional file 3).

Discussion
Computational performance of lncDIFF
The GLM group effect estimation was implemented
in the R function ZIQML.fit, separated from the like-
lihood ratio testing included in another function
ZIQML.LRT. The GLM group effect estimate in
lncDIFF is based on the zero-inflated Exponential
likelihood with either identity or log link function,
which is also valid and unbiased for low-expression
lncRNA genes distributed as NB or LN. The choice
of link function does not have any impact on the
group effect estimate and LRT results (Table 2), but
the log link function can avoid NA values produced

Fig. 2 Performance of lncDIFF, DESeq2, edgeR and limma on TCGA HNSC matched tumor-normal samples. (A) Venn diagram for DE genes
identified by each method. (B) TPR and FPR for each method based on surrogate DE gene sets SS1-SS3 defined by log2 fold change > 0.5, 1.0,
1.5. (C)-(E) Boxplots for tumor vs. normal log2 RPKM of genes detected as positive by one method and negative by another

Li et al. BMC Genomics          (2019) 20:539 Page 5 of 13



in numerical optimization of the likelihood function.
lncDIFF provides the option of either identity or log
link function in the function ZIQML.fit.
The distribution of p-values from lncDIFF was also in-

vestigated and compared with the other methods in
TCGA HNSC tumor vs. normal analysis, using simu-
lated p-values from sample permutation. We randomly
selected three genes with different RPKM density pat-
terns to generate the null p-values and then visualized
the p-values distribution via QQ plots in Fig. 4.
Figure 4(b)-(c) showed that the p-values of lncDIFF and
DESeq2 (with or without zinbwave) were close to the ex-
pected distribution aligned on the identity line, while the
other methods resulted in a large proportion of small p-
values (< 0.1). The histogram and density plot of RPKM
presented in Fig. 4(a) implied that the null p-values of
lncDIFF and DESeq2 for higher expressed lncRNA genes
(ENSG00000130600.11) followed the expected uniform

distribution, while those for low abundance genes
(ENSG00000152931.7, ENSG00000153363.8) may devi-
ate from the assumed uniform distribution. To avoid the
distorted distribution of LRT p-values, we also imple-
mented the option of empirical p-value and FDR based
on the zero-inflated Exponential likelihood in the R
function ZIQML.LRT.
We further illustrated the computation efficiency of

lncDIFF by running on the TCGA HNSC matched
tumor-normal samples with ~ 1130 filtered genes. The
processing time (in seconds) of this biological data ana-
lysis by lncDIFF, DESeq2, edgeR, limma, zinbwave+DE-
Seq2, DEsingle, and ShrinkBayes are 3.17, 4.31, 3.37,
0.02, 55.33, 52.67, and 341.47, respectively. If the option
of simulated p-value is enabled, the running time of
lncDIFF on this real dataset is increased to 267.86 s for
default 100 permutations, but the correlation between
observed and simulated p-values or FDR’s is around 0.9.

Fig. 3 Performance of lncDIFF, zinbwave+DESeq2, DEsingle and ShrinkBayes on TCGA HNSC matched tumor-normal samples. (A) Venn
diagram for DE genes identified by each method. (B) TPR and FPR for each method based on surrogate DE gene sets SS1-SS3 defined
by log2 fold change > 0.5, 1.0, 1.5. (C)-(E) Boxplots for tumor vs. normal log2 RPKM of genes detected as positive by one method and
negative by another
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lncDIFF on different normalization methods
In order to illustrate normalization methods having no
impact on lncDIFF performance, we simply applied
lncDIFF DE analysis to three different types of normalized
counts (i.e., FPKM, TMM and UQ) of low abundance

mRNA in TCGA HNSC tumor-normal samples (N = 546)
. The low abundance genes were selected with mean
FPKM in the range of (0.3, 2) and no more than 20% zero
expression, similar to the majority of lncRNA genes. The
Pearson correlation of log10 adjusted p-values between

Table 1 Top 20 significant genes from paired and unpaired lncDIFF analysis for TCGA HNSC study. The overlap of genes are in bold.
Likelihood Ratio Test statistics, p-value and FDR are output from lncDIFF

Gene Paired Tumor vs Normal Statistics FDR Gene Unpaired Tumor vs Normal Statistics FDR

Ensembl ID Log2 Fold
Change

Ensembl ID Log2 Fold
Change

ERVH48–1 ENSG00000233056.1 0.415 211.767 7.48E-45 HCG22 ENSG00000228789.2 −2.979 674.029 1.76E-145

LINC02487 ENSG00000203688.4 −3.747 200.441 1.11E-42 LINC02487 ENSG00000203688.4 −3.470 625.994 2.46E-135

HCG22 ENSG00000228789.2 −3.138 151.425 3.73E-32 MYHAS ENSG00000272975.1 −0.935 324.216 7.70E-70

LINC00668 ENSG00000265933.1 2.189 148.534 1.20E-31 LINC01405 ENSG00000185847.3 −1.366 276.487 1.45E-59

LINC02582 ENSG00000261780.2 1.027 144.294 8.10E-31 FALEC ENSG00000228126.1 − 1.721 252.647 1.82E-54

LINC00941 ENSG00000235884.2 2.450 138.020 1.59E-29 TMEM238L ENSG00000263429.3 −2.250 235.559 8.06E-51

LINC00942 ENSG00000249628.2 1.105 128.195 1.92E-27 AC005392.2 ENSG00000231412.2 −2.342 198.936 6.73E-43

LINC01234 ENSG00000249550.2 1.755 121.173 5.79E-26 AC140479.4 ENSG00000261760.2 −1.471 188.314 1.23E-40

LINC02154 ENSG00000235385.1 2.099 120.529 7.12E-26 ERVH48–1 ENSG00000233056.1 0.444 185.507 4.47E-40

AC134312.5 ENSG00000261327.3 2.064 115.828 6.85E-25 AC091563.1 ENSG00000254343.2 −2.185 174.352 1.10E-37

AL365181.2 ENSG00000272068.1 1.191 111.605 5.24E-24 LINC02582 ENSG00000261780.2 1.009 161.008 8.19E-35

DUXAP9 ENSG00000225210.5 2.868 110.895 6.87E-24 LINC00668 ENSG00000265933.1 1.626 154.270 2.23E-33

DUXAP8 ENSG00000206195.6 2.422 105.798 8.30E-23 ACBD3-AS1 ENSG00000234478.1 −1.733 150.782 1.08E-32

SFTA1P ENSG00000225383.2 1.676 103.239 2.80E-22 LINC00941 ENSG00000235884.2 2.090 150.692 1.08E-32

AC010343.3 ENSG00000250697.1 1.838 101.397 6.63E-22 AC134312.5 ENSG00000261327.3 2.146 150.725 1.08E-32

ELFN1-AS1 ENSG00000236081.1 1.590 101.238 6.74E-22 DUXAP9 ENSG00000225210.5 2.711 141.890 8.49E-31

LINC00520 ENSG00000258791.3 1.570 98.359 2.71E-21 ABHD11 ENSG00000225969.1 −1.730 140.148 1.92E-30

AC134312.2 ENSG00000260162.2 1.912 98.157 2.84E-21 AL365181.2 ENSG00000272068.1 1.008 138.932 3.35E-30

AC114956.2 ENSG00000248554.1 3.038 96.948 4.95E-21 DUXAP8 ENSG00000206195.6 2.230 134.501 2.95E-29

CASC9 ENSG00000249395.2 4.019 91.046 9.28E-20 AC134312.2 ENSG00000260162.2 1.982 129.028 4.42E-28

Table 2 lncDIFF group effect estimates and likelihood ratio test results of TCGA HNSC tumor vs. normal

Logarithmic link function

Genes Ensembl ID exp(βi1) (tumor) exp(βi2) (contrast) exp(βi1 + βi2) (normal) p-value FDR

ENSG00000005206.12 0.247 0.811 0.200 0.348 0.528

ENSG00000100181.17 0.737 0.993 0.732 0.974 0.982

ENSG00000126005.11 7.161 1.263 9.043 0.297 0.474

ENSG00000130600.11 181.885 1.571 285.661 0.044 0.115

ENSG00000131484.3 0.362 1.044 0.378 0.846 0.916

Identity link function

Genes Ensembl ID βi1 (tumor) βi2 (contrast) βi1 + βi2 (normal) p-value FDR

ENSG00000005206.12 0.247 −0.047 0.200 0.348 0.528

ENSG00000100181.17 0.737 −0.005 0.732 0.974 0.982

ENSG00000126005.11 7.160 1.887 9.047 0.297 0.474

ENSG00000130600.11 181.852 103.833 285.684 0.044 0.115

ENSG00000131484.3 0.362 0.016 0.378 0.846 0.916
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the three normalization methods were FPKM vs. TMM
0.82, FPKM vs. UQ 0.92, TMM vs. UQ 0.96, implying simi-
lar DE analysis results. Therefore, we only used RPKM of
lncRNA in TCGA HNSC to illustrate the application and
performance of lncDIFF in this study. In addition to TMM
and UQ, the quasi-likelihood parameter estimation in
lncDIFF is still robust for gene expression processed from
model-based RNA-Seq quantification and normalization
tools, such as RSEM [24], baySeq [25], and QuasiSeq [26].
Hence, the lncDIFF DE analysis can be incorporated in

existing RNA-Seq quantification and normalization pipe-
line, regardless of the models employed in the preprocess-
ing tools.

Conclusions
We implemented GLM with zero-inflated Exponential
likelihood and LRT for either identity or logarithmic link
function in lncDIFF, along with an option of simulated
p-values and FDR generated from permutations. This
package allows the input expression matrix to be either

Fig. 4 QQ plots of simulated null p-values for genes in TCGA HNSC study. (A) Histogram and density plot of RPKM for each genes. (B) Corresponding
QQ plot of null p-values simulated by shuffling the samples for lncDIFF, DESeq2, edgeR and limma. (C) Corresponding QQ plot of null
p-values simulated by shuffling the samples for lncDIFF, zinbwave+DESeq2, DEsingle and ShrinkBayes
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continuous or discrete and requires group or phenotype
factor provided in the design matrix format. lncDIFF is a
powerful differential analysis tool for zero-inflated low-
counts RNA-Seq data, especially for lncRNA and large-
scale studies, with improved DE detection power and
computational performance compared to others. This is
an efficient DE analysis method compatible with various
RNA-Seq quantification and normalization tools.

Methods
Low-abundance RNA-Seq data distribution
In RNA-Seq analysis, the type of RNAs and the selected
alignment, quantification and normalization tools usu-
ally have substantial impacts on the distribution pattern
of transcript abundance [27], especially on the level of
gene expression dispersion, i.e. the mean-variance rela-
tion. Most of the existing RNA-Seq analysis tools, such
as DESeq [28], edgeR [29], and baySeq [25], estimate
gene-wise dispersion to perform normalization or down-
stream differential expression analysis. However, algo-
rithms based on gene-wise dispersion may not be
suitable for low counts in RNA-Seq studies, such as
lncRNA and low-expression genes in mRNA [14].
Existing analysis on RNA-Seq data usually assumes

Negative Binomial (NB) or the Log Normal (LN) distribu-
tion for RNA-Seq normalized counts X mapped to a gene
[14, 16], with gene-wise dispersion summarized as a quad-
ratic mean-variance relation Var(X) = c ∙ E(X)2. The square
root of c coincides with coefficient of variation (CV) and
depends on the assumed statistical distribution, i.e. c ¼ ϕ

þ 1
μ1

for NB and c = exp(σ2) − 1 for LN [28], where μ1, ϕ
are the mean and dispersion parameters of NB, and σ is
the log standard deviation of LN, not related to log mean.
Obviously, a drop in the gene-wise CV is expected to
occur along with an increase in gene-wise mean, if the NB
distribution assumption is valid for RNA-Seq counts. On
the other hand, the gene-wise CV and mean should be in-
dependent if the assumed LN distribution is valid.
We first used the lncRNA and mRNA FPKM in the

TCGA HNSC study [21] to investigate the dispersion pat-
terns for three types of RNAs, i.e. high-abundance mRNA,
low-abundance mRNA and lncRNA. Genes in lncRNA
dataset were filtered by the criteria proposed by Yan et al.
[9], while genes in mRNA dataset with more than 30%
zero expression were removed. The cutoff between high
vs. low abundant mRNA genes was the 85th percentile of
gene-wise mean FPKM. We used the violin-box plots in
Fig. 5 to illustrate the CV-mean relation for different
RNAs in three panels. The totals of genes for each type of
RNA are 9561 high-abundance mRNA genes, 8362 low-
abundance mRNA genes, and 1322 lncRNA genes.
CVs for the majority of high-abundance mRNA genes

were less than 1 and display a drop in higher expressed

genes (Fig. 5). In contrast, the CV level for most of
lncRNA and low-abundance mRNA genes in the lower
two panels were close to CV = 1 and did not change
along with gene-wise mean, especially for lncRNA genes
with mean below the 80th percentile. The other genes in
these panels severely deviated from CV = 1, and a nega-
tive CV-mean relation still existed in low-abundance
mRNA when gene-wise mean increases from the 70th
percentile to higher. We visualized and confirmed such
CV-mean patterns via mRNA and lncRNA FPKM data
in another two TCGA studies, i.e. Lung Squamous Cell
Carcinoma (LUSC) and Lung Adenocarcinoma (LUAD),
shown in Additional file 1: Figures S1-S2. We further
assessed the dispersion patterns of mRNA low counts
normalized by TMM and UQ methods [30, 31] (Add-
itional File 1: Figure S3). The similarity between different
normalized mRNA counts implies that TMM or UQ
normalized lncRNA counts also follow the CV-mean
pattern of lncRNA RPKM in Fig. 5, although TMM and
UQ normalized lncRNA counts in TCGA HNSC study
were not publically available.
The expected CV level for lncRNA and low-abundance

mRNA in Fig. 5 revealed an underlying statistical distribu-
tion in a large proportion of low abundant genes, which
should have CV = 1 or Var(X) = E(X)2. This naturally leads

to the Exponential distribution with density function f ðXÞ
¼ 1

λ e
−X
λ , and E(X) = λ,Var(X) = λ2. In the light of fewer stat-

istical parameters, it is of interest to consider the Expo-
nential family as a latent distribution for low-counts
RNA-Seq data, especially for lncRNA. We cannot ignore
the fact that expression of certain lncRNA genes and low-
abundance mRNA genes are still distributed as the well-
known NB or LN family, illustrated by the genes with CV
deviating from CV = 1 (Fig. 5 and Additional file 1: Figs.
S1-S3). Therefore, in the presence of NB or LN-
distributed counts, we adopted exponential family to ac-
count for the latent distribution of lncRNA genes and per-
form differential expression analysis.

GLM with exponential likelihood
Let Yij be the lncRNA normalized counts for gene i in
sample j, belonging to phenotype or treatment group k,
k = 1, …, K. The generalized linear model (GLM) with
the Exponential family is

Y ij � Exponential λij
� �

; λij ¼ E Y ij
� �

Identity link: λij ¼
PK

k¼1 βikwjk þ
PM

m¼1 γmvjm:

Logarithmic link: logðλijÞ ¼
PK

k¼1 βikwjk þ
PM

m¼1 γm
vjm
wjk and βik are design matrix elements and coefficients

for groups, while vjm and γm (m = 1, …, M) are the M co-
variates and corresponding coefficients. Since Yij has
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been normalized for library size, this model does not in-
clude the RNA sequencing normalization factor, al-
though it is a common parameter in existing tools based
on NB assumption [28, 29, 32, 33].
In the absence of zero counts, lncDIFF uses the Exponen-

tial GLM for lncRNA DE analysis. Let βi = (βi1, …,βiK)
and γ = (γ1, …,γm), for gene i with negligible zero occurrence
(< 1%), the GLM likelihood based on the exponential dens-

ity f ðY ijÞ ¼ 1
λij
e
−
Y ij
λij with identity or log link function is

Identity link : L βi; γ
� � ¼XN

j¼1
l βi; γ
� �

¼
XN

j¼1
−

Y ijPK
k¼1βikwjk

þ log
XK

k¼1
βikwjk þ

XM

m¼1
γmvjm

� �" #

ð1Þ

Logarithmic link : L βi; γ
� � ¼XN

j¼1
l βi; γ
� �

¼
XN

j¼1
− Y ije

−
PK

k¼1
βikwjk

� �
þ
XK

k¼1
βikwjk þ

XM

m¼1
γmvjm

� �

ð2Þ
The exponential likelihood estimate for mean gene ex-

pression is the maximizer of L(βi, γ), that is ðβ̂i; γ̂Þ
¼ argmax Lðβi; γÞ. Statistical models similar to Exponen-
tial GLM had been proposed and assessed in previous
studies [34–37].

Zero-inflated exponential likelihood
In lncRNA expression data, it is common to observe
zero values in most genes at a non-negligible proportion
(i.e., at least 1%) of samples. The excess zeroes and low
counts for lncRNA cannot be addressed by integer
models like Poisson and Negative Binomial (or Gamma-

Fig. 5 Gene-wise coefficient of variation. Violin and box plots for gene-wise coefficient of variation (CV) based on RPKM of three types of RNAs in
TCGA HNSC study: high-abundance mRNA, lncRNA, and low-abundance mRNA. For each type of RNA, genes are divided into ten groups by the
gene-wise mean percentiles
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Poisson), especially for non-integer normalized counts in
the range of (0, 2). Rounding decimals to integers and
then applying Poisson or NB density [38, 39] or using
data transformation, e.g. log2, voom, or VST [15, 16, 38]
with limma [13, 40] may lead to errors in DE analysis.
Therefore, we propose the zero-inflated quasi likelihood
of Exponential GLM to account for the gene-wise infla-
tion of zeros.
In order to incorporate the zero-inflated pattern, we

re-write the normalized counts for gene i in sample j by
a multiplicative error model [41–43] with random
error ϵij, that is

;Y ij ¼ λijϵij; E ϵij
� � ¼ 1 ð3Þ

The random errors ϵij also have the occurrence of ex-
cess zeros with a prior probability mass P(ϵij = 0) = 1
− πi, P(ϵij > 0) = πi, and a continuous density at positive
value with E(ϵij| Yij > 0) = γ, similar to [42, 44, 45]. If the
non-zero expression Yij ∣ Yij > 0 follows an Exponential
distribution (so does ϵij|Yij > 0), then the density func-
tions for Yij including zero occurrence is

f Y ij
� � ¼ 1−πið Þ

I
Y ij¼0ð Þ π2

λij
e−πiY ij=λij

� 	I
Y ij>0ð Þ ð4Þ

Equation (4) is derived in the Additional file 2. The
corresponding likelihood function is

L� πi; βi; γ
� � ¼XN

j¼1
l j
� πi; βi; γ
� � ð5Þ

lj
∗(πi, βi, γ) is defined according to the selected link

function as

Identity link : l j
� πi; βi; γ
� � ¼ I Y ij¼0ð Þ log 1−πið Þ

þI Y ij>0ð Þ 2∙ log πið Þ− πiY ijPK
k¼1βikwjk

− log
XK

k¼1
βikwjk þ

XM

m¼1
γmvjm

� � !

ð6Þ

Logarithmic link : l j
� πi; βi; γ
� � ¼ I Y ij¼0ð Þ log 1−πið Þ þ I Y ij>0ð Þ

2∙ log πið Þ−πiY ije
−
PK

k¼1
βikwjkþ

PM

m¼1
γik vjm

� �
−
XK
k¼1

βikwjk−
XM
m¼1

γmvjm

 !

ð7Þ
The zero-inflated maximum likelihood (ZI-ML) esti-

mate for group-wise mean expression is the maximizer
of L∗(π, βi, γ) in eq. (6), that is

π̂i; β̂i; γ̂
� �

ZI−ML
¼argmax L� πi; βi; γ

� � ð8Þ

It is worthwhile to note that the likelihood function L∗(πi,
βi, γ) in eq. (5) reduces to eqs. (1) and (2) if the proportion
of zero expression is negligible, i.e. no more than 1%.

Estimate group wise mean

For each gene, lncDIFF utilizes ðπ̂i; β̂i; γ̂ÞZI−ML in eq. (8) to
estimate the mean expression level per group. We can
prove mathematically that this estimate is asymptotically
unbiased at large sample size, even though RNA-Seq low
counts are usually a mixture of multiple distributions as
previously reported [34–36]. Zero-inflated Poisson, NB, or
LN likelihood may result in biased estimate for group wise
mean gene expression in lncRNA low counts, due to lim-
ited mathematical power of these functions. Mathematical
proof for unbiased estimate of group wise mean gene ex-
pression in lncDIFF is elaborated in the Additional File 2.

To illustrate the estimation accuracy of ðπ̂i; β̂i; γ̂ÞZI−ML ,
we simply generated normalized lncRNA counts for a
gene in three biological groups (i.e. groups A, B, C)
without covariate effects by sampling from zero-inflated
Exponential, NB, LN distributions, respectively. Each
scenario contained 1000 replicates. The mean and me-
dian of 1000 estimated group effects were listed in
Table 3, indicating that the presence of NB and LN-
distributed low-counts did not have impact on the ac-
curacy of group effect estimate in lncDIFF. In other
words, lncRNA counts may occasionally deviate from
Exponential family but does not affect the performance
of lncDIFF. Hence, lncDIFF is a pseudo or quasi-

Table 3 Estimated group effect on a gene by lncDIFF on simulated low-abundance expression. Low-abundance expressions were
sampled from three statistical distributions and two scenarios of parameters (defined by β ’s and CV). 1000 replicates were
generated resulting in 1000 estimates per scenario

Sampling
Distribution

Groups Baseline Group A Contrast B vs A Contrast C vs A Baseline Group A Contrast B vs A Contrast C vs A

True Parameter βi1 = 2 (CV = 1.75) βi2 = 3 (CV = 1.45) βi2 = 8 (CV = 1.26) βi1 = 2 (CV = 1) βi2 = 3 (CV = 0.7) βi2 = 8 (CV = 0.6)

Exponential (CV = 1) Mean 1.98 3.03 7.91 1.98 3.03 7.91

Median 1.97 3.02 7.85 1.97 3.02 7.85

Negative Binomial Mean 1.99 3.00 8.03 2.00 3.01 8.06

Median 1.98 2.96 7.97 2.00 3.01 8.02

Log Normal Mean 1.99 2.99 7.98 1.99 3.00 8.02

Median 1.95 2.92 7.82 1.97 2.95 7.95
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likelihood [33] approach rather than a ‘true’ likelihood
method for lncRNA low counts analysis.

Detect differential expression by likelihood ratio test
For genes with non-Exponential low counts, the group
wise mean expression level is independent of variance.
Applying lncDIFF to these genes only detects the group
effect on mean expression. On the other hand, declaring
an Exponential-distributed low-counts gene as DE via
lncDIFF implies significant group effect on both mean ex-
pression and variance, as log-mean is always half of log-
variance in Exponential family. For differential analysis in
lncDIFF, we apply the Likelihood Ratio Test (LRT) to the
zero-inflated exponential likelihood function in eq. (5) to
test hypothesis: H0 : βi = βnull vs H1 : βi = βfull, where βnull is
the design matrix coefficients with some equal to zero and
βfull is the coefficients without zero.
The test statistic of LRT is D = − 2L∗(βnull) + 2L∗(βfull)

with βnull and βfull being the design matrix coefficients for
null and alternative models. Let mnull and mfull be the
number of distinct coefficients in βnull and βfull. Test stat-
istic D asymptotically follows χ2 distribution with degrees
of freedom mfull −mnull. The p-values from LRT are ad-
justed for multiple testing using the procedure of Benja-
min and Hochberg false discovery rate [46]. The choice of
link function does not affect the power of LRT, as illus-
trated by simulation study. An alternative algorithm to
compute p-values for LRT is to use empirical distribution
of LRT statistics D [39]. The empirical distribution of sta-
tistics D per gene can be generated by randomly shuffling
the samples into K groups for P times and then calculate
the LRT statistics for each permutation, that is D1, …, DP.
Let the test statistics for the true groups be D0, then the

empirical p-value is

PP

p¼1
IðDp>D0Þ
P , and can be adjusted by

Benjamin and Hochberg procedure.
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