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Abstract

the model legume Medicago truncatula.

members of SPL gene family among plant species.

Background: SQUAMOSA Promoter Binding Protein-Likes (SPLs) proteins are plant-specific transcription factors that
play many crucial roles in plant growth and development. However, there is little information about SPL family in

Results: In this study, a total of 23 MtSPL genes were identified in M. truncatula genome, in which 17 of the MtSPLs
contained the putative MtmiR156 binding site at the coding or 3" UTR regions. Tissue-specific expression pattern
analysis showed that most MtmiR156-targeted MtSPLs were highly expressed in seed and pod. The observation of
MtmiR156B-overexpressing plants reveals that MtmiR156/MtSPL modules are not only involved in the development
of leaves and branches, but also in the seed pod development, especially the formation of spine on pod.

Conclusion: The spines on pods are developed in many plant species, which allow pods to adhere to the animals,
and then be transported on the outside. This study sheds light on the new function of SPL family in seed dispersal
by controlling the formation of spiky pod, and provides insights on understanding evolutionary divergence of the
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Background

Transcription factors (TFs) play an essential role in
regulatory networks of many important developmental
processes by activating or repressing the transcription of
downstream target genes [1]. The SQUAMOSA
Promoter-Binding Protein-Likes (SPLs) proteins are
plant-specific TFs and all of them have a highly con-
served SBP domain with proximately 78 amino acids in
length [2—4]. The SBP domain contains two zinc-finger
like structure (Cys-Cys-Cys-His and Cys-Cys-His-Cys)
and one nuclear localization signal (NLS) motif [5, 6].
SPL proteins specifically recognize and bind to the cis-
element TNCGTACAA, which is located at the
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promoters of target genes with GTAC as its core se-
quence [5, 7]. The initial two SPL genes, AmSBPI and
AmSBP2, are firstly identified from the Antirrhinum
majus, and they act as transcriptional activators and
regulate the expression of floral meristem identity gene
SQUAMOSA [3]. The SPL genes have been reported to
play the important role in regulation of multiple aspects
of plant growth and development, including leaf and
shoot development [8, 9], vegetative phase change [10,
11], flowering [12], sporogenesis [13], male fertility [14],
plant hormone signal transduction [15], and copper
homeostasis [16]. So far, the SPL families have been
identified and characterized in several plant species,
such as Arabidopsis thaliana (2], Oryza sativa [17], So-
lanum lycopersicum [18), Gossypium raimondii [19],
Vitis vinifera [20], Brassica napus [21], Glycine max
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[22], Prunus mume (23], Arachis hypogaea L. [24], Phyl-
lostachys edulis [25] and Capsicum annuum L. [26].

Many microRNAs have been identified, which regulate
gene expression by binding and cleaving their target
mRNAs [27, 28]. miRNA156 is one of the highly con-
served miRNA families in plants [29]. In Arabidopsis, in
total 16 SPLs are identified and termed as AtSPLI to
AtSPL16, respectively [5]. Among them, 10 are targets of
AtmiR156, which are AtSPL2-AtSPL6, AtSPL9-AtSPLII,
AtSPL13, and AtSPLI15 [9, 12, 30-32]. In rice, 19 OsSPL
genes have been identified, and 11 of them are targeted
by OsmiR156 [17]. Most Arabidopsis miR156 binding
sites of the targeted-SPL genes are located in the down-
stream of the SBP domain at the coding sequences,
while in AtSPL3, AtSPL4, and AtSPLS5, they are located
in the 3" UTR of the mRNAs [12].

These miR156-targeted SPL genes play redundant
roles in plant morphology and development among dif-
ferent species. Several studies show that SPL genes are
involved in the regulation of flower and inflorescence
development. In Arabidopsis, AtSPL3, AtSPL4 and
AtSPLS have similar functions and play vital roles in
vegetative phase change and floral transition [7, 9, 12].
Furthermore, AtSPL3 can bind directly on the promoter
regions of AP1, LFY and FUL to activate their expression
in controlling the timing of flower formation [33]. In
addition, SOCI and FT regulate the expression of
AtSPL3, AtSPL4 and AtSPLS in response to photoperiod
and gibberellin (GA) signals to promote flowering [34].
In wheat, two paralogous SPL genes, 7aSPL20 and
TaSPL21, are highly expressed in the lemma and palea,
and ectopic expression of them in rice can promote pan-
icle branching [35]. SPL genes also play important roles
in regulating lateral organ and shoot development. In
Arabidopsis, AtSPL2, AtSPL10 and AtSPL11 redundantly
regulate proper development of lateral organs in associ-
ation with shoot maturation in the reproductive phase
[36]. Besides, mutant phenotype analysis shows that
AtSPL9 and AtSPL15 act redundantly in regulation of
the juvenile-to-adult phase transition [11]. In maize, SPL
transcription factor TASSELSHEATH4 plays an essential
role in bract development and the establishment of
meristem boundaries [37]. Two duplicated loci, UN-
BRANCHED?2 and UNBRANCHED3, affect crop prod-
uctivity traits by regulating the rate of lateral primordia
initiation [38]. In addition, a series of studies show that
SPL genes are involved in the regulation of seed and
fruit development. In rice, the OsmiR156-targeted SPL
gene, OsSPLI4/IDEAL PLANT ARCHITECTURE 1
(IPA1), regulates shoot branching in the vegetative stage
and enhances rice grain yield at the productive stage [39,
40]. OsSPL16/GRAIN WIDTH 8 (GWS) acts as a positive
regulator of cell proliferation and is involved in control
of grain size, shape and quality [41]. In tomato, the SPL
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gene COLORLESS NON-RIPENING (CNR) is critical for
normal fruit ripening, and mutation in CNR results in
colorless fruits with a substantial loss of cell-to-cell ad-
hesion [42].

Medicago truncatula is a fast-emerging model legume
for functional genomics study. However, the information
and function of SPL gene family in M. truncatula are
largely unknown. In this study, we reported the genome-
wide identification and characterization of SPL genes in
M. truncatula. Totally, 23 MtSPL genes were identified,
and their phylogenetic relationship, protein motifs, gene
structures, and chromosomal locations were analyzed.
Furthermore, we found that most MtmiR156-targeted
MtSPL genes were highly expressed in pod and seed.
Overexpression of MtmiR156B transgenic plants dis-
played the small seeds and pods, especially the loss of
pod spine. These findings demonstrate that MtmiR156-
targeted MtSPL genes play the novel roles in pod and
seed development in M. truncatula.

Results

Genome-wide identification of MtSPL genes

In order to identify SPL genes in M. truncatula genome,
we executed a genome-wide search of MtSPLs by protein
BLAST using the 16 AtSPLs and 19 OsSPLs sequences
against the Medicago truncatula Genome Database. Ini-
tially, a total of 24 putative MtSPL sequences were ob-
tained. Medtr8g066240 was excluded from the MtSPL
gene family due to the absence of a complete SBP do-
main. Therefore, totally 23 MtSPLs with the conserved
SBP domain were characterized in genome of M. trunca-
tula (Additional file 1). The MtSPL genes were named
according to their closest Arabidopsis orthologs (Fig. 1).
The protein lengths of MtSPLs ranged from 143 to 1025
amino acids, and the gene locus, isoelectric point, intron
number, and chromosome location of the MtSPL genes
were shown in Table 1.

Phylogenetic analysis and chromosomal localization of
MtSPL genes

To further achieve the evolutionary relationship between
MtSPL genes and other SPLs, a phylogenetic tree con-
taining 16 AtSPLs, 19 OsSPLs, and 23 MtSPLs was con-
structed using MEGA?7.0 with Neighbor-Joining method
(Fig. 1). According to the phylogenetic analyses, the 58
SPL proteins were clustered into seven distinct groups
(named G1-G7), and each group contained at least one
SPL from A. thaliana, rice, and M. truncatula (Fig. 1).
To determine the chromosome distribution of MtSPL
genes in M. truncatula, the 23 MtSPL genes were lo-
cated on each chromosome based on the M. truncatula
genome data. These MtSPL genes showed uneven distri-
bution on the M. truncatula chromosomes (Fig. 2a).
Chromosome 8, 2, 7, and 1 contained 6, 5, 4, and 3
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Fig. 1 Phylogenetic analysis of SPL proteins from M. truncatula, Arabidopsis and rice. The Neighbor-Joining (NJ) phylogenetic tree was
constructed using full length SPL protein sequences in MEGA 7.0 with 1000 replicates

MtSPL genes, respectively. Both chromosome 3 and 4
contained 2 MtSPL genes, chromosome 5 contained only
one MtSPL gene, and no MtSPL gene located on
chromosome 6.

Conserved motifs and gene structure analysis of MtSPL genes
To further understand the structural diversity of the
MtSPL genes, gene exon/intron structure analysis was car-
ried out using online Gene Structure Display Server tool.
The exon/intron structures of the 23 MtSPL genes were
generated by alignment of MtSPL gene coding sequences
with their corresponding genomic sequences. Gene struc-
ture illustrations displayed the high variation in the

number of introns, from 0 to 10 (Fig. 2b). To gain a better
understanding of the protein sequence characteristics of
the MtSPLs, online MEME search was performed to
analyze the conserved domains and motifs. Besides the
conserved SBP domain (motif 4), in total 20 conserved
motifs were identified in MtSPLs (Fig. 3a, Additional file 2)
. The conserved SBP domain consisted of three motifs:
zinc finger 1 (Zn-1, C3H), zinc finger 2 (Zn-2, C2HC),
and a nuclear localization signal (Fig. 3b, c).

Analysis of MtmiR156 and its target sequences in MtSPLs
In order to understand the function of miR156 and
miR156-targeted MtSPL genes, we searched the miRBase



Wang et al. BMC Genomics

Table 1 The SPL gene family in M. truncatula

(2019) 20:552

Page 4 of 14

Name Gene ID CDS (bp) Introns Length (aa) pl Location miR156 target
MtSPLT Medtr1g086250 3012 9 1003 599 chr1:38604282..38611936+ NO
MtSPL2 Medtr3g085180 1305 3 434 833 chr3:38492623.38497369+ YES
MtSPL3 Medtr4g088555 435 1 144 6.97 chr4:35174504.35179012- YES
MtSPL4 Medtr2g014200 432 1 143 6.75 chr2:3964615.3967481+ YES
MtSPL5A Medtr2g078770 516 1 171 8.31 chr2:32971840..32974296- YES
MtSPL5B Medtr8g463140 543 0 180 8.95 chr8:22196925..22198280- YES
MtSPL6A Medtr5g046670 1503 4 500 743 chr5:20459089..20465349- YES
MtSPL6B Medtr2g461920 1620 2 539 6.78 chr2:25606881.25611792+ YES
MtSPL6C Medtr4g109770 1413 2 470 6.44 chr4:45646472.45650584- YES
MtSPL7 Medtr2g020620 2238 10 745 6.63 chr2:6886415.6893572+ NO
MtSPL8 Medtr8g005960 984 0 327 848 chr8:419202.421415- NO
MtSPL9 Medtr7g444860 945 0 314 8.58 chr7:15012335.15016587- YES
MtSPLT0A Medtr8g080680 1197 0 398 7.55 chr8:34725302..34727462- YES
MtSPL10B Medtr8g080670 1239 0 412 793 chr834719933.34722421- YES
MtSPLTT Medtr8g080690 131 0 376 8.65 chr8:34729479.34731697- YES
MtSPL12 Medtr7g110320 3006 0 1001 6.13 chr7:45210190.45220920- NO
MtSPLT3A Medtr8g096780 1173 0 390 8.19 chr8:40622636.40626632+ YES
MtSPL13B Medtr3g099080 131 2 376 7.04 chr3:45410078.45413482+ YES
MtSPL13C Medtr7g028740 1104 0 367 8.2 chr7:9871981..9875095+ YES
MtSPL14 Medtr1g035010 3012 8 1003 75 chr1:12692334..12698670+ NO
MESPLT5A Medtr7g092930 1014 0 337 891 chr7:36893347.36897295- YES
MtSPL15B Medtr1g053715 1053 2 350 8.86 chr1:22678198.22682537- YES
MtSPLT6 Medtr2g046550 3078 9 1025 6.64 chr2:20453789.20462574+ NO

Database and found 10 MtmiRI156 genes, MtmiR156A-
MtmiR156], in M. truncatula genome (Fig. 4a, Add-
itional file 3a). Based on the MtmiRI156 precursor se-
quences, the stem-loop structures of MtmiRI156 were
found (Additional file 3a). Previous studies showed that
miR156 could bind to the coding or 3" UTR region of
the SPL genes and reduce gene activity. Then, we used
the online psRNATarget tool to find MtmiR156 comple-
mentary sequences in the MtSPL transcripts. By com-
parison of the MtmiR156 mature sequences and the
MtSPL transcript sequences, we found that total 17
MtSPL genes have the MtmiR156 binding sites, 13 of
which were located in coding regions and 4 in 3" UTR
regions, respectively (Fig. 4b, Additional file 3b).

Expression profile of MtSPL genes in different organs

The expression pattern of a gene is often correlated with
its function. In order to understand the developmental
functions of the MtSPL genes, we investigated the ex-
pression profiles of the 23 MtSPL genes by quantitative
real-time PCR (qRT-PCR) in six different organs, includ-
ing roots, stems, leaves, flowers, pods, and seeds. qRT-
PCR results showed that the relative expression levels
and patterns of the MtSPL genes were varied in these

organs (Fig. 5). For example, the non-MtmiR156-tar-
geted MtSPLs (MtSPL1, MtSPL7, MtSPL12, MtSPL14
and MtSPL16) were expressed in all of the organs tested,
while MtSPL8 was highly expressed in flower and pod
(Fig. 5a). The MtmiR156-targeted MtSPL genes also
showed differential expression profiles (Fig. 5b). Most
MtmiR156-targeted MtSPLs, such as MtSPL4, MtSPL5A,
MtSPL5B, MtSPL6B, MtSPL6C, MtSPL11, MtSPL13B
and MtSPLI5SA, were highly detected in pod, implying
their specific roles in pod development. MtSPL2,
MtSPL5B, MtSPL10A and MtSPL13A were expressed at
high levels in seed, indicating the possible involvement
in seed development.

MtmiR156-targeted MtSPLs play important roles in pod
and seed development

To investigate the possible roles of the MtmiR156-tar-
geted MtSPLs in growth and development of M. trunca-
tula, the genomic sequence of MtmiR156B was cloned
and introduced into wild type plants under the regula-
tion of the cauliflower mosaic virus 35S promoter
(Fig. 6a). Seven positive transgenic lines were obtained
based on the PCR results (Additional file 4). The
MtmiR156B was highly expressed in two transgenic
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Fig. 2 Chromosomal distribution, phylogenetic relationship and gene structure of MtSPL genes. a The distribution of MtSPL genes on M.
truncatula chromosomes based on the genome annotation. The chromosomes are indicated with different colors. The scale (Mb) represents the
lengths of the chromosomes. b Phylogenetic analysis and exon/intron structures of MtSPL genes. Exons and introns are indicated by black
wedges and black lines. The scale (Kb) represents the lengths of the MtSPL genes

plants (Fig. 6b). The MtmiR156B-overexpressing plants
exhibited small leaves, increased lateral branches and re-
duced plant height, indicating that MtmiR156B-targeted
MtSPLs play important roles in leaf morphogenesis,
branching and stem elongation (Fig. 6¢-e). Moreover, re-
duced function of the MtmiR156B-targeted MtSPLs also
led to the defects in reproductive development. Com-
pared with wild type, the spikes of the flowers in
MtmiR156B-overexpressing plants were absent (Fig. 6f),
however, the development of stamen and carpel was nor-
mal (Fig. 6g).

Most  MtmiR156-targeted MtSPLs were highly
expressed in pod, implying that they may play redundant
roles in pod development. Compared with the long slen-
der spines developed on the pod surface in wild type,

overexpression of MtmiR156B led to the reduction in
pod size and the loss of spines on pod surface (Fig. 7a-d)
. The seed number in each pod, seed size and weight
were significantly reduced in the MtmiR156B-overex-
pressing plants, compared with those in wild type (Fig.
7e-g). These results demonstrate that the MtmiR156/
MtSPL regulation module is critical for the pod and seed
development.

To further determine which MtSPL genes are involved
in pod wall and seed development, the expression levels
of all the MtmiR156-targeted SPL genes were analyzed
in the pod wall and seed of the wild type and
MtmiR156B-overexpressing plants. qRT-PCR results
demonstrated that the expression of nine MtSPLs was
significantly reduced in the pod wall of the MtmiR156B-
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Fig. 3 Conserved domains and motifs in MtSPL proteins. a The full length MtSPL protein sequences were used to execute the motif search on
MEME tool. Domains and motifs were represented by the boxes with different numbers and colors. b Alignment of the conserved SBP domain in
MtSPL proteins. Multiple SBP domain sequences alignment was performed using Jalview software. Two Zn-finger structures (Zn-1, Cys3His and
Zn-2, Cys2HisCys) and one NLS are indicated. ¢ Sequence logo of the conserved SBP domain of MtSPLs. Sequence logo was obtained from
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overexpressing plants (Fig. 8a). The expression of
MtSPLSA, MtSPL5B, MtSPL15A, and MtSPL15B showed
over two-fold decrease in the transgenic plants, indicat-
ing that those MtSPL genes play crucial roles in spiky
pod wall development (Fig. 8a). While, eleven MtSPLs,
especially MtSPL5A, MtSPL6B, MtSPL6C, MtSPLIOA
and MtSPL13B, were downregulated in seed of the
MtmiR156B-overexpressing plants, indicating the func-
tional redundancy among those MtSPL genes during
seed development (Fig. 8b).

Discussion

Transcription factors play important roles during the
processes of plant growth and development. The SPL
genes encode a family of plant-specific transcription fac-
tors that contain the conserved SBP domain [2, 43]. In
this study, through a genome-wide identification, we ob-
tained 23 MtSPL genes from M. truncatula genome.
Phylogenetic analysis showed that the MtSPL genes were
more closely related to Arabidopsis than rice SPL genes,
indicating that eudicots SPL genes may diverge from a
common ancestor [44]. However, the number of MtSPL
genes in M. truncatula is greater than that in Arabidop-
sis and rice, which contain 16 and 19 SPLs, respectively.
Sequence homologous analysis suggested that faster
gene duplication rates or species-specific gene duplica-
tion manners might play important roles in SPL gene ex-
pansion in M. truncatula. Gene structure and motif
composition analyses showed that MtSPL genes within
the same group shared similar motifs and exon/intron
organization, suggesting that the functional evolution of
SPL genes may be tightly correlated with the diversifica-
tion of gene structure and conservation of motifs [6, 45].

Some SPL genes were posttranscriptionally regulated
by miR156 and involved in multiple developmental pro-
cesses [4, 9, 11, 32, 36, 39-41, 45-49]. Based on the
miRNA database information, ten MtmiR156 genes were
found in M. truncatula genome. The mature sequences
of the miR156 genes between A. thaliana and M. trun-
catula are similar, indicating the functional conservation
of the miR156 in different plant species [29]. It has been
reported that 11 of 16 SPLs in Arabidopsis and 11 of 19
SPLs in rice contained the putative miR156 binding sites
[2, 7, 11, 12, 17, 36, 46]. By searching the MtmiR156
complementary sequence in MtSPLs mRNAs, we found
that 17 MtSPLs out of 23 contained the putative
MtmiR156 binding sites, suggesting the conservation of
miR156-mediated posttranscriptional regulation in
plants.

In Arabidopsis, loss-of-function of multiple SPL genes
or overexpression of AtmiRI56A resulted in the de-
creased rosette leaf area [46]. In tomato and petunia,
overexpressing AtMIRI5S6B or PhSBPI1code-silenced
plants produced the higher number of small leaves and
branches [47, 50]. Furthermore, overexpression of
OsmiR156B in switchgrass and loss-of-function in IPAI
in rice and down-regulation of MsSPL13 in alfalfa also
led to the increased number of branches [39, 40, 51, 52].
In accordance with these reports, the similar pheno-
types, including more branches and small leaves, were
also displayed in MtmiR156B-overexpressing plants.
These observations indicate that MtmiR156/MtSPL
regulation module plays the conserved roles in vegeta-
tive development.

The seeds of legume are developed within an ovary-
derived pod, whose walls provide numerous functions,
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such as the protection of the seeds and the production
of photosynthates [53-55]. Seed dispersal is the trans-
port of pods/seeds away from the parent plant and has
been implicated in rapid plant migration and the spread
of invasive [56—59]. The pods in many plant species de-
velop the spines or stiff hairs, such as Trifolium angusti-
folium, M. polymorpha and M. truncatula [60, 61]. Such
structures are very important for seed migration, be-
cause seed pods can adhere to animals by means of
spines or hairs, and be transported on the outside [60,
62]. So, the proper development of spines/hairs on pod
is critical for seed dispersal, along with species diversity
or ecological invasion. The pod and pod wall of M. trun-
catula are helical and thick with spines [63—-65]. In this
study, we found that most MtmiR156-targeted MtSPL

genes were highly expressed in pod and seed. Moreover,
seed size and number in MimiR156B-overexpressing
plants were decreased. Importantly, the development of
spines on pod was also defective, due to the downregula-
tion of several MtmiR156-targeted MtSPLs. These obser-
vations indicate that the MtmiR156/MtSPL regulation
module may contribute to the genetic variability through
the regulation of pod morphology.

In Arabidopsis, ectopic expression of the TaSPLI6 re-
sults in early flowering and increase of organ size and
yield [66]. This finding implies that SPL is possible for
the improvement of seed production in legume species.
In this study, 35S:MtmiR156B plants show defective
spines on pod in M. trunctula. However, the number of
lateral branches is increased dramatically. The biomass
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is a critical trait in evaluation of forage grass. Therefore,
downregulation of targeted SPL genes by overexpression
of miR156 in legume forage, such as alfalfa, may provide
a helpful tool to improve forage production.

Conclusion

In this study, we performed genome-wide analyses and
identified SPL genes in M. truncatula. The genetic re-
dundancy of MtSPL genes hinders the discoveries of
their potential functions. However, the phenotypes of
MtmiRI156B-overexpressing plants reveal that
MtmiR156/MtSPL modules are not only involved in the
development of leaves and branches, but also indirectly
contribute to seed dispersal by controlling the formation
of spine on pods. Characterization of the loss-of-
function MtSPL mutants may help to provide insight

into the roles of MtmiR156/MtSPL module in the devel-
opment of spine of pod, and shed light on the new func-
tion of SPL family among plant species.

Methods

Plant materials and growth conditions

Medicago truncatula R108 ecotype was used as the wild
type, which is obtained from the Noble Research Institu-
tion, USA. The seeds of 35S:MtmiR156B and wild type
were scarified with sandpaper and treated at 4°C for 5
days. The geminated seeds were transferred to nursery
seedling plate (4 x 4 x 5 cm Length, Width, Height) for 2
weeks. Then, the seedlings were transferred to Luqing
soil mix (soil: vermiculite = 3:1) and grown in the green-
house at 22 °C (day) / 22 °C (night) with 16 h (day) / 8h
(night) photoperiod, and relative humidity at 70 to 80%.
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Identification and phylogenetic analysis of SPL genes in
M. truncatula
To identify the SPL genes in M. truncatula genome,
firstly, we used 16 AtSPL and 19 OsSPL protein sequences
to execute BLASTP search the Medicago truncatula Gen-
ome Database (http://www.medicagogenome.org/). The
AtSPL protein sequences were obtained from The Arabi-
dopsis Information Resource (TAIR, http://www.arabidop-
sis.org/). The OsSPL protein sequences were obtained
from the Rice Genome Annotation Project (http://rice.
plantbiology.msu.edu/). Totally, 24 putative MtSPL genes
were identified in M. truncatula genome using blast with
a cut-off E-value >le” . Secondly, we searched the Plant
Transcription Factor Database (http://planttfdb.cbi.pku.
edu.cn/) and confirmed the blast search result. Thirdly,
the 24 MtSPL protein sequences were further analyzed on
the NCBI Conserved Domain Search website (https://
www.ncbinlm.nih.gov/Structure/cdd/cdd.shtml) and
found that Medtr8g066240 lost the conserved SBP do-
main. Therefore, Medtr8g066240 was excluded from the
putative MtSPL genes, and total 23 MtSPL genes were
used for study.

Multiple protein sequence alignment was performed
using Jalview software (http://www.jalview.org/). The

phylogenetic tree for Arabidopsis, rice, and Medicago
SPL gene family members was constructed using
MEGA 7.0.

Chromosome location and gene structure of MtSPL genes
The informations of MtSPL genes on chromosome loca-
tion, including chromosome length, gene direction, and
gene start and stop position, were obtained from the M.
truncatula genome database. Exon / intron structures of
MtSPL genes were determined by aligning the coding se-
quences and their corresponding genomic sequences
using the online Gene Structure Display Server (GSDS,
http://gsds.cbi.pku.edu.cn/) website.

The identification of conserved domain and the
prediction of MtmiR156-targeted MtSPLs prediction

The online MEME tool (http://meme-suite.org/) was
used to predict both conserved domains and potential
motifs in the 23 MtSPL proteins with the following pa-
rameters: maximum number of motifs to find, 20; mini-
mum width of motif, 6; maximum width of motif, 100;
minimum number of sites for each motif, 2. The mature
sequences of M. truncatula MtmiR156A to MtmiR156]
were obtained from miRBase database (http://www.
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mirbase.org/). The MtmiR156-targeted MtSPL genes and
their binding sites were obtained by searching the gene
coding and UTR regions on the psRNATarget (http://
plantgrn.noble.org/psRNATarget/home) website.

RNA extraction and gene expression analysis

The samples in 60-day old wild-type plants were used
for RNA extraction. For gene expression pattern ana-
lysis, the roots, leaves, flowers, pods and seeds samples
were harvested from primary roots, fully expanded
leaves, fully opened flowers, 20-day post-pollination pods
and seeds. To analyze the relative expression levels of
MtmiR156-targeted MtSPL genes in the MtmiRIS6B-
overexpressing plants, 20-day post-pollination seeds and
pod walls were collected from wild type and 35S:
MtmiR156B transgenic plants. To analyze the relative
expression levels of MtmiR156B in the MtmiR156B-
overexpressing plants, 60-day old fully expanded leaves
were collected from wild type and 35S:MtmiR156B
transgenic plants.

Total RNA of these organs was extracted using the
Trizol-RT Reagent (Molecular Research Center, INC)
following the manufacturer’s instructions. The quality
and quantity of the extracted RNA were analyzed
using Nanodrop 2000 Spectrophotometer (Thermo
Scientific, USA). Reverse transcription PCR was per-
formed with 2.5pug total RNA using Roche First
Strand c¢cDNA Synthesis Kit (Roche, USA). Then, the
c¢cDNA was diluted to 20ng/pl with DEPC treated
H,O. For quantitative real-time PCR (qRT-PCR) ana-
lysis, the primers of the 23 MtSPL genes were de-
signed by  Primer  Express 3.0  software
(Additional file 5). qRT-PCR was executed in tripli-
cate for each organ on CFX Connect™ (Bio-Rad, USA)
using FastStart Essential DNA Green Master Kit
(Roche, USA). The MtUBI gene was selected as in-
ternal control, and the relative expression levels of
different MtSPL genes were calculated using 2°°°¢T
method [67].

Plasmid construction and plant transformation

To obtain the MimiRI156B overexpression construc-
tion, the 830bp DNA sequence containing the
MtmiR156B stem-loop structure was amplified using
primer  pair  MtmiR156B-F/MtmiR156B-R.  The
MtmiR156B sequence was transferred into the pEar-
leyGate 100 vector by Gateway LR reaction (Invitro-
gen, USA) [68]. Then 35S:MtmiR156B destination
construct was introduced into Agrobacterium strain
EHA105. For stable transformation, leaves of wild
type were transformed with EHA105 strain containing
the 35S:MtmiR156B vector [69].
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Additional file 1: The sequences of all genes involved in this study.
(DOCX 31 kb)

Additional file 2: Multiple amino acid sequences alignment of MtSPL
proteins using full-length amino acid sequences. Sequences were aligned
using Jalview software. (DOCX 575 kb)

Additional file 3: Secondary structure of MtmiR156 and regulation of
MtSPLs by MtmiR156. ¢ RNA secondary structures of the MtmiR156A-
MtmiR156A J were predicted by the online mfold Web Server. The
nucleotides with light green color in stem-loop structures indicate the
mature MtmiR156 sequences. © Multiple MtSPL genes were regulated by
MtmiR156. The deoxyribonucleotide with shaded color indicates the con-
served sequences targeted by MtmiR156. (DOCX 548 kb)

Additional file 4: Molecular characterization of MtmiR1568

overexpression lines. PCR analysis was performed using primer pair 355-F/
MtmiR156B-R for regenerated transgenic plants together with the positive
control (355:MtmiR156B), and negative control (Wild-type). (DOCX 168 kb)

Additional file 5: Primers used in this study. (DOCX 23 kb)
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