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Abstract

Background: National genetic evaluations for disease resistance do not exist, precluding the genetic improvement
of cattle for these traits. We imputed BovineHD genotypes to whole genome sequence for 2703 Holsteins that
were cases or controls for Bovine Respiratory Disease and sampled from either California or New Mexico to
construct and compare genomic prediction models. The sequence variation reference dataset comprised variants
called for 1578 animals from Run 5 of the 1000 Bull Genomes Project, including 450 Holsteins and 29 animals
sequenced from this study population. Genotypes for 9,282,726 variants with minor allele frequencies ≥5% were
imputed and used to obtain genomic predictions in GEMMA using a Bayesian Sparse Linear Mixed Model.

Results: Variation explained by markers increased from 13.6% using BovineHD data to 14.4% using imputed whole
genome sequence data and the resolution of genomic regions detected as harbouring QTL substantially increased.
Explained variation in the analysis of the combined California and New Mexico data was less than when data for
each state were separately analysed and the estimated genetic correlation between risk of Bovine Respiratory
Disease in California and New Mexico Holsteins was − 0.36. Consequently, genomic predictions trained using the
data from one state did not accurately predict disease risk in the other state. To determine if a prediction model
could be developed with utility in both states, we selected variants within genomic regions harbouring: 1) genes
involved in the normal immune response to infection by pathogens responsible for Bovine Respiratory Disease
detected by RNA-Seq analysis, and/or 2) QTL identified in the association analysis of the imputed sequence variants.
The model based on QTL selected variants is biased but when trained in one state generated BRD risk predictions
with positive accuracies in the other state.

Conclusions: We demonstrate the utility of sequence-based and biology-driven model development for genomic
selection. Disease phenotypes cannot be routinely recorded in most livestock species and the observed phenotypes
may vary in their genomic architecture due to variation in the pathogen composition across environments.
Elucidation of trait biology and genetic architecture may guide the development of prediction models with utility
across breeds and environments.
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Background
Economic cost
Bovine respiratory disease (BRD) impacts the U.S. cattle
population more than any other communicable disease. In
a recent study, the estimated economic cost of a BRD case
was $253.97 [1]. Management tools to limit the impacts of
BRD are limited due to the broad array of responsible
pathogens and the lack of effective vaccines [2]. Further-
more, diagnosis of the pathogens responsible for disease
in affected animals is uncommon and has prevented the
development of predictions of genetic merit for disease
risk and their incorporation into selection indexes [3].

Previous study
To develop genetic resources for the improvement of re-
sistance to BRD, a case-control study was performed in
2703 Holstein calves from New Mexico (NM) or Califor-
nia (CA) [4]. Phenotypes were collected using the
McGuirk scoring system [2] and animals were genotyped
with the Illumina BovineHD (HD) assay to characterize
the genetic architecture of resistance to the underlying
pathogens responsible for disease and to identify large-
effect QTL. Disease traits such as BRD are difficult to
develop prediction models for the implementation of
Genomic Selection due to the lack of phenotype data.
Consequently, the greatest opportunity for the develop-
ment of genomic predictions (GP) for risk of BRD
industry-wide is to leverage developed resource popula-
tions to generate GP with utility across environments
and potentially also across breeds.
An important observation made in the initial study

was that there appeared to be substantial genetic hetero-
geneity between environments for risk of BRD [4]. While
moderate estimates of percent variation explained (PVE)
on the observed scale (21–22%) for risk of BRD were
obtained in the analyses performed within each state,
when the data for the two states were combined, the
PVE estimate substantially decreased (~ 14%). This was
interpreted to be a consequence of genetic heterogeneity
in the immune response due to the presence of different
pathogen profiles present within each environment as
established from pathogen diagnostic analyses of deep
nasopharyngeal and mid-nasal swabs taken from each
sampled animal.

Goals of this study
QTL mapping and GP for risk of BRD require
approaches that differ from the neutral marker paradigm
that has successfully been applied to routinely recorded
livestock production traits [5]. Genetic heterogeneity
between populations occurs when sick animals display
the same clinical signs, but these signs are caused by in-
fections involving different pathogens that elicit poten-
tially different immune responses. When this occurs,

mutations in different genes and regulatory elements
may lead to susceptibility to different pathogens which
also differ in their prevalence across environments, lead-
ing to an apparent genotype-by-environment interaction
for risk of BRD. When this is the case, the genetic cor-
relation between risk of BRD in the different environ-
ments will be substantially less than one and integrating
data for animals from different environments will result
in the identification of QTL or production of GP that
have a reduced pathogen specificity. This approach will
therefore tend to reduce the ability to identify variants
with pathogen-specific effects on risk of BRD. Consider-
ing the cost and difficulty of creating GP training popu-
lations representing the range of U.S. cattle production
environments, it is imperative that we fully leverage
existing disease status data. We attempted to utilize dif-
ferent data types to enhance our biological understand-
ing of BRD and better understand the genetic
architecture of disease risk within and across regions.
We utilized two strategies in an attempt to improve

the utility of GPs across geographic regions of the U.S.
using the data reported in Neibergs et al. [4]. The first
approach involved the imputation of the HD genotype
data to the level of whole genome sequence (WGS) vari-
ation using a large reference panel of sequenced individ-
uals from Run 5 of the 1000 Bull Genomes Project
(1KBGP) [6]. In the second approach, we examined the
effects of reducing the number of single nucleotide poly-
morphisms (SNPs) from the WGS imputation set that
were included in the GP model to sets selected based
upon a genome-wide association (GWAS) analysis of
these data and a previous RNA-Seq analysis. We in-
cluded SNPs located within genomic regions found to
harbour QTL of large effect on risk of BRD, or SNPs lo-
cated within genomic regions previously found to
harbour genes involved in the normal immune response
to infection by pathogens responsible for BRD based on
RNA-Seq analysis [7] and the union of these two sets of
variants. Recent studies have suggested the utility of in-
corporating ancillary information into the analysis to in-
form the selection of biologically relevant loci and
reduce the challenge of estimating effects for several
hundreds of thousands, or millions, of loci [8–11].
When the genetic architecture of a trait varies across

environments, we postulate that improved predictions
could be produced by enriching the prediction model
for SNPs that tag segregating disease risk QTL detected
in multiple environments or variants associated with im-
mune response loci. The first approach uses a two-step
data analysis in which the first phase estimates WGS
variant effects and the second, feature selection step, re-
tains only those SNPs that are located in large-effect
QTL regions for the prediction of genetic merit. We rec-
ognise that this does not represent the use of
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independent data to identify QTL and that the estimated
QTL effects are positively biased, which is commonly
known as the “Beavis effect” (see [12] for an explan-
ation). Consequently, the selection of SNPs in QTL re-
gions detected in an analysis of the same data set is
likely to result in a positive bias in the accuracy of GPs.
We sought to quantify the magnitude of this bias by per-
forming cross-validation analyses in which subsets of the
data were used for QTL detection and the training of
the prediction model which was then applied to an inde-
pendent subset of the data for validation of prediction
accuracy. The second approach utilized completely inde-
pendent biological information to identify genomic re-
gions harbouring genes involved in the normal immune
response to infection by pathogens causing BRD and
then selecting SNPs from the WGS variants located in
these regions for the prediction of genetic merit.
Our objectives were to examine the utility of these

analytical frameworks for developing a single GP model
for risk of BRD across geographic regions of the U.S.
and for improving our biological understanding of the
mechanisms of disease resistance in livestock via more
precise QTL mapping using WGS imputed variants.

Results
Imputation
Imputation resulted in 39,721,988 SNPs with genotypes
predicted in the 2703 animals. To estimate the accuracy
of imputation, we performed a separate imputation ana-
lysis using only the 1KBGP Run 5 reference set. Here,
we excluded the genotype data for the 29 Holsteins se-
quenced from among our BRD study animals from the
WGS reference set and produced a direct measure of
imputation accuracy as the Pearson correlation between

their WGS imputed and WGS called genotypes. Overall
mean per SNP genotype imputation accuracy was 76%.
However, we observed regions throughout the genome
where genotype imputation accuracy was very low
(Fig. 1). The boundaries for these regions were estimated
using a spline fitting analysis of imputation accuracy cor-
relations in 10-kb windows throughout the genome
using GenWin [13]. Imputed variants were then filtered
either on the basis of their individual SNP imputation
accuracy or regional accuracy using the regions of low
(< 65%) average imputation accuracy identified by
GenWin. We also filtered all variants with a minor allele
frequency < 5%. This resulted in a set of 9,282,726 im-
puted variants for the 2703 animals for which the aver-
age imputation accuracy was estimated to be 84.2%.

Association analyses
Results of the association analyses of the imputed WGS
data differed from those for the HD analyses in two
ways. The estimates of PVE improved and mapping sig-
nals refined the locations of detected QTL. PVE esti-
mates within each state increased (Fig. 2). However, the
decrease in the estimate of PVE remained when the CA
and NM cohorts were combined [4] and when the case-
control data for the two states were analysed as separate
traits in a bivariate model [14] implemented in GCTA,
the genetic correlation between risk of BRD in CA
Holsteins and NM Holsteins was estimated to be − 0.36.
Imputed variants with strong association signals were
found both within QTL regions previously detected in
the analyses of the HD data [4] and in novel regions that
were only detected in the analysis of the imputed WGS
variants (Fig. 3). Genes such as CSMD1, which regulates
the complement system controlling inflammatory

Fig. 1 A window-based analysis of SNP genotype imputation accuracy performed with Genwin for chromosome 23. By fitting splines to individual locus
imputation accuracies within 10-kb windows and pooling windows with similar accuracies, regions with low imputation accuracy can be identified
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Fig. 2 Estimates of the proportion of phenotypic variance explained by marker genotypes for the BovineHD assay or whole genome sequence
imputed genotypes for BRD as a case-control phenotype by state and across states

Fig. 3 GWAS analysis of the combined CA + NM cohorts. A) Genome-wide, the imputed WGS data reveal stronger associations than found by
Neibergs et al. [4]. In some cases, this involved the strengthening of signal at QTL detected in the analysis of the BovineHD data, such as in panel
(B) containing INPP4B (chr17:15,338,071-16,116,053 bp) which is involved in T-cell differentiation and poly-phosphatase signaling and was found to
be differentially expressed in the challenge experiment bronchial lymph node RNA-Seq data (Tizioto et al. [7]). In other cases, novel regions were
revealed such as in panel (C) which shows a region partially containing CSMD1 (chr27:1,016,499-2,688,276 bp), which regulates the complement
system controlling inflammatory responses
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responses are now implicated as candidates for variation
in risk of BRD. The QQ-plots revealed only a small de-
cline in the power of the imputed WGS genotype ana-
lysis relative to the HD analysis, despite the estimation
of 14.2X more SNP effects (Fig. 4).
We also examined the regional overlap between QTL

identified in the separate CA and NM analyses and ob-
served that of the 100 most significant QTL found in
each analysis, only 11 were common to both analyses
(Fig. 5). Of these, only 6 QTL were found among the top
100 QTL in the joint analysis of the combined CA and
NM data. Due to the larger CA sample size, more of the
QTL identified in the analysis of the CA data (N = 44)
than those identified in the analysis of the NM data
(N = 16) were found among the 100 most significant
QTL found in the analysis of the joint data. These re-
sults appear to be consistent with the finding that the
pathogens detected in individuals from this study dif-
fered between the two regions (Fig. 6).

Genomic predictions
Five different training and validation scenarios were
evaluated. Within each state and in the combined CA
and NM cohorts, we performed two-way cross valida-
tions with five replicates. We also trained a model using
the data for each state and then validated the prediction
model accuracy using the data for the other state. These
five separate training and validation analyses were run
using both the HD and the imputed WGS data sets,
resulting in ten comparisons for which results are re-
ported in Fig. 7. For all fitted models, the accuracy of
GPs was estimated as the Pearson correlation between
the GPs and the observed BRD phenotypes. Accuracies
and fitted regressions of GPs on phenotype are reported
in Additional file 1: Table S1.

Inconsistencies between the two states
There were substantial differences in prediction model
performance across the combinations of training and
validation data sets. When training and validation oc-
curred within the same state, prediction accuracy was in
the range 0.112 ± 0.038 to 0.217 ± 0.030. Higher accur-
acies were achieved using the data from CA, undoubt-
edly due to the substantially larger sample size than for
NM. However, when the data for CA and NM were
combined, prediction accuracy declined. This result mir-
rors the change in estimated PVE from the association
analyses, and occurred despite the increases in training
data set size and marker density to WGS. When training
the prediction model using the complete HD or WGS
data for one state, the accuracies obtained when validat-
ing using the other state’s data were negative but close
to zero consistent with the negative estimate of genetic
correlation between risk of BRD in CA and NM. An
analysis of the genomic relationship matrix (GRM) com-
puted for all 2703 animals did not reveal any evidence
for substructure between the sets of animals from the
two states (Fig. 8). While the animals from NM had
slightly higher levels of relatedness than those from CA,
overall there was extensive shared ancestry between the
animals from the two states.

Accuracy of prediction models based on imputed WGS
data
Consistent with the increase in PVE, the use of all im-
puted WGS genotypes to predict genomic breeding
values for risk of BRD very slightly improved the accur-
acy of predictions over the use of the HD assay for the
CA (HD: 0.158 ± 0.028 vs WGS: 0.162 ± 0.026), NM
(HD: 0.116 ± 0.034 vs WGS: 0.123 ± 0.060) and Joint

Fig. 4 QQ Plots for the GWAS of the combined CA + NM cohorts. Left panel is for the analysis of the case-control data from the BovineHD data
and right panel is for the imputed WGS data
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(HD: 0.116 ± 0.012 vs WGS: 0.117 ± 0.007) cohorts
(Fig. 7), but the increases were not significant (P >
0.05).

Feature selection
To examine if prediction accuracy could be improved,
we implemented a feature selection approach to select
variants for use in the creation of GP models. We first
considered a two-stage analysis scheme in which GWAS
was performed on the imputed WGS variants for the
combined CA and NM cohorts and then the variants
used for prediction were restricted to those within

genomic regions putatively harbouring QTL. We next
considered only the imputed WGS variants that were
located in genomic regions harbouring genes previously
identified as being involved in the normal immune re-
sponse to infection by a pathogen responsible for BRD.
Finally, we also utilized the 832,345 variants from the 9,
282,726 imputed WGS variants that were in the union
of these two feature sets.

QTL and RNA-Seq features
Models trained using the RNA-Seq feature selected vari-
ants performed similarly to the HD when trained and
validated in the CA (RNA-Seq: 0.161 ± 0.023), NM
(RNA-Seq: 0.112 ± 0.038) and Joint (RNA-Seq: 0.117 ±
0.009) cohorts (P > 0.05) (Fig. 7). The models trained
using the combined QTL and RNA-Seq feature sets gen-
erally improved prediction accuracy for all five training/
validation population designs, but this appeared to be
entirely due to the effects of the QTL feature selected
markers (Fig. 7).
Models trained using the QTL feature selected vari-

ants significantly increased the accuracy of GP relative
to the HD analyses when trained and validated in the
CA (QTL: 0.217 ± 0.030) and Joint (QTL: 0.200 ± 0.014)
cohorts (P < 0.05), but not in the NM (QTL: 0.121 ±
0.025) cohort (P > 0.05) (Fig. 7). When training was per-
formed using the data for one state and validation oc-
curred using the data for the other state, prediction
accuracy became positive and was 0.108 when training
occurred in the larger CA cohort and validation was per-
formed in the NM cohort.
To evaluate the magnitude of the bias in these results

that was created by the prior use of the data for QTL

Fig. 6 Pathogen prevalence determined from deep nasopharyngeal swabs taken from all cohort members in CA and NM for a subset of the
detected pathogens

Fig. 5 Overlap of 100 most significant QTL found in each of the 3
GWAS using imputed WGS data. a) CA, b) NM, and c) Joint analysis
of CA and NM cohorts
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discovery, we performed a 5-fold cross validation in
which the data were randomly partitioned into 5 ap-
proximately equal data subsets and 5 analyses were per-
formed in which 4 subsets (80% of the available data)
were used for QTL discovery and model training and
the fifth subset (20% of the available data) was used for
estimating the accuracy of GPs estimated for these ani-
mals. From these analyses, the average accuracy across
replicates was 0.082 ± 0.023 for the combined CA and
NM cohorts, 0.083 ± 0.026 in the CA cohort and
0.079 ± 0.037 in the NM cohort. However, on average, of
the top 100 QTL regions identified in each replicate

analysis, only 53.0 ± 5.0 were in common with the top
100 QTL regions identified in the analysis of the whole
data set.
To more closely capture the QTL architecture

found in the analysis of the whole dataset, we per-
formed a second cross validation analysis in which
the data were randomly partitioned into 135 approxi-
mately equal data subsets and 135 analyses were per-
formed in which 134 subsets (99.3% of the available
data) were used for QTL discovery and model train-
ing and the fifth subset (0.7% of the available data)
was used for estimating the accuracy of GPs. From
these analyses, the average accuracy across replicates
was 0.073 ± 0.238 for the combined CA and NM co-
horts, 0.091 ± 0.284 in the CA cohort and 0.090 ±
0.463 in the NM cohort. The standard errors reflect
the fact that the correlation for each replicate was es-
timated using 21 or fewer data points. On average, of
the top 100 QTL regions identified in each replicate
analysis, 91.3 ± 2.6 were in common with the top 100
QTL regions identified in the analysis of the whole
data set.
To calibrate the results of the two-fold cross validation

reported in Fig. 7 with the 5-fold cross validation results
generated for the QTL feature selection analyses, we also
performed a 5-fold cross validation for the GPs esti-
mated using the HD marker set. For the HD markers,
GPs had accuracies of 0.128 ± 0.023 for the combined
CA and NM cohorts, 0.149 ± 0.031 in the CA cohort
and 0.158 ± 0.090 in the NM cohort. These accuracies
did not differ to those for GPs produced using the HD
assay in the same cohorts (P > 0.05).

Fig. 8 A heat map representation of the genomic relationship
matrix constructed for all 2703 animals. NM animals are highlighted
in the red box to the lower right

Fig. 7 Validation sample correlations between genomic predictions trained using imputed WGS, BovineHD, QTL and RNA-Seq combined feature
selection, QTL feature selection or RNA-Seq feature selection genotype data and BRD case-control phenotypes for different training and validation
population designs. Left panel shows training and validation in samples of 50% of the data from each state or the combined CA and NM cohorts.
Right panel shows validation correlations when training used all of the data for the indicated state and validation used the data for the other state
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Comparing feature sets
Surprisingly, only 8379 SNPs were in common between
the QTL feature selected SNP set (1.6% of SNPs) and
the RNA-Seq feature selected SNP set (2.7%). This may
have been impacted by the relatively small window-size
(transcript ±25 kb) selected for sampling SNPs in the
vicinity of genes that were differentially regulated in the
bronchial lymph node in response to pathogen chal-
lenge. However, as has been previously observed in
human complex disease GWAS studies, the largest effect
QTL are rarely found within transcripts and are much
more frequently located in intergenic and upstream re-
gions that are inferred to have regulatory effects. This is
consistent with our results, which suggest that the lar-
gest effect BRD-risk QTL are generally not located
within close proximity to genes involved in the immune
response to pathogen challenge, suggesting that these
QTL must have regulatory roles on gene expression.
This, of course, does not preclude certain variants within
these transcripts from underlying QTL, but these QTL
have too small an effect to have been detected in the
GWAS of 2703 animals.
Using a two-fold cross validation analysis, GPs based

on variants identified in QTL regions had higher accur-
acies than those based on variants within genomic re-
gions harbouring genes for which expression was
perturbed by pathogen challenge and also based on the
union of two feature sets (Fig. 7). However, the results of
the 5-fold and 135-fold analyses reveal that these results
are significantly biased and that the QTL feature model
actually performed no better in each state than did the
model based on HD data (Fig. 7).

Discussion
Association analyses
Refined signal
The QQ plots reveal that the sample size for this study
was not adequate for QTL detection using either the
HD data or the imputed WGS data (Fig. 4). This was
further supported by the results of the 5-fold and 135-
fold QTL feature selection cross validation analyses in
which only 53 and 91.3% of the top 100 QTLs identified
in the analysis of the whole data were identified in the
analysis of subsets.
of 80 and 99.3% of the entire data. Marker imputation

slightly exacerbated this issue, but variants that were
strongly associated with risk of BRD were identified
within genomic regions harbouring genes with functions
that were plausibly immune related [4]. Analysis of the
combined CA and NM cohorts likely also contributed to
this problem due to phenotype divergence that increased
the complexity of the underlying genetic architecture of
the trait due to the expansion of the range of pathogens
responsible for disease in the two states (Fig. 6).

Nevertheless, imputation of WGS variants facilitated
the refinement of QTL mapping in these data. By
including more markers in the analysis that could poten-
tially be in strong linkage disequilibrium with the causa-
tive variants underlying QTL, the resolution of the
boundaries for QTL regions [e.g., CSMD1 and INPP4B;
Fig. 3] appear to have been improved. While this ap-
proach is not by itself capable of inferring the causality
of any associated variant, the biological relevance of
genes, particularly those differentially expressed in re-
sponse to pathogen infection suggests the utility of using
imputed WGS data for refining the numbers of variants
that potentially may be causal for their effects on risk of
disease. Imputation also enabled the identification of
relatively small regions, which could be targeted for fur-
ther fine mapping using variants missing from the
1KBGP data and indels. This approach could also benefit
from the identification of regulatory regions within the
QTL regions and specifically targeting the genotyping of
variants within regulatory regions located within QTL.
These types of fine mapping analyses have been found to
be useful in human GWAS studies [15].

Inconsistency between states
Imputation of WGS variation did not significantly im-
prove the accuracies of GP in the analysis of the data
from the combined state cohorts, almost certainly due
to the differences in the genetic basis of susceptibility to
BRD caused by different pathogens (Fig. 6) [4]. While
the estimates of PVE increased using the imputed WGS
variant data, PVE in the combined CA and NM cohorts
was still lower than for either state. Furthermore, QTL
were not, in general, common between the CA and NM
cohorts (Fig. 5).
A key goal of research into the genetic architecture of

risk of BRD must now be to differentiate universal from
environmental- or pathogen-specific QTL. With larger
sample sizes both within and across regions of the US,
and more accurate imputation of WGS this may become
feasible. High-resolution WGS QTL mapping will be
also crucial for distinguishing between single QTL and
multiple closely linked pathogen-specific QTL. We
hypothesize that the largest effect BRD risk QTL found
in the analysis of each cohort are primarily pathogen
specific but that there may be more extensive QTL shar-
ing among the loci with smaller effects.

Genomic predictions
Regional differences in BRD phenotypes
Region-specific effects represent a key finding of our GP
for BRD risk. We were able to train models that effect-
ively predicted the risk of BRD when training occurred
within each state. However, when we attempted to train
and validate a model using data from both states,
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prediction accuracy declined despite an increase in the
size of the training and validation populations. Typically,
the accuracies of GP improve as training population size
increases [16]. Perhaps more striking, was the inability
using WGS imputed variation, to predict disease risk
across states when training was restricted to data from a
single state. This indicates that substantial impediments
exist for the deployment of GP for risk of infectious dis-
ease caused by multiple pathogens under the current
genomic selection paradigm [17].
Genomic prediction models generated in this study

may perform poorly in environments where the patho-
gen profiles differ from those of the study environments
(Fig. 6). Moreover, the ongoing collection of data that
will be aggregated across environments for analysis,
which typically ensures accurate predictions, will not
solve this problem if susceptibility to different pathogens
represents a set of traits, that are at best, moderately
genetically correlated. Our estimate of a negative genetic
correlation between the risk of BRD in two U.S. regions
suggests that this may be the situation. Genomic predic-
tion models typically exploit the abundance of pheno-
typic data that are available for non-genotyped animals
to estimate the genetic merit of animals and build GP
using either one- or two-step procedures [18, 19]. Unlike
routinely recorded production traits, the aggregation of
phenotypes from different environments to produce a
single national evaluation of genetic merit for risk of
BRD, may not be possible.

Causes of phenotypic heterogeneity
We investigated alternative explanations for the reduced
utility of the pooled data from the CA and NM cohorts
for GWAS and GP. We found no evidence of population
substructure between the animals from the two states
(Fig. 8) which agrees with the principal component ana-
lysis results reported by Neibergs et al. [4]. Moreover,
the QQ plot for the GWAS of the data for the com-
bined CA and NM cohorts does not suggest a struc-
tural effect that was absent in the GWAS for the
individual states (Fig. 4). With the widespread use of
artificial insemination in U.S. Holsteins and a primary
emphasis nation-wide on a single breeding objective,
Net Merit, population structure was not expected and
GP should be translatable population-wide [17]. The
possibility of a large systematic bias in phenotyping
between the regions is also highly unlikely considering
the objective nature of the McGuirk scoring system
and the fact that these data were collected by trained
veterinary personnel [4]. Pathogen diagnostic data
obtained from mid-nasal and deep-nasopharyngeal
swabs taken from each calf made it clear that there
were very different pathogen profiles present in the
two state cohorts, and consequently, disease status

classification must be interpreted from the perspective
of the pathogens to which the animals were exposed
in each environment (Fig. 6).
Examination of the large effect QTL found in the ana-

lysis of data from one state cohort but not in the other
provides some biological clues as to the roles of these
QTL. PPARG was detected as a QTL in the analysis of
the NM cohort, but was not among the 100 most signifi-
cant QTL in either the CA or combined CA and NM
cohort GWAS. PPARG is a transcription factor that has
been shown to mediate immune responses in a
pathogen-specific manner. In human Coronavirus re-
spiratory infections, expression of PPARG is crucial for
preventing a persistent infection [20]. Host PPARG vari-
ants have also been found to provide resistance to infec-
tion by some, but not all, Hepatitis C virus strains [21].
The allele frequencies at imputed WGS variants in the
vicinity of PPARG (chr22:57,366,988-57,413,013 bp) were
similar for the animals in the two state cohorts which
would be expected if similar sires are selected nation-
wide based upon their Net Merit PTA. However, only
one of the 5 single pathogen challenges, Mannheimia
haemolytica, resulted in the upregulation of expression
of PPARG in the bronchial lymph nodes of experimen-
tally challenged cattle [7] suggesting a pathogen-specific
role for PPARG in response to BRD.
A small number of QTL were found in common in

the analyses of both state cohorts. Some of these QTL
may be due to common pathogens, but they may also
potentially reflect shared immunological risk factors that
are not pathogen specific. Identification of these variants
may be vital to the development of a single nation-wide
GP for risk of BRD and these QTL should be discover-
able in the analysis of data pooled across geographical
regions. However, selection to reduce the capacity of
pathogens to infect their host may trigger an evolution-
ary arms race between pathogens and hosts as predicted
by the red queen hypothesis, which states that rapid evo-
lution and high genetic diversity is favoured in competi-
tive environments [22]. However, focusing selection on
small-effect variants that improve resistance to a broad
spectrum of pathogens should not result in strong selec-
tion for increased pathogen virulence but should allow
reductions in BRD prevalence nation-wide.

Feature selection
We utilized feature selection to train GP models using
only genetic variants that were potentially more likely to
be associated with disease susceptibility than randomly
selected variants. This was accomplished by selecting
variants from regions of the genome that had been iden-
tified as associated with risk of BRD in the combined
CA and NM cohort GWAS and also regions containing
genes for which expression in the bronchial lymph node
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was perturbed in animals experimentally challenged with
single pathogens that cause BRD. Our intention was to
enrich the prediction model for variants that were more
likely to be trait associated and to reduce the noise in
the prediction model created by the estimation of a
multitude of SNP effects for variants that are not trait
associated. Feature selection reduced the number of var-
iants used in prediction by an order of magnitude rela-
tive to the imputed WGS training data, and to a level
comparable to the HD training data. The GWAS for the
individual state and combined CA and NM cohorts re-
vealed BRD risk QTL segregating in both cohorts des-
pite the differences in pathogen profiles in the two
environments (Fig. 6). We also anticipated that smaller
effect QTL might reliably be captured by including vari-
ants located in the genomic regions harbouring genes
for which expression was perturbed in the normal im-
mune response to BRD pathogens [7].
In a replicated two-fold cross validation analysis, the

RNA-Seq feature selected set performed no better than
the model that used the HD variants suggesting that cis-
acting variants within genes involved in the normal im-
mune response to pathogens responsible for BRD do not
significantly impact risk of BRD. The identification of
trans-acting loci such as transcription factors that con-
trol the regulation of expression of these genes might
therefore be a more valuable approach for feature selec-
tion. Moreover, improvement in prediction accuracy
using the feature selection model that combined variants
located in both the QTL and RNA-Seq feature selected
variant sets appears to primarily have been driven by the
overestimated accuracy increases from QTL feature se-
lection (Fig. 7).
The accuracy of GP trained in one half of the com-

bined CA and NM cohorts and validated in the other
half of the cohorts using the QTL feature selected
variants was estimated to increase by 73% over the
accuracy achieved using the HD data. However, when
we implemented 5-fold and 135-fold cross validation
analyses to remove the data for animals for which
GPs were to be produced from the QTL identification
and training model analyses, the accuracies of the
produced GPs did not differ from those using the HD
markers in the two-fold cross validation analyses (P >
0.05). This was not due to a difference in calibration
between the analyses. Accuracies of GPs produced
using the HD assay did not differ (P > 0.05) for any of
the three cohorts using the two-fold or 5-fold cross
validation analyses. From this, we conclude that the
GP accuracies produced by the two-fold cross valid-
ation for the feature selection sets are significantly
biased upward by the a priori use of the data to iden-
tify QTL regions. However, the produced GPs do not
appear to be biased. Eliminating the analyses that

involved training using the data for one state and val-
idating in the other (where the genetic correlation be-
tween BRD risk was − 0.36), the mean regression of
GP on observed BRD phenotype was 1.04 (Additional
file 1 Table S1).
We anticipated that the use of variants located in QTL

regions identified in the joint analysis of the CA and
NM cohorts would generate GPs based upon immuno-
logical risk variants with common directional effects on
the risk of BRD across the two state environments.
While the analyses based on these markers produced
strongly biased GP accuracies within each of the states,
accuracies of the GPs trained in one state and validated
in the other became positive using the QTL feature se-
lected variants, despite the negative genetic correlation
between risk of BRD in the two states. While the sample
size of 2703 individuals is insufficient for the accurate
identification of QTL within and across the CA and NM
cohorts and also for evaluating the QTL feature selec-
tion approach, this result merits additional consider-
ation. Further research should investigate how to most
successfully model the physiology of the disease and in-
corporate variation within biologically relevant pathways
into the prediction model [23].

Implications for future breeding
Environments other than those sampled in this study
could differ significantly for their pathogen profiles or
the pathogen profile within each environment may vary
significantly across years. If the regional pathogen pro-
files tend to be stable in their composition across time,
it may be most effective to develop region-specific BRD
risk predictions, and associate these with specific re-
gional environmental conditions [23]. Alternatively, a
national genetic evaluation could focus selection on the
variants that influencing risk of disease in a pathogen ag-
nostic manner. The feature selection approaches imple-
mented here targeted the latter goal, but did not
specifically attempt to functionally validate or elucidate
the biology associated with variation within the selected
genomic regions. For example, a QTL may be specific to
an individual pathogen that is present in both regional
cohorts or may be specific to all bacterial or viral patho-
gens that cause BRD. This level of refinement in our un-
derstanding of BRD will require considerably more data
aggregation, improved mapping resolution and biological
experimentation. Selection without regard to these po-
tential GxE effects will be effective only if the heritability
of disease risk across all environments is moderate or
the pathogen profiles within specific regions of the
country remain stable in time. Indeed, this may explain
why BRD has been persistent despite the considerable
cost associated with animal infection.
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Imputation
In both empirical and theoretical studies, others have
demonstrated limited improvements in prediction accur-
acy using imputed WGS variation [24]. Studies have also
shown that improvements in prediction accuracy are
greatest in validation populations that are more distantly
related to the training population [8, 25]. The primary
challenges for genomic prediction based on imputed
WGS variation are imputation accuracy and informed
feature selection approaches to select the variants that
should be included in the prediction model.
The potential benefit of high accuracy imputation lies

in capturing genetic variation that is missed due to low
LD with the common variants on the currently available
genotyping assays. Given the abundance of rare variation
in the cattle genome, many functional variants will not
be in strong LD with these common variants. Reliance
on LD and allele phase relationships between chip-based
markers and causal variants, which are population
specific, explains why GP models frequently fail to be
translatable across populations [16]. Accurate WGS im-
putation may address this issue, however, this appears to
be difficult to accomplish if we the imputation process
requires strong LD between typed and untyped markers
[26]. However, current imputation algorithms generally
exploit a haplotype matching strategy which can accur-
ately impute common haplotypes. Despite the relatively
small effective population size, there is abundant vari-
ation within Holsteins. However, this variation resides
on a relatively small number of haplotypes which en-
ables the majority of common haplotypes to be captured
by sequencing only a few hundred animals [6].
We anticipate that incrementally less expensive and

higher quality sequence data will result in many more
sequenced individuals in the near future. In conjunction
with processing these data against considerably im-
proved reference assemblies, this will enable the accurate
prediction of increasingly rare haplotypes and will enable
the detection of identity by descent between haplotypes
in the sequenced training population and imputed popu-
lation individuals. Strategically selecting individuals for
genotyping and phenotyping that can be accurately
imputed to WGS, such as the direct descendants of
sequenced sires appears to be a very useful strategy [27–
30]. Under these circumstances, the best imputation
methodologies can achieve imputation accuracies of 99%
across the full spectrum of allele frequencies [29].

Assembly issues and genomic complexity
Imputation accuracy for variants predicted to reside in
poorly assembled regions was limited in this study. This
was evidenced by large regional decreases in imputation
accuracy (Fig. 1) as well as the challenge in correctly
calling indels which were eliminated from this study.

Cattle genomes have an abundance of structural, repeat
and indel variation [31, 32]. We expect that improve-
ments in the reference genome assembly will soon lead
to substantial benefits for variant calling and the physical
ordering of loci within haplotypes. Assemblies created
using long read technologies, chromatin capture and op-
tical maps possess great improvements in contiguity
[33]. As the cost of sequencing continues to decrease,
genotyping will be enabled by long read or synthetic
long read technologies which can detect structural vari-
ation, directly phase haplotypes, and also enable
individual-specific sequence assembly [34].

Imputed variant selection for prediction models
We currently have the capability to impute the large num-
bers of variants that have been identified in recent sequen-
cing efforts at moderate to high accuracies. However, the
accuracy and large number of called WGS variants and
relatively small number of sequenced individuals all im-
pact the accuracy of imputation. One approach towards
the amelioration of this issue is to assign annotations to
classes of variants, and then fit classes separately in a mix-
ture model of normal distributions with different scale pa-
rameters. If a class, such as variants within transcripts
found to be trait-associated in an RNA-Seq study, is
enriched for alleles that directly cause trait variation, the
power to detect these causal variants should be improved
by increasing the prior likelihood of association for mem-
bers of this class. Such an approach is implemented in
BayesRC [8]. To the extent that annotations and genotype
imputation can be accomplished at high levels of accuracy,
this approach should be beneficial for variant selection for
GP. However, at present, both variant annotation and im-
putation are limited in extent and accuracy, and rather
than restricting inclusion to specific variants, we defined
sets of genomic regions (based on windows of SNPs) of
interest and included all variants within these windows.
Once the windows had been defined, the Bayesian Sparse
Linear Mixed Model (BSLMM) [35] implemented in
GEMMA had no additional information about which of
the variants within each window may be important.
BSLMM assumes that only a small proportion of the sup-
plied variants have large effects that contribute to vari-
ation in the phenotype and estimates which of the
supplied variants have large effects, the magnitudes of
these effects and the residual additive genetic merit of
each individual due to the remaining small effect variants.
Within each feature selected window, if a causal variant
acted by disrupting an enhancer, for example, BSLMM
would be expected to identify this variant as a large effect
variant. BSLMM would also identify other loci in strong
LD with the causal variant and sampling effects could lead
to some of these having stronger associations than the
causal variant.
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Conclusions
We investigated approaches to generate GP for risk of
BRD across two geographic regions of the U.S. that
appear to differ for their pathogen profiles. While the
animals were all phenotyped using a common robust
evaluation protocol [2], the genetic architecture of the
trait differed profoundly between the two U.S. states.
We hypothesized that imputation of HD genotypes to
WGS variants in conjunction with biologically guided
feature selection may enable the development of gen-
omic prediction models in Holstein cattle with utility
across geographic regions. While the genome sequence
resources for WGS imputation and the annotation of
identified genomic variants in cattle are limited, the con-
tinued improvement of these resources should enable
this development. The use of the BSLMM applied to fea-
ture selected variants for genomic prediction reduces the
need for assigning annotations or identifying causality
when utilizing millions of variants to model a complex
biological phenotype.
Further work is required to investigate the pathogen-

specific genetic architectures of susceptibility to BRD
and the extent to which pathogen profiles differ spatially
and temporally nationwide to enable the development of
GP models that will reduce disease prevalence nation-
ally. This will require an extensive ongoing effort to cap-
ture animal phenotypes and genotypes and to assess
pathogen profiles nationwide. Selection to reduce BRD
prevalence will require a better understanding of the
genetic architecture of resistance to specific pathogens,
the magnitudes of genetic correlations between
pathogen-specific BRD phenotypes, casual variant dis-
covery and improved genomic resources for imputation
and variant annotation.

Methods
Data collection
Whole blood samples were collected from a commer-
cial calf raising facility in CA and from commercial
Holstein dairy herds in NM as described by Neibergs
et al. [4]. BRD cases and controls were sampled by
first identifying a clinically ill animal and then select-
ing a nearby contemporary animal without signs of
illness. Calves were scored for five BRD indicator
traits using the McGuirk Scoring system [2, 4]. Con-
trols were followed in time to ensure that they did
not develop illness after the initial observation. Ex-
tracted DNA samples from all animals were assayed
with the Illumina BovineHD assay. Variants from both
the CA and NM cohorts were filtered on allele
frequency and per animal call rate, resulting in 654,
044 loci available for analysis. After final filtering on
phenotype availability, 2703 samples were available,
with 1978 and 725 being from CA and NM,

respectively. A complete description of the sampling,
phenotyping and genotyping processes was provided
in Neibergs et al. [4].

Anesthetic and euthanasia methods
The experimental animals were not anesthetized or eu-
thanized in order to conduct this study [4].

Imputation pipeline
A/B to ref/alt
The first step in genotype imputation required con-
verting Illumina A/B allele calls to reference assembly
sequence variant and alternate alleles. The HD variant
genotypes were converted from A/B allele calls to ref-
erence/alternate (ref/alt) alleles in an allelic dose for-
mat (0 for homozygous for the reference assembly
allele, 1 for heterozygote, and 2 for homozygous for
the alternate allele). This conversion process was ac-
complished using an analysis of 94 animals that had
been both whole genome sequenced and also geno-
typed with the Illumina BovineHD or BovineSNP50
genotyping platforms. This empirical verification of
the SNP allele identities was necessary as the Bovi-
neSNP50 manifest (which was carried across to the
manifest for the HD assay) was found to contain a
very high percentage of inconsistent A/B to ref./alt al-
lele mappings. These inconsistencies appear to have
been caused by changes in strand orientations within
the reference assembly between the time of the design
of the BovineSNP50 assay and the release of the
UMD3.1 reference assembly. This was described in
greater detail in Taylor et al. [36].

Reference genome sequences
The reference set of haplotyped WGS variants used for
imputation was the Run5 data from the 1KBGP, which
included 39,721,988 variants phased and imputed in
1578 animals [6]. The Run5 data set included WGS for
450 Holstein animals, to which we added WGS for 29
Holstein animals sampled from the BRD GWAS study
population [4]. These animals were sequenced to an
average depth of 11.94X and variants were called as de-
scribed in Taylor et al. [36]. The sites included in the im-
putation reference set included only the SNP variants
found in the Run5 1KBGP data. We removed all indels
from the Run5 1KBGP data, due to previously identified
issues with Samtools indel calling [37]. High indel geno-
typing error rates can significantly impact phasing and
genotype imputation quality; particularly with imput-
ation algorithms such as FImpute [38] that do not expli-
citly attempt to model genotype errors. Only genotypes
for the SNPs identified within the Run5 1KBGP data
were extracted from the variant calls for our 29
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independently sequenced Holsteins. Phasing and imput-
ation of these data were performed using FImpute.

Filtering
We filtered every variant that had an allele frequency < 5%
or a genotype variance < 0.1% in the WGS imputed data
set for the 2703 Holsteins. A separate imputation run in
which the 29 sequenced Holsteins were excluded from the
reference animal set was used to assess imputation accur-
acy. The genotypes imputed for these 29 animals from
their HD genotypes were correlated with the genotypes in-
dependently called from their WGS after converting both
to dosage format as previously described. The resulting
set of site-specific imputation accuracies (correlations be-
tween imputed and WGS-called genotypes) was then used
to filter individual variants that had accuracies of < 65%.
The 95% confidence interval for a correlation coefficient
of 65% based on 29 samples is from 37 to 82% and while
this threshold will include variants with low imputation
accuracy, we wished to avoid filtering variants that were
imputed with a reasonably high accuracy.

Imputation accuracy and reference assembly quality
Many variants included in the 1KGBP imputation refer-
ence sequence set were not observed in our 29 se-
quenced animals and the quality of genotype imputation
could not be assessed for these loci. Consequently, we
decided to classify the accuracy of imputation by variably
sized regions of the genome to identify those regions for
which genotype imputation could not be accurately ac-
complished due to local misassemblies or misoriented
contigs within the reference assembly. To accomplish
this, we applied GenWin to the SNP genotype imput-
ation accuracy correlation estimates to identify genomic
regions for which SNP genotypes were imputed with
consistently low accuracy. Windows were analysed using
an initial window size of 10 kb and GenWin pooled adja-
cent windows for which imputation accuracies were
similar. All variants within windows for which the aver-
age imputation accuracy was < 65% were removed from
the data (Fig. 1) including SNPs that were not detected
in the 29 sequenced animals. Less than 30% of the SNPs
had direct estimates of their imputation accuracy either
because the sample of 29 sequenced animals was not
sufficient to capture the majority of the variants segre-
gating in Holsteins, or because the multibreed reference
panel resulted in the imputation of genotypes for vari-
ants that were not segregating in Holsteins.

Association analysis
Model
Association analysis was performed in GEMMA using a
univariate linear mixed models [39]. Fixed effects of sex
and age were included as covariates within the analyses

of the binary case-control disease phenotype data for
each state, and a fixed effect for state was included in
the model for the analysis of the combined CA +NM
data. The model also included a random effect for the
additive genetic merit of each animal and a random re-
sidual term that contained residual additive genetic ef-
fects that are not in complete linkage disequilibrium
with the markers included in the model [40] and non-
additive genetic, permanent and temporary environmen-
tal effects. The GRM was constructed using a random
sample of 10% (N = 928,258) of the genomic sites repre-
sented in the imputed WGS genotype data approxi-
mately consistent with number of SNPs present on the
HD assay. For the analyses of the HD genotype data all
SNPs were used to form the GRM. We also estimated
the genetic correlation between the binary case-control
BRD variables in CA and NM using GCTA by fitting a
bivariate model.

Genomic predictions
Genomic predictions for BRD risk were obtained using
the GEMMA implementation of the BSLMM. Training
and validation were performed using cross-validation with
five data subsets. Three training and validation sets were
produced by randomly sampling one half of the animals
within the CA, NM or combined CA +NM cohorts and
training was performed in one half and validation in the
other half of the data. This process was repeated five times
to enable the estimation of sampling variances of the GP
accuracies for each animal cohort and analysed marker
set. Training using the CA data with validation performed
using the NM data and vice versa was also performed.

Feature selection
QTL
Feature selection was used to construct GP using subsets
of the imputed WGS variants that resided within gen-
omic regions of biological relevance. The QTL-
associated variants were selected from QTL windows
identified in the univariate association analyses. We
again utilized GenWin to identify the size of each QTL
window, by analyzing the –log10P-values for the Wald
association test for SNPs tagging each QTL. QTL win-
dows were initially set to a size of 500 kb. The most sig-
nificant 100 QTL identified in each analysis were used in
each feature selection analysis, with window boundaries
determined by GenWin. All of the variants within each
of these QTL windows were used to train the genomic
prediction models.

RNA-SEQ
WGS imputed variants were selected for inclusion in the
prediction model based on their proximity to genes
identified as being differentially expressed in the
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bronchial lymph nodes of non-challenged control ani-
mals and animals that had been artificially challenged
with single pathogens causing BRD in a challenge ex-
periment performed in beef cattle and reported by
Gerschwin et al. [41]. The RNA-Seq data were processed
using the Tuxedo suite, as described in the original study
[7, 42]. The 1000 genes (~ 5% of all annotated bovine
genes) with the most significant expression changes be-
tween controls and challenged animals were selected,
and all variants within the region from 25 kb upstream
to 25 kb downstream of each gene transcript were in-
cluded in the GP analyses.

Genomic predictions
The models based on the RNA-Seq and QTL selected fea-
tures used the same GRM as the WGS model and were
analysed using GEMMA’s BSLMM. The total numbers of
variants within each feature selection class were: 9,282,726
for imputed WGS, 654,044 for the HD, 529,942 for QTL
regions, 310,782 for RNA-Seq differentially expressed gene
regions and 832,345 for the union of the QTL and RNA-
Seq identified regions. All GPs were correlated with the
binary phenotypes for the individuals in the validation set
to assess the accuracy of the predictions.

Additional file

Additional file 1: Table S1. Prediction accuracies and regressions of
phenotype on genomic predictions for risk of BRD according to training
and validation phenotype subsets and genotype subsets. This file contains
Pearson correlation coefficients, regression slopes and intercepts for the
regression of BRD case/control phenotype on genomic predictions for BRD
risk for the Bovine HD, WGS imputed and feature selection genotype sets.
(XLSX 10 kb)
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