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Abstract

Background: The candidate genus “Methylacidiphilum” comprises thermoacidophilic aerobic methane oxidizers
belonging to the Verrucomicrobia phylum. These are the first described non-proteobacterial aerobic methane
oxidizers. The genes pmoCAB, encoding the particulate methane monooxygenase do not originate from horizontal
gene transfer from proteobacteria. Instead, the “Ca. Methylacidiphilum” and the sister genus “Ca.
Methylacidimicrobium” represent a novel and hitherto understudied evolutionary lineage of aerobic methane
oxidizers. Obtaining and comparing the full genome sequences is an important step towards understanding the
evolution and physiology of this novel group of organisms.

Results: Here we present the closed genome of “Ca. Methylacidiphilum kamchatkense” strain Kam1 and a comparison
with the genomes of its two closest relatives “Ca. Methylacidiphilum fumariolicum” strain SolV and “Ca.
Methylacidiphilum infernorum” strain V4. The genome consists of a single 2,2 Mbp chromosome with 2119 predicted
protein coding sequences. Genome analysis showed that the majority of the genes connected with metabolic traits
described for one member of “Ca. Methylacidiphilum” is conserved between all three genomes. All three strains
encode class | CRISPR-cas systems. The average nucleotide identity between “Ca. M. kamchatkense” strain Kam1 and
strains SolV and V4 is £95% showing that they should be regarded as separate species. Whole genome comparison
revealed a high degree of synteny between the genomes of strains Kam1 and SolV. In contrast, comparison of the
genomes of strains Kam1 and V4 revealed a number of rearrangements. There are large differences in the numbers of
transposable elements found in the genomes of the three strains with 12, 37 and 80 transposable elements in the
genomes of strains Kam1, V4 and SolV respectively. Genomic rearrangements and the activity of transposable elements
explain much of the genomic differences between strains. For example, a type 1h uptake hydrogenase is conserved
between strains Kam1 and SolV but seems to have been lost from strain V4 due to genomic rearrangements.
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Methanotroph

Conclusions: Comparing three closed genomes of “Ca. Methylacidiphilum” spp. has given new insights into the
evolution of these organisms and revealed large differences in numbers of transposable elements between strains, the
activity of these explains much of the genomic differences between strains.

Keywords: “Ca. Methylacidiphilum kamchatkense” strain Kam1, Full genome, Methane oxidation, Thermoacidophile,

Background

Interest in methane oxidizing bacteria has been fueled
by the fact that methane on one hand; is estimated to be
a 25 times stronger greenhouse gas than CO,, seen over
a century [1]; on the other hand methane is an inexpen-
sive starting material for biochemical synthesis of high
value products [2]. The majority of all described aerobic
methane oxidizing bacteria belongs to the alpha- or
gamma-proteobacteria. Members of the verrucomicrobia
and the intra-aerobic members of the candidate phylum
NC10 are notable exceptions [3, 4]. In 2007-8 three
groups independently described the isolation of metha-
notrophic thermoacidophilic verrucomicrobia, strains
Kaml, SolV and V4 from acidic geothermal sites in
Russia, Italy and New Zealand respectively [5-7]. Based
on the low (<83%) 16S rRNA gene similarity to other
verrucomicrobia it was suggested that they represent a
new order, with the proposed order/family/genus names
“Candidatus (Ca.) Methylacidiphilales/Methylacidiphila-
cea/Methylacidiphilum” [3]. Average nucleotide identity
(ANI) comparison showed that strains SolV and V4 con-
stitute two different species with the proposed species
names “Ca. Methylacidiphilum fumariolicum” and “Ca.
Methylacidiphilum infernorum” respectively. Due to lack
of full genome information for strain Kaml, the ANI be-
tween this strain and SolV/V4 could not be determined.
Despite the fact that the 16S rRNA genes of strains
Kaml and SolV are 99.7% identical, it was proposed that
the former also represents a novel species, “Ca. Methyla-
cidiphilum kamchatkense” [3]. For the remainder of this
paper we will predominately use the strain designations
Kaml, SolV and V4 to refer to the different representa-
tives. Additional acidophilic, thermophilic and mesophi-
lic, verrucomicrobial methanotrophs have been isolated
from acidic environments demonstrating that these may
be widespread (8, 9].

Members of the “Ca. Methylacidiphilaceae” are gram
negative, non-motile moderate thermoacidophiles with a
growth optimum at 55-60 °C and capable of growing at
a wide pH range of 0.8 to 6. Their genomes do not en-
code a soluble methane monooxygenase (sMMO), but
contains three pmoCAB operons, coding for the particu-
late methane monooxygenase (pMMO). Strain Kam1 en-
codes an additional unique and truncated pmoCA
cluster that is not present in strains SolV and V4 [3, 10].

The pmo genes from “Ca. Methylacidiphilum spp.” form
a distinct phylogenetic group, separate from their pro-
teobacterial counterparts, showing that they do not ori-
ginate from a recent horizontal gene transfer [3].

The “Ca. Methylacidiphilaceae” possess a range of
traits clearly separating them from their proteobacterial
counterparts. They are the most acidophilic methano-
trophs described and grow autotrophically fixing CO,
via the Calvin Benson Bassham (CBB) cycle. Unlike pro-
teobacterial methanotrophs that assimilate carbon via ei-
ther; the RuMP cycle (group I) or the serine cycle
(Group II) [2, 11]. Finally their methanol dehydrogenases
are of the XoxF type containing lanthanides, a group of
rare earth elements, instead of calcium in the active site
[12]. Closed genomes are available for strains SolV and
V4, whereas a multi-contig draft genome has been pub-
lished for strain Kaml [13-15]. Genome analysis has
given a deeper understanding of the metabolism of
strains SolV and V4. For example, a number of genes
predicted to encode hydrogenases were observed in the
genomes of strains SolV and V4 [13, 14]. This led to the
speculation that they might be capable of autotrophic
growth on H,, O, and CO,, a metabolic trait that later
has been verified experimentally for strain SolV and the
recently described “Ca. Methylacidiphilum sp. strain
RTK17.1” [9, 16].

Comparison of the closed genomes of strains SolV and
V4, revealed large numbers of genomic rearrangements,
hampering detailed comparison of genome architecture.
Comparisons of the protein encoding genes showed that
64,3% of the protein encoding genes from SolV have
more than 50% amino acid identity to genes from strain
V4 [14].

We here present the closed genome of “Ca. Methylaci-
diphilum kamchatkense” Kam1, and compare it with the
two previously published genomes from the “Ca. Methy-
lacidiphilum” genus. We use genome comparisons as
backbone for discussion of phylogeny and genome archi-
tecture of strains Kam1l, SolV and V4. Finally, we link
genome analysis with metabolic and physiological traits
reported in the literature.

Results
We employed PacBio RS technology in order to obtain
the complete genome sequence of “Ca. Methylacidiphilum
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kamchatkense” strain Kaml. After quality, checks of the
reads we ended with 94,711 reads with an average read
length of 14,734 and N50 read length of 21,352 bp with an
average coverage of 489.

After assembly and manual trimming of overlapping
ends, we obtained the full genome of strain Kam1. The
closed genome of Kaml consists of a single circular 2,
202,032 bp chromosome, which is approximately 85 and
275 kbp less than the genomes of V4 and SolV, respect-
ively (Table 1). We did not identify any extrachromo-
somal genetic elements in strain Kam1. The annotation
identified 2119 coding sequences hereof 1589 with a pre-
dicted function (Table 1). The genome encodes a single
16S rRNA operon and four pmoA genes, the latter fea-
ture distinguishes Kam1 from SolV and V4 that harbor
three pmoA genes (Table 1) [13-15]. We identified 17
CRISPR spacer sequences but no integrated phages in
the genome of strain Kam1 (Table 1).

Until now, it has been unclear if strains SolV and
Kam1 constitute two different species or not [3].

The average nucleotide identity (ANI) is a fast and easily
reproducibly in-silico alternative to experimental DNA-
DNA hybridization. An ANI value of 95% corresponds to
the 70% species cutoff used for DNA-DNA hybridization
[18]. Previously, a subsample of randomly chosen genes
from SolV was used to calculate an ANI value of 73% for
strains SolV and V4, clearly showing that they constitute
two different species, “Ca. M. fumariolicum” and “Ca. M.
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infernorum”, respectively [3]. We used the closed genomes
of strains Kam1, SolV and V4 to calculate the ANI between
the three strains (Additional file 1: Table S1). The obtained
ANI values between strains Kaml, SolV and V4 are all
below 95%, therefore, they should be considered as type
strains of three different species, “Ca. M. kamchatkense”,
“Ca. M. fumariolicum” and “Ca. M. infernorum” respect-
ively (Additional file 1: Table S1).

We then used the annotated genome for a detailed
analysis, linking genomic data with metabolic and
physiological traits reported in the literature. This ana-
lysis includes a comparison of the genomes of strains
Kaml, SolV and V4. The result of which will be pre-
sented in detail in the discussion section.

Discussion

Mobile elements

Dot plot comparison of the three genomes revealed a very
high degree of conservation of the genome architecture
between strains Kam1 and SolV (Additional file 1: Figure
S1-A), whereas several rearrangements and inversions of
large genomic regions were identified when comparing
strains Kaml or SolV with V4 (Additional file 1: Figure
S1-B-C).

The large number of rearrangements and the observa-
tion of several gaps in whole genome alignments of strains
Kaml, SolV and V4, prompted us to investigate and com-
pare the presence and abundance of mobile elements.

Table 1 Genomic properties of the three “Ca. Methylacidiphilum” species for which a closed genome is available

Kam1° Solv® v4©
Size (bp) 2,202,032 2,476,671 2,287,145
Contigs 1 1 1
GC % 40.34 4148 4548
RNAs 53 49 52
(@) 2119 2741 2473
165 1 1 1
DPMOAS 4 3 3
CRISPR spacers 17 23 20
Phages 0 0 0
Integrated plasmids 1 1 1
Transposable elements 12 80 37
Genomic islands 2 22 9
Locus tag prefix Ga0255985_11%; kam1_ Mfumv2_9; (Ga0069468_11)¢ Minf_
IMG genome D 2,770,939,480 2,630,968,640 642,555,138
Genbank accession CP037899 PRIEB6910 CP000975

#Ca. Methylacidiphilum kamchatkense” Kam1, this study
baCa. Methylacidiphilum fumariolicum” SolV, [14]

““Ca. Methylacidiphilum infernorum” V4, [13]

9Integrated Microbial Genomes and Microbiomes [17]

®Locus tag prefixes from Integrated Microbial Genomes and Microbiomes IMG/ER [17]

fLocus tag prefixes from National Center for Biotechnology Information (NCBI)

9Locus tag prefixes and annotation as given by Mohammadi and colleagues 2017 [16]
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The presence of a~45 kbp putative integrative plas-
mid has been reported in the genome of strain V4 [13].
Whole genome alignments revealed that this putative in-
tegrative plasmid is present in both strain Kaml and
SolV, although some insertions or deletions has occured.
The putative integrated plasmid is located in the same
region of the genome in all three strains, showing that it
was present in their last common ancestor. No pro-
phages were found in any of the three genomes.

All three strains encode a class I, type III CRISPR-cas
adaptive immune system, involved in protecting against
phages and plasmids [19, 20]. The three genomes encode
17-23 CRISPR spacer sequences, all spacers are species
specific but in a few cases, two identical copies are
present within the same strain (Table 1, Additional file 2).
The spacers and CRISPR associated genes are found in
different regions in all three genomes. The Cas2 proteins
from strains Kaml and SolV are 81% identical and the
gene order and content of the CRISPR regions are highly
similar. In contrast, the two Cas2 proteins from strain
V4 is only 14-16% identical to their Kaml/SolV
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counterparts and the entire CRISPR region differs from
Kam1/SolV (Additional file 1: Figure S2). The casl gene
from strain V4 is truncated; it is therefore likely that the
CRISPR system of this strain is non-functional [13].
Whereas the CRISPR systems of strains Kam1 and SolV
appears to be functional. The presence of different
CRISPR systems in the genomes of strains Kam1/SolV
and V4, suggests that either one or both has been ac-
quired horizontally from different donors.

The genome of strain Kam1 encodes only two predicted
genomic islands (GI)s with a size of 17 (GI-I) and 4,8 kb
(GI-II) respectively, in contrast to the 22 and 9 predicted
GIs with a total size of 205.5 kb and 111.4 kb found in the
genomes of strains SolV and V4, respectively, (Table 1;
Fig. 1, Additional file 1: Figures S3—S4). GI-I encodes 18
predicted genes, whereof 14 is without a predicted func-
tion; the majority of the genes with a predicted function
encodes DNA modification systems. GI-II encodes four
predicted genes, whereof two is without a predicted func-
tion (Additional file 1: Table S2). GI-I is not present in the
genomes of strains SolV and V4, whereas GI-II is present
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Fig. 1 Circular representation of the genome of “Ca. Methylacidiphilum kamchatkense” Kam1. Rings from inside to outside: 1) GC content (black); 2) GC
skew (—/+ purple/green); 3) strain Kam1; 4) strain SolV; 5) strain V4; 6) Selected genomic traits of strain Kam1, for exact genomic coordinates see (Additional
file 2). GI: Genomic island; TE: Transposable element; Pmo: pmo cluster, see also Fig. 2
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in both strains Kam1, SolV, and partially in V4 (Fig.
1). Two out of five analyzed genes from GI-I, gave
blastn hits to genomes of non-verrucomicrobial ther-
mophiles and one to a plasmid from a mesophile,
whereas the last two sequences, did not resemble
any sequences in the databases. The four predicted
genes from GI-II gave blastn hits to strains SolV and
V4 and in two instances to other thermophilic bac-
teria (Additional file 1: Table S2). Similar observa-
tions were made for the GIs from strains SolV and
V4 (data not shown). Since the majority of the genes
found in GI-I and II is without a predicted function,
it is not possible to say whether the presence of ho-
mologs in other unrelated thermophiles or thermoa-
cidophiles means that they encode beneficial traits
for survival in this niche or simply reflects horizon-
tal gene transfer between organisms found in the
same environment.

Transposons and other insertion sequences, from here
on collectively referred to as transposable elements (TE),
are small genomic elements capable of moving within or
between genomes. Movement can be facilitated by genes
such as transposases, encoded by the TE itself or by
encoded sequences recognized by transposases encoded
by other TEs, integration into f. ex. conjugative plasmids
allows horizontal gene transfer of TEs (for review see
[21]). The presence of TEs can have profound effects on
bacterial genomes, by disrupting genes, altering gene ex-
pression or lead to deletions and rearrangements within
the genome [21, 22].

We searched the genomes of strains Kam1, SolV and
V4, available at the Joint genome institutes IMG/ER ser-
ver for annotated transposases using the search term
“transpos” [17]. We found four transposases annotated
in the previously published draft genome of strain
Kaml, whereas the closed genomes of strains Kaml,
SolV and V4 encode 3, 48 and 23 annotated transpo-
sases, respectively [13-16].

In total we identified 12 TEs in the closed genome of
strain Kam1 and a large number TEs in the genomes of
strains SolV and V4 (Table 1 and Additional file 2). The
TEs from all three “Ca. Methylacidiphilum” strains are
generally located in regions with either no or low
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homology to the other two genomes, indicating that
these are either species specific or in various stages of
decay (Fig. 1 Additional file 1: Figures S3—S4).

It is likely that TEs have had a large impact on the
evolution of “Ca. Methylachidiphilum”. Examples of this
is the presence of TEs integrated into pmo cluster I, be-
tween pmoB, and pmoCs (Fig. 2), indications that move-
ment of TEs have led to the loss of pmoCA, from
strains SolV and V4 and the loss of the type 1h NiFe hy-
drogenase from the genome of strain V4, as will be dis-
cussed below.

Methane metabolism

Genome analysis confirmed the absence of genes encoding
sMMO. The genome of Kam1 encodes three prmoCAB op-
erons, a truncated pmoCA operon and a separate pmoC
gene, as reported previously (Fig. 2) [3, 10]. The methane
monooxygenases from “Ca. Methylacidiphilum spp.” and
other verrucomicrobia constitute a distinct group, clearly
separated from their proteobacterial counterparts. The
pmoA gene is present in all known aerobic methanotrophs,
and is commonly used as marker gene, for detection of po-
tential for methanotrophy in environmental samples. The
primers used for detection of pmoA from proteobacteria,
do not amplify pmoA genes from verrucomicrobia nor from
the intra-aerobic members of the candidate phylum NC10
under standard PCR conditions. This may have led to an
underestimation of the abundance and diversity of metha-
notrophs in some environments [3, 23].

Recently, a primer pair amplifying the intergenic re-
gion between pmoA and pmoB has been reported to tar-
get both pmoCA from proteobacteria and pmoCA;_,,
but not pmoCA3, from strain SolV [24].

The genome of strain Kam1 encodes three pmo gene
clusters (I-III, Fig. 2). I) Organized as one large cluster
encoding two pmoCAB operons in tandem and a down-
stream orphan pmoC. 1I) Encoding a single pmoCAB op-
eron and finally III) encoding a pmoCA operon, unique
for strain Kaml, where pmoC, are N-terminally trun-
cated (Fig. 2, Table 2. Additional file 1: Table S3) [10].
Changing a single base at position 1,986,490, would
change an ATT to an ATG start codon, on the reverse

-
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Fig. 2 Organization of pmo cluster I-lll from “Ca. Methylacidiphilum kamchatkense” Kam1. Numbers at the end of lines indicate location in the
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genome. Numbers on top of arrows indicate locus tags without prefix, (see Table 1 for prefixes), numbers under arrows indicate gene size in bp /
% amino acid identity to the pmo, homolog. * amino acid identity to PmoDs. Arrow surrounded by a dashed line indicates a truncated and thus
likely non functional gene
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Table 2 Presence (v), absence (=) or number of genes or
groups of genes encoding selected metabolic traits

Kam1 Solv V4
pmo clusters 3 2 2
Uptake hydrogenase, NiFe, type 1h J \V -
Uptake hydrogenase, NiFe, type 1d \J \V N
Solouble hydrogenase, NiFe, type 3b \J \V N
Calvin Benson Bassham cycle V v Vv
MoFe-Nitrogenase V v v
Alternative MQ synt. Pathway V v v
Resp. Complex |, 14 subunits V v v
Resp. Complex Il V vV v
Complex I, bc1 - - -
Alternative complex lll V v v
Resp. Complex IV CBB3 type V vV v
Resp complex V, ATP synthase 2 2 2
Ech hydrogenase related (Ehr) complex V Vv v
Heavy metal efflux pumps 8 8 9

Strain designations are given on top of columns. For full species, names see
Table 1

strand, restoring a full-length pmoC, with a size of 831
bp (data not shown).

The majority of the organisms encoding pmoCAB, also
encodes a membrane protein PmoD [25, 26]. The physio-
logical role of PmoD, and the closely related AmoD, is still
not understood. Their encoding genes are usually found
as part of pmo/amoCAB operons, but homologs next to
Cu resistance genes have also been reported [25]. A role
as a copper chaperone has been proposed [25, 27]. This
speculation is supported by expression data from Methylo-
coccus capsulatus Bath grown in the presence or absence
of copper. The expression of a pmoD homologue,
MCA2130, located next to a multicopper oxidase family
protein was down-regulated in the absence of copper,
whereas another pmoD homologue, MCA2170b, located
next to a copC gene, was upregulated [28]. This is consist-
ent with the speculation that CopC has a role in copper
uptake, in organisms possessing the copper dependent
particulate methane monooxygease [29]. A recent study
demonstrated that PmoD is a membrane bound copper
binding protein. Furthermore, knocking out pmoD in
Methylosinus trichosporium OB3b resulted in inability to
grow using the Copper dependent pMMO, whereas
growth using the copper independent sMMO was un-
affected [26].

Careful inspection of the genome revealed the
presence of a pmoD homologue located directly
downstream of pmoCs. A blastP search against the
entire genome using the sequence of this PmoDs as
a query revealed a total of four pmoD homologs in
the genome of strain Kaml. Two of these are part of
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pmo clusters I or II, one is located next to a gene
annotated as multicopper oxidase, and one is located
in close proximity to a CRISPR region (Fig. 2. Add-
itional file 1: Table S4). All four pmoD homologs en-
code a single C terminal transmembrane helix, and
two out of four encode a signal sequence (Additional
file 1: Table S4). We found homologs of all four
pmoDs in both strains SolV and V4, although they
appear to be slightly less conserved between the
three strains than the other pmo genes (Additional
file 1: Tables S5-A-D).

The verrucomicrobial pmoB genes do not encode the
conserved Copper binding sites found in all other
PmoBs [3, 30]. Untill recently it was believed that the ac-
tive site of pMMO is located in the PmoB subunit [31].
However, the authors of a recent paper found that the
active site isn’t located in PmoB. In the same paper they
found evidence that a predicted zinc/copper binding site
(DxxxH(x;2)H) in PmoC, binds copper, the authors spec-
ulated that this may be the active site [32]. Interestingly
the (DxxxH(x;,)H) motif is conserved in all PmoCs from
strains Kam1, SolV and V4 (Fig. 3).

The conservation of the copper binding (DxxxH(x;2)H)
motif in all PmoCs; the identification of pmoD homologs
as part of the pmo gene clusters in all three “Ca. Methyla-
cidiphilum spp.” strains and the observation that growth
of strain Kaml ceased after two transfers in copper free
medium. Strongly suggests that the pMMOs of strain
Kaml and likely other “Ca. Methylacidiphilum” strains
are copper dependent.

The presence of multiple copies of the pmo genes in
strain Kam1, and other methylacidiphila, may be the re-
sult of gene duplications. In support of this speculation,
the pmo genes located in close proximity of each other
are more similar than homologs located more distantly
in the genome. Exemplified by the pmoCs from strain
Kaml where the co-located pmoC;, C, and Cs are 74—
94% identical to each other but only 39-59% identical to
pmoCsz and Cy, that are located elsewhere in the genome
(Additional file 1: Table S5-C).

It has been shown that pmoCAB;_; from strains
Kam1, SolV and V4 are highly conserved between strains
and under intense purifying selection, suggesting that
they have evolved to have distinct roles under different
conditions [3, 10]. Furthermore, pmoCAB, is the highest
expressed methane monooxygenase under non-limiting
growth conditions in both strains Kaml and SolV [10,
33]. Whereas transcriptomics analysis of strain SolV
showed a shift from pmoCAB, to pmoCAB; under oxy-
gen limiting growth conditions [33].

Genome alignments of strains Kaml, SolV and V4
showed that pmo cluster I is located in the same part of
the genome in all three strains, although a number of
transposable elements are found within and surrounding
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PmoC-M. cap. Bath-MCA1978 FawAfivwGRsH T@TﬂQD@IEL

PmoCl-Kaml-1513
PmoCl-SolV-1796(1643)
PmoC1-V4-1511
PmoC2-Kaml-1510
PmoC2-SolV-1793(1640)
PmoC2-V4-1508
PmoC3-Kaml-1360
PmoC3-SolV-1606(1472)
PmoC3-V4-1591
PmoC4-Kaml1-1973
PmoC5-Kaml-1507
PmoC5-s0lV-1788 (1635)
PmoC5-V4-1500

Fig. 3 Alignment of the PmoCs from strains Kam1, SolV and V4 with PmoC from Methylococcus capsulatus strain Bath. PmoC number and strain
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designations are given followed by locus tags without prefix, (see Table 1 for prefixes). The conserved copper binding motif (DxxxH(x;,)H) is
indicated with black arrows. For strain SolV locus tags without or between brackets refers to the annotation following Mohammadi and colleagues
2017 [1€] or Integrated Microbial genomes and Microbiomes IMG/ER [17] respectively, see also (Table 1)

J

this cluster (Additional file 1: Figure S5). Pmo cluster II,
encoding pmoCABD3, is also located in the same part of
the genomes of strains Kam1l and SolV, but is integrated
in another part of the genome of strain V4, showing that
the whole region has moved within the genome. Full
genome alignment revealed large numbers of genomic
rearrangements on both sides of pmoCABD; (Additional
file 1: Figure S6). The genome of strain Kaml encodes
pmo cluster III encoding pmoCA,, that are not found in
the genomes of strains SolV and V4 [3].

Interestingly we found that pmoCA, has been re-
placed by transposable elements in strains SolV and V4.
In strain SolV we found fragments of pmoC, at the 5’
and 3’ end of the inserted transposable element, show-
ing that pmo cluster III was present in the last common
ancestor of strain Kaml and SolV (Additional file 1:
Figure S7).

In methanotrophs the methanol produced by the
pMMOs oxidation of methane is subsequently oxidized
by a methanol dehydrogenase (MDH). The genome of
Kaml does not encode a calcium dependent MDH of
the MxaF-type, instead it encodes a XoxF-type, lanthan-
ide dependent MDH. The encoding gene is part of a
small operon xoxFJG:J that is also found in the genomes
of strains SolV and V4 (Additional file 1: Table S3) [13,
14]. In brief, xoxF, encodes the lanthanide dependent
MDH. xoxJ, encodes a protein speculated to have a
role in binding the MDH to pMMO. x0xG:/, encodes
a XoxG and Xox] fusion protein. The XoxG part is a
cytochrome ¢, that acts as electron acceptor for the
MDH, the Xox]J part is truncated compared to the
non-fused XoxJ, and has been speculated to have a
role in binding XoxG:J] to the MDH [12, 34]. Both
MDHs of the MxaF and XoxF-type requires co-factor
PQQ [12]. The genomes of all three strains encodes
genes, pqqABCDEFG, for biosynthesis of PQQ, these

are organized as a pgqABCDE cluster with pgqF and
pqqG located elsewhere in the genomes (Additional
file 1: Table S3). MDHs catalyzes the oxidation of
methanol to formaldehyde, that then can be further
oxidized to CO, via formate or assimilated into bio-
mass. Formaldehyde is not assimilated by methano-
trophic verrucomicrobia, as will be discussed in the
“biomass generation” section [8, 11]. It has been dem-
onstrated that MDH from SolV oxidizes methanol
and formaldehyde with the same maximum rate.
Leading to the speculation that methanol is oxidized
directly to formate [12]. The formate is then further
oxidized to CO, by a NAD dependent formate de-
hydrogenase (Fig. 4) (Additional file 1: Table S3). In
line with this speculation, the genomes of strains
Kaml, SolV and V4 do not encode the tetrahydrofo-
late, tetrahydromethanopterin or the glutathione path-
way for formaldehyde oxidation [13, 14, 35].

Biomass generation

Traditionally methanotrophs have been divided into two
groups based on how they assimilate formaldehyde. Group
one uses the RuMP pathway, whereas group two uses the
Serine pathway [2]. Our analysis showed that strain Kam1,
like strains SolV and V4, encodes incomplete RuMP and
serine pathways. Genes encoding hexulose-6-phosphate
synthase and 6-phospho 3-hexuloisomerase are lacking
from the RuMP pathway, and genes encoding Malyl coen-
zyme A lyase and Glycerate kinase from the serine path-
way. Instead it, like strains SolV and V4, encodes a full
Calvin Benson Bassham pathway for CO, fixation (Table
2, Additional file 1: Table S6) [3, 13, 14]. Khadem and
colleagues demonstrated that strain SolV obtains carbon
by fixing CO, via the CBB pathway rather than fixing
formaldehyde as conventional methanotrophs [11]. Simi-
lar observations has been done for three mesophilic
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methanotrophic strains from the closely related methylaci-
dimicrobium genus [8]. Most likely this is also the case for
strains Kaml and V4, and possibly a common trait of
methanotrophic verrucomicrobia.

We found large numbers of genes associated with
glycogen metabolism, in the genome of strain Kaml, all
with homologs in the genomes of strains SolV and V4
(Additional file 1: Table S7). Strain SolV has been shown
to use glycogen stored in cytoplasmic glycogen vesicles
as carbon and energy storage [36]. Similar vesicular
structures were observed in strains Kaml and V4, it is
thus plausible that all three strains use glycogen as car-
bon and energy storage [3, 7]. Some methanotrophs use
poly-pB-hydroxybutyrate as carbon and energy storage
[37]. We did not identify key genes, phbABC, from the
poly-B-hydroxybutyrate synthesis pathway in the genome
of strain Kaml. These genes are also not present in the
genomes of strains SolV or V4 [13, 36].

Hydrogenases
Recently it was demonstrated that strain SolV is capable
of autotrophic growth on H,, O, and CO, [16].

Similarly, it has been shown that “Ca. Methylacidiphi-
lum sp.” strain RTK17.1, that is closely related to strain
V4, employs a mixotrophic lifestyle, oxidizing methane
and hydrogen simultaneously [9].

The genome of strain Kaml encodes three NiFe hy-
drogenases, classified as type 1d, 1h and 3b using the
hydDB classification tool [38]. The type 1d and 3b hy-
drogenases are also present in strains SolV and V4,
whereas the type 1h is only found in the closely related
strains Kam1 and SolV (Table 2, Additional file 1: Table
S8) [13, 14].

The 1d hydrogenase is an oxygen tolerant, membrane
attached, uptake hydrogenase encoded by hyaABC. In
brief, hyaB encodes the catalytic large subunit, #yaA en-
codes an FeS protein with a Tat signal sequence, the small
subunit, and /yaC encodes a membrane bound cyto-
chrome B. Electrons are transferred from HyaB via HyaB
to HyaC and further to the quinone pool [39]. We suggest
that the type 1d hydrogenase is anchored in the mem-
brane and facing the periplasm as depicted in Fig. 4.

The type 3b hydrogenase is an oxygen tolerant
cytoplasmic NADP dependent hydrogenase encoded
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by hyhBGSL. In brief, hyhSL encodes the small and
large subunits of the hydrogenase, respectively. The
hyhL gene contains a frameshift mutation, that is not
present in the draft genome of strain Kaml, and thus
may be a sequencing or assembly error [15]. The
hyhBG genes encode the electron transfer protein and
the catalytic subunit respectively of the predicted
NADPH dehydrogenase. It should be noted that the
only characterized type 3b hydrogenase comes from
the archeon Pyrococcus furiosus; it has not yet been
tested if the bacterial type 3b hydrogenases are NADP
dependent [40].

The type 1h hydrogenase is an oxygen tolerant high af-
finity uptake hydrogenase encoded by /hhySL coding for
the large and small subunit respectively [41].

The gene cluster encoding a type 1h/5 type hydrogen-
ase in Mycobacterium smegmatis strain MC> 155 en-
codes an FeS protein, HhyE, speculated to act as an
electron transfer protein linking the hydrogenase to the
cells electron transport chain [42]. We did not find a
hhyE gene in close proximity to #hySL in strains Kaml,
SolV or V4. A blastP search, using MSMEG_2718 cod-
ing for HhyE in Mycobacterium smegmatis strain MC>
155, against the genomes of strains Kam1, SolV and V4
gave no hits, indicating that they do not possess hhyE
genes located elsewhere in the genomes.

The products of six genes, hypABCDEF, are necessary
for maturation and incorporation of metal cofactors in
the active site of NiFe hydrogenases [43]. We found the
full hypABCDEF gene set in the genomes of strains
Kaml, SolV and V4. These are organized as a hypBCDEF
gene cluster and a hypA located elsewhere in the gen-
ome (Additional file 1: Table S8).

In strains, Kaml and SolV, hypBCDEF are co-lo-
cated with the type 1h hydrogenase, hhySL, and hypA
is located approximately 69 kbp downstream of these.
Full genome alignments showed that the genomic re-
gion surrounding hypABCDEF is conserved between
strains Kaml and SolV. Aligning the genomes of
Strains Kaml and V4 revealed several rearrangements
in the regions harboring hypBCDEF and hypA. The
hhySLhypBCDEF genes are located on an approxi-
mately 26 kbp genomic region that is conserved be-
tween strains Kaml and SolV. This region is absent
from the genome of strain V4, with the exception of
hypBCDEF that is found in another part of the gen-
ome and encoded on the negative strand (Additional
file 1: Figure S8). Similar observations were done for
the genomic region encoding sypA (Data not shown).
Based on these observations, we speculate that the
type 1h hydrogenase was present in the last common
ancestor of strains Kaml, SolV and V4 and then
subsequently lost from strain V4 due to genomic
rearrangements.
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Nitrogen metabolism

Strain Kaml1 is able to use N, nitrate and ammonium as
nitrogen source [7]. The genomes of strains Kam1, SolV
and V4 encode nifHDKENB, the minimum gene set re-
quired for nitrogen fixation (Table 2, Additional file 1:
Table S9) [13, 44, 45]. In brief, nifHDK encodes the
MoFe nitrogenase, and nifENB are needed for assembly
and insertion of the FeMoco co-factor [44]. The nitroge-
nase encoding genes are part of a 29.5 kbp gene cluster,
conserved between all three strains. In addition to the
nif genes, this gene cluster also encodes fixABCX and
several genes predicted to be involved in regulation and
maturation of the nitrogenase. The product of the fix
genes couples oxidation of NADH with the simultan-
eous reduction of high potential quinones and low
potential flavodoxins via electron bifurcation. It is
believed that this process generates the low potential
reductants needed for nitrogen fixation [46]. For strains
Kaml and V4 indirect proof of nitrogen fixation stems
from growth in medium without a nitrogen source,
whereas nitrogen fixation has been directly demon-
strated for strain SolV [3, 7, 47].

Nitrate assimilation to biomass, requires that nitrate is
reduced first to nitrite and then further to ammonium, a
process requiring a total of eight electrons [48] and refer-
ences therein.

The genomes of strains Kaml, SolV and V4 encode a
nitrate reductase, NasA, and a nitrite reductase nirBD,
both predicted to be localized in the cytoplasm (Figs. 4
and 5, Additional file 1: Table S9). In brief, NasA cata-
lyzes the reduction of nitrate to nitrite and NirBD the
reduction of nitrite to ammonia.

The nasA and nirBD are found in a nitrogen assimila-
tion gene cluster together with predicted ammonium, ni-
trate and nitrite transporters. This gene cluster is
conserved between all three strains (Additional file 1:
Table S9).

The methane monooxygenase, pMMO, and the am-
monia monooxygenase, AMO, are highly similar hom-
ologous enzymes. In agreement with this, AMO is
capable of methane oxidation and pMMO of oxidizing
ammonium to hydroxylamine [30, 49]. Hydroxylamine is
highly toxic, and must therefore be removed from the
cells. Hydroxylamine is oxidized by hydroxylamine oxi-
doreductase, a process that in ammonia oxidizing bac-
teria is coupled to energy conservation, but in
methanotrophs serves as part of a detoxification mech-
anism [50]. The genomes of all three strains encode a
hydroxylamine oxidoreductase, HaoAB, and a nitric
oxide reductase NorBC (Figs. 4 and 5, Additional file 1:
Table S9). The traditional view has been that HaoAB
catalyzes the four-electron oxidation of hydroxylamine
to nitrite. However it has recently been shown that
HaoAB catalyzes a three electron oxidation of
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hydroxylamine to nitric oxide [51, 52]. It is therefore
likely that they dispose of toxic hydroxylamine by first
oxidizing it to nitric oxide that is then reduced to ni-
trous oxide that diffuses out of the cell (Figs. 4 and 5).
However, ammonia oxidation by both methanotrophs
and ammonia oxidizing bacteria leads to formation of
nitrite (Figs. 4 and 5). The source of the nitrite is still
under debate. It has been shown that NO is oxidized by
O, in a nonenzymatic manner leading to formation of
nitrite. However there is evidence that ammonia and
methane oxidizing bacteria encodes a hitherto unidenti-
fied NO oxidase [51, 52]. The nitrite reductase NirK
catalyzing the reduction of nitrite to NO, has been pro-
posed as a possible candidate for this unidentified NO
oxidase, by operating in the reverse direction [51]. Inter-
estingly, strain SolV encodes two putative nitrite reduc-
tases (Mfumv2_1120 and 1973). We found a homolog of
Mfumv2_1120 in the genome of strain V4 whereas we
did not find any nitrite reductases in the genome of
strain Kam1 (Additional file 1: Table S9). It has previ-
ously been suggested that Mfumv2_1973 encodes a ni-
trite reductase, NirK, responsible for nitrite reduction in
strain SolV, although transcription analysis showed tran-
scription of both Mfumv2_1120 and 1973 [53]. Whole
Genome alignments revealed that the genomic regions
directly flanking the genes encoding putative nitrite re-
ductases, in strain SolV, are conserved between all three
strains (Additional file 1: Figure S8). We performed a
blastn search against the NCBI database (17-12-2018)
using Mfumv2_1020 and 1973 from strain SolV as query.
The best hits for Mfumv2_1120 and 1973 respectively
were to sequences from Nitrosomonas eutropha (83%
coverage, 67% identity) and Oligotropha carboxidovorans
(43% coverage, 67% identity) and other proteobacteria
(Data not shown), indicating that these genes may have
been acquired by horizontal gene transfer.

Quinones and respiration complex | to V
Quinones, are freely diffusible lipophilic electron car-
riers acting as electron carriers in the membrane [54].
The genome of strain Kaml does not encode a ubi-
quinone nor the classical, menFDHCEBIAG, Menaqui-
ninone (MK) synthesis pathway [55-57]. Instead, we
found genes from the alternative, futalosine, MK syn-
thesis pathway in the genomes of all three strains
(Table 2, Additional file 1: Table S10). We were un-
able to identify a mgnB gene, the product of which is
predicted to catalyze the conversion of futalosine or
aminodeoxyfutalosine to dehypoxanthinyl futalosine.
However, variations of the futalosine pathway are
known to exist, it is thus likely that the methylacidi-
phila encode a yet uncharacterized variant [58, 59].
Genes encoding respiration complex I to V has been
identified in “Ca. Methylacidphilum sp.” strain RTK17.1
[9]. We found homologs of these in the genomes of
strains Kam1, SolV and V4, indicating that they are con-
served among methylacidiphila (Table 2, Additional file
1: Table S10). NADH:ubiquinone oxidoreductase (com-
plex I) and succinate dehydrogenase (complex II) repre-
sents two entry points of electrons into the quinone
pool. The genome of all three strains encodes the clas-
sical 14 subunits complex I, consisting of NuoA-N. It is
a membrane complex transferring two electrons from
NADH to quinones in the membrane while translocating
four protons across the cell membrane, thereby creating
a proton gradient [60] and references therein. Complex
II, is a cytoplasmic orientated membrane complex
encoded by sdhABC. Complex II links the Tricarboxylic
acid cycle (TCA) with the respiration chain by transfer-
ring two electrons from succinate to the quinone pool,
while oxidizing succinate to fumarate [61]. The genome
does not encode a complex III, also called BC; complex,
instead it encodes a structurally unrelated but
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functionally similar complex, named alternative complex
III (ACII). This complex transfers electrons from re-
duced quinones via a cytochrome c to complex IV,
thereby regenerating the quinone pool. It has been pro-
posed that ACIIIL, also translocates protons across the
cell membrane, but this still needs to be experimentally
verified [62, 63]. The genes encoding the ACIII complex
is co-located with genes encoding a cbb3 type cyto-
chrome c oxidase (complex IV) (Additional file 1: Table
S10). This type of cytochrome c oxidases have very high
affinity for oxygen and are often associated with growth
under low oxygen tension [64, 65]. This is in line with
the observed high oxygen affinity of strain SolV [6], and
our observation that strain Kam1 grows optimally at low
oxygen concentrations.

The ATP-synthase, complex V, represents the final
step in the electron transport chain where the proton
gradient generated by the previous steps are consumed
to produce ATP.

Previously the presence of two operons encoding differ-
ent H' translocating F-ATPases were reported from the
genome of strain V4 [13]. We found homologs of these
operons in the genome of both strains Kaml and SolV
[14]. One is most similar to the F-ATPase found in other
verrucomicrobia, whereas the other resembles ATPases
found in gamma-proteobacteria [13]. The gene order and
content differs between the two operons (Table 2, Add-
itional file 1: Table S10, and Figure S10). The operons en-
coding the verrucomicrobial and gamma-proteobacterial
ATPases is organized as atpBEFHAGDC or atpDCQBEF:
HAG respectively (Additional file 1: Figure S10). The
organization of the latter resembles that of the Na* trans-
locating N-ATPases, atpDCQRBEFAG, first described by
Dibrova and colleagues [66]. N-ATPases are always found
in addition to a standard F-ATPase, and are thought to
have a role in maintaining cell homeostasis [66]. There are
two notable differences between these and the N-ATPase
like operon found in strains Kam1, SolV and V4; Firstly,
the absence of atpR, which is speculated to interact with
the c-subunit [66]. Secondly, the atpE gene, encoding the
c-subunit does not encode the Na® binding domain
ESTxxY. Recently an H" translocating N-ATPase from the
pathogen Burkholderia pseudomallei was characterized. It
was suggested that this N-ATPase acts as a highly efficient
H" pump, enabling the cells to survive the low pH inside
phagosomes [67]. It is tempting to speculate that in strains
Kaml, SolV and V4, the F-ATPase are used for synthesis
of ATP, whereas the N-ATPase like ATPase has a role in
maintaining cell pH-homeostasis, similarly to what has
been suggested for other N-ATPases [66, 67].

Resistance to low pH and heavy metals
Acidophiles often have to cope with the dual stress of
low pH and high loads of metals, since metals are more
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soluble at low pH [68]. Bacteria can protect themselves
against low pH by passive and active means; the exact
mechanism of microbial acid resistance is still not fully
understood. Passive mechanisms includes adaptations of
the cell membrane making it less permeable for protons
and inversion of the membrane potential. Active mecha-
nisms involves removal of protons from the cytoplasm
by sequestering and translocation across the inner mem-
brane reviewed in [69, 70]. Hou and colleagues identified
a number of genes with a predicted function in acid re-
sistance in the genome of strain V4 [13]. We identified
homologs of these and other genes that may contribute
to acid resistance in the genomes of both strains Kam1
and SolV (Additional file 1: Table S11).

The genomes of strains Kam1, SolV and V4 encodes a
range of traits that may have a role in maintaining pH
homeostasis of the cell, in addition to the proton trans-
location steps linked to the activity of respiration com-
plex I to V discussed above.

We found genes with high homology to gadBC encod-
ing the glutamic acid dependent acid resistance (GDAR)
system in Escherichia coli. In brief, gadB encodes a glu-
tamate decarboxylase catalyzing the proton consuming
conversion of glutamate to 4-aminobutanoate and gadC
encodes a glutamate/4-aminobutanoate antiporter (for re-
view see [70]). The genomes also encode genes that may
have a function analogous to the arginine-dependent acid
resistance (ADAR) system in E. coli, as suggested for strain
V4 [13]. E. coli encodes two arginine decarboxylases, a
biosynthetic, speA, and an acid induced adiA. The ADAR
system consists of adiA and an arginine/agmatine antipor-
ter encoded by adiC. The genomes of all three strains en-
code homologs of speA and adiC, but not adiA
(Additional file 1: Table S11).

The genome encodes three genes annotated as either
Na-proline symporter or Na/H+ antiporters in addition
to an energy conserving hydrogenase related complex
(ehrABCDLS) and a gene, ovpl, encoding a H'-PPase
(Additional file 1: Table S11) [71-73]. All of which may
have a role in maintaining pH homeostasis of the cell.

Strain V4 has been reported to encode a mercury re-
sistance system consisting or merRAT:P [13]. The func-
tions are in brief; MerR: transcriptional regulator; MerA:
mercury reductase and MerT:P: a fusion protein (Trans-
porter classification database number 1.A.72.3) [74];
MerP is involved in binding mercury in the periplasm
before transferring it to MerT that transports mercury
across the inner membrane [75]. The mer genes are also
found in strains Kam1 and SolV, but in these strains the
merT:P and the merRA genes are located at separate
places in the genomes (Additional file 1: Table S12).

The genome of all three strains encodes an arsenate
resistance gene cluster arsCR-acr3 and an additional or-
phan arsC homologue located elsewhere in the genomes.
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The functions are in brief; arsC, arsenate reductase;
arsR, transcriptional regulator and acr3, AS (III) efflux
pump [76, 77]. Our tests showed that strain Kam1 grows
well in the presence of 1 mM As (III) or As(V), but not
in the presence of 5mM of either (Data not shown).
Hou and colleagues identified 10 gene clusters encoding
TolC, outer membrane proteins and/or AcrA, linking
outer and inner membrane channels in addition to genes
encoding a putative tellurium and a silver efflux pump
(COGs 1538, 0845, 0861 and 3696, respectively) [13, 78].
Our analysis showed that all but one of these gene clus-
ters are conserved between all three strains (Add-
itional file 1: Table S12). We also identified two
cation transport ATPases (COG 2217), these are also
conserved between all three strains (Additional file 1:
Table S12) [78].

Conclusions

We here present the closed genome of “Ca. Methyla-
cidiphilum kamchatkense” strain Kaml. We used gen-
ome analysis to show that strains Kaml and SolV
belongs to two different but closely related species.
Our analysis revealed large differences in the numbers
of TEs between the three “Ca. Methylacidiphilum”
spp. We also found evidence that much of the differ-
ences between the three strains can be explained by
the action of TEs, exemplified with the loss of a type
1h hydrogenase from the genome strain V4 caused by
genomic rearrangements. Most of the genes encoding
metabolic traits discussed in the present contribution
are conserved among all three strains, although they
may be found at different places in the genomes due
to genomic rearrangements. Finally we present evi-
dence that, pmoCA, that is unique for strain Kaml,
has been present and subsequently lost from the ge-
nomes of strains SolV and V4. The availability of
three closed genomes have allowed us to do compara-
tive analysis to gain a deeper understanding of the
evolution and metabolism of this novel genus. Future
studies should focus on linking genome and wet lab
experimentation to improve our understanding of
their metabolism. It is likely that more genomes from
this genus will be available in the future, which will
allow further comparative genomics analysis to eluci-
date even more details of evolution and adaptations
to specific niches.

Methods

Cultivation, DNA extraction and sequencing

Strain Kaml were originally isolated from an acid hot
spring in Kamchatka, Russia by members of our research
group at the University of Bergen, Norway as previously
described [7]. The culture used in the present contribu-
tion originates from our in house culture collection. It
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has thus, not been necessary to obtain permission from
any third parties, to use this strain in the present study.
Strain Kaml was cultivated at 55°C and pH 3.5 with
methane as the sole carbon and energy source as de-
scribed in [10].

Cells were harvested by centrifugation of an early sta-
tionary phase culture, before DNA was extracted using
the cetyltrimethylammonium bromide method [79].

The genome was sequenced using PacBio technology
and assembled with HGAP3 [80], resulting in a single
contig of 2,221,048 bp with an average coverage of 489.
Genome sequencing and assembly were done by GATC,
Konstanz, Germany. Overlapping ends of the linear con-
tig were manually trimmed as recommended by Chin
and colleagues [80], resulting in a final genome size of 2,
202,032 bp.

Genome annotation and analysis

Genome annotation and analysis were done using the In-
tegrated Microbial Genomes and Microbiomes IMG/ER
platform [17]. Signal sequences were identified with sig-
nalP 5.0 [81].

Jspecies were used to calculate Average Nucleotide
Identities, [82]. Artemis V16 and Artemis comparison
tool V13, were used for visualizing and comparing ge-
nomes [83, 84]. Circular genome comparison figures
were generated with Blast Ring Image Generator (BRIG)
[85]. Dotplots were calculated with Gepard [86]. Protein
similarity and identity matrixes were generated with
Matrix Global Alignment tool (MATGAT) with default
settings [87].

We searched all three genomes for the presence of partial
and decayed transposases using the nucleotide sequences
of genes annotated as transposases from all three strains as
a query for a discontiguous megablast E-10. Insertion
sequences were identified with ISsaga www-is.biotoul.fr,
predicted sequences flagged as probably false positives were
manually curated [88]. Finally, data on annotated transpo-
sases, partial transposases and insertion sequences were
combined and are for simplicity collectively referred to as
transposable elements.

Hydrogenases were classified with HydDB [38]. Local
genome searches and alignments were done with Basic
Local Alignment Tool (BLAST) [89]. Searches for inte-
grated phages were done using phaster [90]. CRISPRFin-
der were used to indentify CRISPRs, [91]. Prediction of
genomic islands were done using Island Viewer 4 [92].
Five or four genes evenly distributed along the length of
Gi-I or II respectively, were selected and used as a query
for a blastn search against the nucleotide collection of
the NCBI, excluding uncultured organisms. The two
best hits, when applicable, were used to get an indication
of the phylogenetic association of the GI.
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