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Abstract

Background: Researchers today are generating unprecedented amounts of biological data. One trend in current
biological research is integrated analysis with multi-platform data. Effective integration of multi-platform data into
the solution of a single or multi-task classification problem; however, is critical and challenging. In this study, we
proposed HetEnc, a novel deep learning-based approach, for information domain separation.

Results: HetEnc includes both an unsupervised feature representation module and a supervised neural network
module to handle multi-platform gene expression datasets. It first constructs three different encoding networks to
represent the original gene expression data using high-level abstracted features. A six-layer fully-connected feed-
forward neural network is then trained using these abstracted features for each targeted endpoint. We applied
HetEnc to the SEQC neuroblastoma dataset to demonstrate that it outperforms other machine learning approaches.
Although we used multi-platform data in feature abstraction and model training, HetEnc does not need multi-
platform data for prediction, enabling a broader application of the trained model by reducing the cost of gene
expression profiling for new samples to a single platform. Thus, HetEnc provides a new solution to integrated gene
expression analysis, accelerating modern biological research.

Background
The use of integrated analysis with multi-platform gene
expression data in current biological research is increasing
[1–4]. In general, “multi-platform” refers to data from mul-
tiple technologies or from different sites/tissues/organs,
which usually have close linkages or relationships between
data platforms. For example, the Sequencing Quality Con-
trol (SEQC) project [5, 6] studied a large neuroblastoma co-
hort with both Microarray (Agilent) and RNA-seq (Illumina
Hi-seq) datasets. Genotype-Tissue Expression (GTEx), pro-
vided 1641 samples, covering multiple tissue or body sites,
from 175 individuals [2].
These well-established and publicly available resources

have provided a huge opportunity for developing integra-
tive analysis approaches to gain more comprehensive
insights. A particular interest is to build predictive models
that integrate multi-platform data for enhanced perform-
ance. However, handling multi-platform data effectively is
quite challenging. The difficulties mostly come from the

inability to utilize the complicated, close linkages among
features from different platforms efficiently. Several reviews
have been conducted in integrative models [7, 8]. Popular
integrated analysis includes horizontal (or simultaneous)
and vertical (or sequential) data integration [9], However,
both of which assumes every sample, including the testing
data has the data accessibility of all platforms.
Deep learning, one of the most promising methods in

current machine learning, has been implemented in a var-
iety of research fields, including object recognition, key-
word triggering, language translation, and others [10]. It
has been applied in such biological study areas as variant
calling [11, 12], protein-binding prediction [13], predicting
variant chromatin effects [14], and biomedical imaging
[15–17]. Note that most of these biological applications
were applied to spatial/temporal/sequential data, for which
many deep learning approaches have been developed in
other research fields. For example, convolutional neural
network (CNN) [18, 19] has been widely applied to image
analysis, including bioimaging; a recurrent neural network
(RNN) [20, 21] was designed to, and was capable of, hand-
ling sequential data such as text documents, soundtracks,
and DNA sequences. However, to our knowledge, few
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deep learning approaches were developed for tabular data-
sets, such as those for gene expression, which is one of the
most common data types in current biological research
[22]. Since features in tabular data didn’t have temporal
order, CNN and RNN frameworks are usually not applic-
able, unless external linkage information (such as pathway,
GO function, genome location, etc.) was further added
onto the dataset. In other words, the linkage information
between features was collected from external resource but
not directly extracted from the dataset itself, therefore may
bring more restrictions to the following data analysis. For
example, a deep neural network constructed based on
pathway information may not well handle genes which
does not have much pathway information.
Here we propose HetEnc, a deep learning approach for

integrated gene expression analysis, which integrates dif-
ferent platforms of genomics features on the same cohort
of subjects. HetEnc is designed as two sequential modules.
In the first module of feature representation, it utilizes the
multi-platform information in an unsupervised fashion to
generate a high-level abstracted feature set, also known as
intermediate features. In the second module of predictive
modeling, a deep feed-forward neural network is con-
structed using the intermediate features as input, to train
the model for each targeted endpoint.

Methods
SEQC neuroblastoma dataset
The SEQC neuroblastoma dataset includes 498 neuroblast-
oma patients’ gene expression profiles measured both by
Microarray and RNA-seq. The training dataset consisted of
249 samples, and the other 249 samples were in the valid-
ation/test dataset. We used the sample distribution as
defined in SEQC project [4–6].
The expression profile for both Microarray and RNS-seq

analyses currently are publicly available in the National Cen-
ter for Biotechnology Information (NCBI) GEO database.
The Microarray data (GEO accession: GSE49710) was gen-
erated using customized 4x44k oligonucleotide microarrays
(Agilent Technologies) and extracted via Agilent’s Feature
Extraction software (Ver. 9.5.1). The RNA-seq sequencing
data (GEO accession: GSE62564) was performed on the Hi-
Seq 2000 platform (Illumina). Detailed sample preparation
and data pre-processing has been described elsewhere [4].
We investigated three clinical endpoints from the neuro-

blastoma dataset, including favorable prognosis (FAV),
overall survival (OS_All), and high-risk patient survival
(OS_HR). FAV is a binary label for patients belonging to a
favorable subgroup that is event-free (i.e., no progression,
relapse, death) without chemotherapy for at least 1000
days, or those belonging to an unfavorable subgroup that
died from disease despite chemotherapy. OS is the occur-
rence of death from disease, and high risk (HR) only
includes patients belonging to a high-risk subgroup (with

stage 4 disease > 18months at diagnosis or with MYCN-
amplified tumors at any age and stage). Based on previous
experience, these three endpoints have different levels of
predictability: FAV is usually easy to predict and has a high
predictive performance in all modeling algorithms, whereas
OS_HR is very difficult to predict no matter which model-
ing algorithm is applied. As reported, the predictive diffi-
culty of OS_All falls between FAV and OS_HR. Since not
all clinical endpoints were available, the FAV and OS_HR
study did not include all 498 samples. A detailed descrip-
tion of these three endpoints and their previous predicting
performance are summarized in Table 1.

Data pre-processing
All SEQC neuroblastoma datasets were already pre-
processed when downloaded from the GEO database.
While there were several available data pre-processing
pipelines for RNA-seq data, we chose the dataset pre-
processed by Su, et al. (2014), to focus on the subset of 10,
042 genes that were mapped one-to-one between Micro-
array and RNA-seq. Therefore, the final data matrix of
train and test datasets were (249, 10,042) and (249, 10,
042), for both Microarray and RNA-seq platforms, mean-
ing that the notation of (249, 10,042) is 249 samples with
10,042 (gene expression) features for each sample.

Feature representation with unsupervised learning
Unsupervised Learning is a topic of interest in today’s
deep learning community. One typical unsupervised
learning algorithm is autoencoder (AE), which is designed
to compress high-dimension data into low-dimension
features. A typical AE is composed of two connected net-
works: an encoding network and a decoding network. The
encoding network tries to compress the input data into
low-dimensional features, which made up the bottleneck
(layer); the decoding network, in reverse, tries to recon-
struct the original input data from the low-dimensional
features. In a combination of the encoding and decoding
networks, the AE is much like a regular Multilayer
Perceptron (MLP), where the major difference is that the
input and expected output of this MLP are the same. In
other words, the learning process of this AE tries to re-
construct the input data with minimal information loss.
A novel aspect of this study is that we not only used the

regular AE for one platform; we also designed other two
kind of representation networks. The first network is
named as CombNet, which first combined two different
gene expression data together, treated them as the same
type of data that could be represented by single autoenco-
der (Fig. 1a). Particularly, we used the overlapped 10,042
genes as the feature space in both platforms. The second
network is named as CrossNet, where the input and ex-
pected output are not identical; in such a case the network
tries to learn the representations that could be bridge the
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conversion of one platform to another (Fig. 1b). In Cross-
Net, there are two parts of modules, the first part, or the
generative part is an autoencoder that try to regenerate
data from one platform (such as microarray) with updated
weights from the second part. The second part compared
the regenerated microarray data and the origin RNA-seq
data (i.e. second platform), in order to reduce their differ-
ences. The final goal of the CrossNet model is to find out
the bottleneck layer of the generative part that minimize
the loss in discriminative part, somehow similar to the
Generative Adversarial Networks (GANs).

Predictive model based on deep neural network
In the predictive modeling step, we applied a fully-
connected neural network with feed-forward architec-
ture. A fully-connected neural network is an artificial
neural network format with at least three layers: one

input layer, one output layer and one hidden layer. Fully-
connected means linkages exist among nodes between
two adjacent layers; however, there are no linkages be-
tween nodes in the same layer. Usually, there is more
than one hidden layer in a deep neural network architec-
ture, and HetEnc used four of these in the modeling
step. Feed-forward means the network did not have a
connection forming a cycle, unlike Boltzmann machine
and recurrent neural networks.
The linkages between nodes in two adjacent layers

could be either linear (i.e., forms z1 =Wa0 + b) or non-
linear (i.e., rectified linear unit, logistic function, etc.).
Usually, for a non-linear function, an activation func-
tion can be added to a linear basis, making the whole
function non-linear (i.e., a1 = f(z1), where f is the non-
linear activation function and z1 is the output of a lin-
ear function).

Table 1 Summary of Neuroblastoma Endpoints

Endpoint FAV OS_All OS_HR

Full description Neuroblastoma Favorable Prognosis Overall Survival Survival in High Risk patients

Sample size (Train/Test) 136/136 249/249 86/90

Train set prevalence 45/91 (0.669) 51/198 (0.795) 43/43 (0.500)

Test set prevalence 46/90 (0.662) 54/195 (0.783) 49/41 (0.544)

Predicting difficulty
(Zhang, et al., 2015)

Easy Medium Hard

Fig. 1 (a) Diagram of CombNet. Microarray and RNA-seq data were mixed before entering the autoencoder. Same feature spaces were defined in
both platforms (b) Diagram of CrossNet. The first part (generative part) is an autoencoder, where an encoder and decoder are combined to regenerate
microarray gene expression profile. The second part (discriminative part) is then introduced to reduce the difference between regenerated microarray
data (i.e., the output of generative part) and origin RNA-seq data. In current version, we do not build another discriminative model but use the
crossentropy to simplify the process
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When training the neural network model, we used back-
propagation to update the network weight between the
training epochs. We used mini-batch (x = 32) gradient
descent in backpropagation and the loss function for both
datasets was categorized cross-entropy. The activation
function of the output layer was Softmax.
The source code for the whole HetEnc is available at:

https://github.com/seldas/HetEnc_Code.

Other machine learning algorithms
In this study, we compared HetEnc models to three
kinds of machine learning algorithms.

Previously established predictive models
In our previous study, three different types of predictive
models, as K-Nearest Neighbors (KNN), Support Vector
Machine (SVM) and Nearest shrunken centroids (NSC),
were constructed by using the exact same pre-processed
dataset. In general, gene features were pre-filtered by
their p-value (< 0.05) and log2 fold-change (> 1.5). Par-
ameter K in KNN ranged in (1, 3, 5, 7, 9); kernel used in
SVM is ‘rbf ’; and the other parameters are set as default.
In training process, each model was trained based on
randomly selected 70% of training data and its perform-
ance was evaluated on the remaining 30% of training
data. The training process repeated 500 times to retrieve
an overall cross-validation modeling performance. The
model was then tested on the other 249 testing samples.
In this study, we only used the model testing perform-
ance for comparison, which was averaged among 500
models. This part of the experiment was performed in R,
with packages of ‘class’ for KNN, ‘pamr’ for NSC, and
‘kernlab’ for SVM. More detailed description of these
three models are published elsewhere.

Other popular tree-based predictive models
Besides KNN, SVM and NSC, we also compared HetEcn
to two more commonly-used machine learning models, as
Random Forest and XGBoost, using the same processed
datasets. For Random Forest, we tuned the number of
trees from 10 to 200, and observed a saturated perform-
ance when trees = 100. For XGBoost, tree-based models
were selected as default. The other parameters are used as
default. The training process of Random Forest was re-
peated 100 times, for each time the whole training dataset
was used to train the model; and the model was then eval-
uated on the other 249 testing samples. Similarly, we only
used the model testing performance for comparison,
which was the average AUC among 100 repeats. Since
XGBoost performance will not change when different ran-
dom seed was set, we only ran XGBoost once. This part of
the experiment was performed in Python, with modules
‘XGBoost’ and ‘SKLearn’.

Best models in MAQC and SEQC project
We also compared HetEnc to the best predictive model
that developed by various attendees that submitted to
the consortium during the MAQC/SEQC projects. Note
that these best models were not restricted to any data
normalization, feature selection or modeling algorithms,
and their performance was only evaluated by the testing
samples, which were blinded to them when training their
models. The best models were selected as using the best
model of a single attendee, which included 6 microarray
models and 54 RNA-seq models. The final performance of
SEQC models were their average AUCs.

Results
Defining the HetEnc architecture
HetEnc is inspired by the domain separation network [23]
developed for image analysis. The domain separation net-
work extracts image representations into two subspaces:
one private component, and another component shared
by different domains. Here, we implemented a similar idea
in HetEnc to represent the gene expression, to show the
platform-shared (or platform-independent) information
by organizing different platforms’ data into the designated
encoding networks.
The entire HetEnc architecture is composed of two

modules. The first feature representation module is the
key module, which is designed to extract the gene expres-
sion representation into different subspaces via different
representing or encoding networks. The first module in-
volves three distinct encoding networks; Autoencoder
(AE), CombNet and CrossNet (Fig. 2a), for extracting dif-
ferent subspaces of the feature representation, respect-
ively. The second module of HetEnc is the modeling step,
which is basically a six-layer deep neural network (named
6-DNN) used to predict targeted endpoints using the
intermediate features (Fig. 2b).
In the feature representation step, the most differences

between three networks (AE, CombNet and CrossNet)
are the definition of input and output data, which could
be the same or different platform. In all, there are four
different combinations of microarray and RNA-seq, as
shown in Fig. 2a. For example, if microarray is the pri-
mary input platform, AE will use type (a). CombNet will
use the input-output combination of (a) and (b). Cross-
Net will use the combination of (c) and (d). On the other
hand, If RNA-seq is the primary input platform, AE will
use type (b). CombNet will use the combination of (a)
and (d), and CrossNet will use the combination of (c)
and (d). Note that CombNet and CrossNet will not
change when primary platform changed. The three inter-
mediate feature sets generated by three encoding net-
works were named Feature-A, Feature-B and Feature-C
for AE, CombNet and CrossNet, respectively.
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The hyper-parameters of AE are described as follows: in
total, nine layers were formed, with the number of nodes,
p, 4096, 3072, 2048, 1024, 2048, 3072, 4096, p, respectively,
where p was the number of input (and reconstructed) gene
features. The first four layers are the encoding network
and the last four layers are the decoding network. The
compressed feature set, therefore, is from the bottleneck
(i.e., intermediate) layer, with 1024 nodes. We used the
hyperbolic tangent (Tanh) activation function for all AE
hidden layers, and the sigmoid (logistic) activation function
for the output layer. For denoising, we also added one
drop-out layer between sets of two layers, and the drop-
out ratio was set to 0.2.
In the modeling step, the six-layer feed-forward deep

neural network (6-DNN) is depicted in Fig. 2b. The hyper-
parameters of 6-DNN are listed here: (1) Network size:
sizes for each layer (i.e., node) in the network are x, 1024,
512, 256, 128 and 2, respectively; where x is the size of the
intermediate features set, and 2 is a categorical endpoint
for a binary endpoint. For most of this study, x = 3072;

when using one or two AE models in comparative analysis,
the input shape would also change to 1024, 2048, respect-
ively. (2) Activation function: we used the Rectified Linear
Unit (RELU) activation function for all dense hidden layers,
and Softmax activation for the output layer, as a classifica-
tion task. (3) Regularization: between two hidden (dense)
layers, batch normalization was added for purposes of
regularization, as depicted in Fig. 2b. Due to concern over
introducing bias when using batch normalization and
drop-out simultaneously (Li, et al., 2018), the drop-out
layer is not implemented in the 6-DNN network structure.

Predictive performance on SEQC neuroblastoma dataset
We evaluated our model on the SEQC neuroblastoma
dataset. In total, six predictive models were trained for
endpoints FAV, OS_All and OS_HR, and two data plat-
forms (Microarray, RNA-seq), respectively. Because the
first step (feature representation) is unsupervised, the en-
coding networks (i.e., AE, CombNet, CrossNet) generated

Fig. 2 HetEnc overview. (a) feature representation model architecture and three different encoding networks (AE, CombNet and CrossNet) used
in the study; (b) feature extraction and 6-DNN structure in the modeling step
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by the first step would be shared between three endpoints
in the modeling step.
We first applied Principle Component Analysis on the

intermediate features generated by three encoding networks.
Latent features from each encoding network will be ana-
lyzed both independently and combined as HetEnc features,
as shown in Fig. 3a. Microarray and RNA-seq samples were
combined in PCA analysis. For AE features, latent features
(Feature-A) of Microarray and RNA-seq samples were gen-
erated by different AE models; For CombNet and CrossNet,
the latent features (feature-B and C) were generated by the
same model. As a result, we observed in all PCA results,
Microarray and RNA-seq samples are highly distinguished
from each other along Principle Component 1 (PC1), indi-
cating the large inherent differences (platform-related
variance) between these two platforms. Compared to AE,
CombNet and CrossNet has a closer distance between
Microarray and RNA-seq samples on PC1. On the other
hand, Microarray and RNA-seq samples fall into a similar
range of PC2 particularly in CombNet and CrossNet, imply-
ing PC2 reflected some common properties (i.e., platform-
independent variance) between two platforms.
To further reveal the platform-independent variance in

PC2, a correlation analysis was performed on PC2 between
Microarray and RNA-seq of the same sample. As shown in

Fig. 3b, the pair-wise correlation of PC2 from AE between
Microarray and RNA-seq is not significant (r2 = 0.289). On
the other side, there are high linear correlation of PC2
from CombNet and CrossNet between RNA-seq and
Microarray, as r2 reached 0.921 and 0.89 respectively. Fur-
ther, when combined latent features from AE, CombNet
and CrossNet together as HetEnc, the linear correlation
between two platforms became higher (r2 = 0.949). This
PCA and pair-wise PC2 correlation analysis result indi-
cated that CombNet and CrossNet could represent
platform-independent features from the raw dataset.
The predictive models were first constructed and evalu-

ated by five-fold cross-validation within the training data-
set. In the five-fold cross-validation, we randomly
separated the entire training dataset into five subgroups;
where in each run, four subgroups of samples were used
to train the model, and the remaining one was used as a
testing set for evaluating the model’s performance. Each
subgroup was tested once. By picking different random
seeds, we repeated the five-fold cross-validation 20 times;
therefore, a total of 100 (5*20) sub-models were built for
each endpoint.
After evaluating the model via cross-validation, we

trained one model using all 249 training samples for
each endpoint. The model was finally evaluated on the

Fig. 3 (a) Principle Component Analysis (PCA) by features extracted by HetEnc and its three encoding networks: AE, CombNet and CrossNet.
RNA-seq and Microarray samples are combined for PCA analysis. Green and red dots represent RNA-seq and Microarray samples, respectively. (b)
A sample-wise scatter plot of PC2 correlation analysis between Microarray and RNA-seq platform
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test dataset with the other 249 samples. Similarly, we set
different random seeds to run the whole modeling
process 100 times to retrieve an average predicting per-
formance. We measured the model’s performance for
three endpoints (FAV, OS_All, OS_HR). As shown in
Table 2, we observed a small standard deviation among
100 repeats in both cross-validation and external testing,
indicating initial random seed had little influence on the
overall performance. We also observed that the external
evaluation performance was very close to the cross-
validation result, confirming that our HetEnc model did
not overfit the training dataset.
We compared our model performance to three ma-

chine learning models - support vector machine (SVM),
nearest shrunken centroids (NSC) and k-nearest neigh-
bors (KNN) -using the same training/testing sample dis-
tribution and data preprocessing (i.e., using the same 10,
042 genes). A detailed modeling process of SVM, NSC
and KNN can be found elsewhere [24]. Furthermore, we
compared our result to the submitted best models from
all analysis teams in the SEQC/MAQC consortium [4],
which held the same data distribution (i.e., training/test-
ing split), but had no restrictions for machine learning
methods (i.e, data normalization, feature selection, mod-
eling algorithm, etc.) or expression datasets. The SEQC
predictive models were built during the SEQC project,
where a total of 6 microarray and 54 RNA-seq models
were constructed, and we used Area under the Receiver
Operating Characteristic Curves (AUC) for comparison.

The performances (AUC) of HetEnc, KNN, NSC, SVM
and the best model from SEQC/MAQC for three End-
points (FAV, OS_All and OS_HR) with two platforms
(RNA-seq and Microarray) was shown in Table 2. Since
OS_HR in average showed a low performance regardless of
the platform and modeling algorithm, we notated this end-
point is not predictable by current dataset and its perform-
ance would not affect the comparison result. After all, we
observed that these best models from SEQC analysis teams
showed better overall performance than the models con-
structed by KNN, NSC and SVM in the previous study.
One possible explanation could be the restriction of genes
to those with one-to-one mapping between RNA-seq and
microarray. However, this restriction did not have any
detrimental effect for our HetEnc model. As a result, our
HetEnc model still showed a significantly better predicting
performance (p < 0.01) than the best fine-tuned predictive
models from the SEQC community.

Discussion and conclusion
By developing HetEnc, the underlying hypothesis is that
we assume the gene expression profiling value is deter-
mined by two factors: platform-independent factor and
platform-related factor; where the platform-independent
factor is mostly attributed to the sample itself, and the
platform-related factor is specific to the platform used to
measure the expression value. Thus, the main goal of
HetEnc is to separate the information from these two
factors, to reduce the noise (component) introduced by

Table 2 Predictive performance (AUC) for the neuroblastoma dataset

Model RNA-seq Microarray

FAV OS_All OS_HR FAV OS_All OS_HR

Cross-validation HetEnc 0.964
(0.009)

0.830
(0.019)

0.520
(0.044)

0.962
(0.011)

0.849
(0.024)

0.651
(0.044)

HetEnc 0.969
(0.007)

0.854
(0.024)

0.592
(0.027)

0.948
(0.015)

0.825
(0.016)

0.569
(0.022)

Raw-DNN* 0.926
(0.043)

0.698
(0.058)

0.578
(0.03)

0.906
(0.054)

0.721
(0.035)

0.568
(0.031)

FS-DNN* 0.923
(0.052)

0.704
(0.046)

0.558
(0.028)

0.919
(0.056)

0.722
(0.047)

0.559
(0.025)

External Testing
(on same testing set)

KNN 0.896
(0.032)

0.641
(0.032)

0.495
(0.048)

0.907
(0.035)

0.662
(0.031)

0.515
(0.041)

NSC 0.901
(0.036)

0.700
(0.048)

0.499
(0.036)

0.921
(0.032)

0.713
(0.067)

0.510
(0.035)

SVM 0.894
(0.043)

0.631
(0.024)

0.512
(0.050)

0.914
(0.035)

0.620
(0.034)

0.525
(0.047)

RandomForest 0.905
(0.014)

0.740
(0.019)

0.563
(0.030)

0.912
(0.012)

0.727
(0.020)

0.560
(0.030)

XGBoost 0.883 0.742 0.517 0.874 0.749 0.611

Avg. of Best 60 SEQC Models 0.931
(0.02)

0.735
(0.072)

0.544
(0.052)

0.929
(0.02)

0.756
(0.082)

0.563
(0.038)

*Raw-DNN used the raw 10,042 gene features as input of DNN model, FS-DNN further applied feature selection threshold (p < 0.05 for each endpoint) before
entering the DNN model. The structure of DNN model used in Raw-DNN and FS-DNN are the same as the DNN used in HetEnc supervised learning step
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the platform and emphasize the platform-independent
factor.
As demonstrated in this study, HetEnc outperformed

previously-reported machine learning models overall,
achieving a significantly better predictive performance.
Three aspects accounted for its performance: (1) By using
exact the same dataset (i.e., the same pre-processed data as
model input), HetEnc showed significantly better predict-
ing performance than such machine-learning algorithms as
support vector machine (SVM), nearest shrunken cen-
troids (NSC) and k-nearest neighbors (KNN). We observed
this superior performance from both “head-to-head” com-
parative analysis and previously-published results. (2) With
no restrictions on data pre-processing and modeling strat-
egies, HetEnc still performed better than the best models
developed by other groups in the SEQC project. (3) Per-
formance differences between cross-validation and external
testing are relatively small in developed HetEnc models, in-
dicating that the HetEnc model can be applied more gener-
ally to new test sets.
For high-dimensionality biological data analysis, feature

selection and feature representation are two most applied
strategies for dimension reduction purpose. Feature selec-
tion methods aim to extract a subset of meaningful
biological entities (i.e., biomarkers) from the raw data.
Common feature selection methods are based on the fea-
ture itself (e.g., feature removal with low variance), its coef-
ficients with other features (e.g., LASSO), or coefficient
with the endpoint (e.g., T-test, Fold-Change, etc.). One ad-
vantage of using feature selection is about the model inter-
pretability, as discovered biomarkers like genes or proteins
could be intuitively interpreted with biological functions.
However, if the relationship between the biomarkers and
endpoint could be simply interpreted (such as gender-
related genes and gender prediction), usually a linear/logis-
tic regression model will be good enough to capture the
relationship. On the contrast, many studies have demon-
strated that the advanced modeling algorithms such as
Random Forest and SVM could significantly improve the
predictive performance especially for “moderate and diffi-
cult to predict” biological endpoints, indicating the rela-
tionships between biomarkers and the endpoint could be
too complicated to be interpreted in a simple format. That
is why we developed a feature representation method as
HetEnc to learn latent features of raw inputs from multi-
platforms via deep encoding networks. Still, for “easy to
predict” endpoint, we believe using simple model such as
KNN might be OK due to its higher biological relevance
and interpretability, without losing too much performance.
On the other hand, for “unpredictable” endpoints such as
OS_HR in this study, any modeling algorithm would not
have significant differences.
Moreover, unlike other integrated modeling which com-

bined features from different platforms either horizontally

or hierarchically [7], one unique advantage of HetEnc is
that it does not require multi-platform data for the test
samples. HetEnc is designed to use multi-platform data to
train two hetero-encoding networks in the feature repre-
sentation step, which is totally unsupervised; therefore, no
labeling information (i.e., the endpoint) is needed for util-
izing the multi-platform data. After the encoding net-
works are built, HetEnc converts the input platform data
into intermediate features with regards to the multi-
platform information it has learned.
Additionally, these two steps are quite independent of

each other, which enables HetEnc to maximize its data
utilization capability. For example, many datasets have un-
labeled samples; although these samples cannot be used in
supervised learning (i.e., the modeling step), they could
still be used in the feature representation step to further
fine-tune the model parameters. Further, the modulization
of HetEnc also enables the new deep learning technologies
and data format to be easily embedded. For example,
HetEnc could also be applied to data with spatial informa-
tion, such as changing the basis architecture in the feature
representation step from autoencoder to convolutional
autoencoder, recurrent autoencoder, etc.
In current study, we developed the HetEnc architec-

ture by combining AE, CombNet and Cross Net. To de-
termine the synergic effect among these three encoding
networks, we evaluated the model based on only one
single encoding network. As a cross-validation result on
OS_All endpoint, models with only AE, CombNet or
CrossNet yield 0.808, 0.801 and 0.811 in AUC respect-
ively, where the model with a combination of three per-
formed better (0.830 in cross-validation and 0.854 in
testing, Table 2). As many other types of encoding
networks are still under explore, further optimizing the
encoding networks in HetEnc would be a challenging
but rewarding work to better handle multi-omics data.
Model interpretability is one of the limiting factors of

many deep learning models. For example, in word embed-
ding study, although the exact value of one word-vector
have no meaning however its relative value (i.e., the dis-
tance between two word-vectors) could reflect the similar-
ity between two words. Similarly, in HetEnc the real value
of latent features (generated by encoding networks) may
not have explicit biological meaning however the distance
of latent features between two samples may reflect their
similarity/closeness in phenotype. In this study, we applied
Principle Component Analysis (PCA) to visualize these
latent features from three different encoding networks as
their 2D projection. As the result shown in Fig. 3, the two
major components, PC1 and PC2 showed distinguished
properties, as PC1 reflected more platform-related features
where PC2 represented more platform-independent fea-
tures. Particularly, we found the PC2 between Microarray
and RNA-seq of the same sample correlated quite well in
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CombNet and CrossNet, indicating these two encoding
networks contributed more on platform-independent
features.
As we are entering the big data era, more and more

researches would include multi-type data that generated
for a consensus decision making, where HetEnc is one
promising way to bridge different types of data by identify-
ing their common and specific features. In this study, we
restricted HetEncs to multi-platform gene expression data
analysis due to the resource we now have in hand. How-
ever, the concept of HetEnc may not only suitable for the
platform-specific information, but also apply to find a
common information between different sites/labs, differ-
ent time/dose, or different organ/tissues. Further experi-
ments are needed to see whether the concept of HetEnc
may also apply to other multi-type data researches.
In this study, we only evaluated HetEnc on a two-

platform dataset, and we did not discuss multi-platform
(> = 3) data analysis. Multi-platform data analysis would
be more complicated, due to data sparsity and feature
mapping issues, especially finding/developing a mapping
system among all platforms would be difficult. Neverthe-
less, HetEnc holds the potential to expand to multi-
platforms. A possible way for HetEnc to work with
multi-platform datasets is to design more comprehensive
CombNet and CrossNet models. For example, the
CombNet could combine multiple platforms, and the
CrossNet could represent the two-way translation be-
tween every two platforms (such as A-B; B-A; A-C; C-A;
B-C; C-B for three platforms). Another strategy is to de-
sign multiple CombNet and CrossNet models. There
may be one specific CombNet and CrossNet model for
each platform pair, thus combining the features from all
representation models, this strategy may allow to avoid
developing CombNet and CrossNet models for two
rarely related platforms due to lack of mapping system.
Still, further investigation and optimization is essentially
needed to generalize HetEnc to multi-platform data ana-
lysis, as well as to sparse datasets for which including
samples that not have multi-platform data.
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