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Abstract

Background: Seasonal timing of breeding is a life history trait with major fitness consequences but the genetic
basis of the physiological mechanism underlying it, and how gene expression is affected by date and temperature,
is not well known. In order to study this, we measured patterns of gene expression over different time points in
three different tissues of the hypothalamic-pituitary-gonadal-liver axis, and investigated specifically how
temperature affects this axis during breeding. We studied female great tits (Parus major) from lines artificially
selected for early and late timing of breeding that were housed in two contrasting temperature environments in
climate-controlled aviaries. We collected hypothalamus, liver and ovary samples at three different time points
(before and after onset of egg-laying). For each tissue, we sequenced whole transcriptomes of 12 pools (n = 3
females) to analyse gene expression.

Results: Birds from the selection lines differed in expression especially for one gene with clear reproductive
functions, zona pellucida glycoprotein 4 (ZP4), which has also been shown to be under selection in these lines.
Genes were differentially expressed at different time points in all tissues and most of the differentially expressed
genes between the two temperature treatments were found in the liver. We identified a set of hub genes from all
the tissues which showed high association to hormonal functions, suggesting that they have a core function in
timing of breeding. We also found ample differentially expressed genes with largely unknown functions in birds.

Conclusions: We found differentially expressed genes associated with selection line and temperature treatment.
Interestingly, the latter mainly in the liver suggesting that temperature effects on egg-laying date may happen
down-stream in the physiological pathway. These findings, as well as our datasets, will further the knowledge of the
mechanisms of tissue-specific avian seasonality in the future.

Keywords: Transcriptomics, Seasonal timing, Aves, Selection line

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: V.Laine@nioo.knaw.nl
1Department of Animal Ecology, Netherlands Institute of Ecology
(NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
Full list of author information is available at the end of the article

Laine et al. BMC Genomics          (2019) 20:693 
https://doi.org/10.1186/s12864-019-6043-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-019-6043-0&domain=pdf
http://orcid.org/0000-0002-4516-7002
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:V.Laine@nioo.knaw.nl


Background
Over recent decades, environmental change (e.g. climate
change) has resulted in phenological shifts of spring
events across trophic levels [1–4]. In seasonally breeding
birds, environmental change has the most profound ef-
fect on timing of breeding, i.e. timing of egg-laying, a
life-history trait with major fitness consequences (e.g.
[5–8]). As such, seasonal timing of breeding has been
under directional selection towards earlier egg-laying
[9–11]. In order to predict the responses to directional
selection on timing of breeding via genetic changes, we
need to understand both the novel and intensified selec-
tion pressures posed by environmental change on, as
well as the genetic variation in, timing of breeding. Only
those parts of the mechanisms underlying timing for
which there is genetic variation can show a response to
natural selection; these are the ‘wheels’ natural selection
can turn [12]. Finding the genetic basis of timing of
breeding is, however, complicated because there is a
complex physiological mechanism underlying it, in
which different organs and different environmental vari-
ables at different moments in time play a role [13].
Photoperiod plays a main role in timing of breeding,

as the yearly predictive increase in photoperiod in early
spring provides precise information for birds to track
the time of the year and stimulates the photoreceptors
in the hypothalamus, which then send information along
the photoperiodic signalling pathway [14, 15]. This
pathway, in turn, triggers the synthesis and secretion of
gonadotropin-releasing hormone (GnRH) in the hypothal-
amus, which marks the activation of the hypothalamic-
pituitary-gonadal-liver (HPGL) axis (Fig. 1, [14, 15]), a key
pathway underlying gonadal growth and maturation in an-
ticipation of the breeding season and ultimately timing of
breeding [16, 17].
While the function of photoperiod is clear in timing of

breeding [16] and its signalling pathway prior to the
activation of the HPGL axis is well-known at the mo-
lecular level [15, 18, 19], this remains largely elusive for
temperature. We know, that it has a causal effect on
[20, 21] and ‘fine-tunes’ timing of breeding [17, 22],
that breeding time varies greatly between and within fe-
males from one year to the next depending on spring tem-
peratures [23–25], and that the effect of temperature
varies throughout spring and across latitudes [23, 25].
Under global warming, seasonal breeding birds could use
temperature information to adequately advance their egg-
laying period. However, this advancement might at some
point become constrained by the lack of responsiveness to
the HPGL axis to an increasing temperature. This is im-
plied by the weak relationship between the development
of the HPGL axis and the onset of egg-laying [26], sug-
gesting that the way temperature acts on timing by-passes
some major components of the reproductive system.

However, it is unclear via which mechanism temperature
is perceived and integrated [27]. Thus, how temperature
affects seasonal timing of breeding and if this is only in
the brain, like photoperiod, or also elsewhere in the HPGL
axis.
As pointed out above, changing environments pose

selection pressures on phenological traits such as timing
of breeding, and a better understanding of the regulation
of different parts of the reproductive axis by environ-
mental cues and its molecular basis is hence imperative,
especially in the context of adaptation to climate change.
For this study we use the great tit (Parus major), which
is a model species in ecology and evolution, due to its
willingness to breed in nest boxes, short generation time
and large broods, and wide distribution [28]. In addition,
the study system of great tits, relying on caterpillars, which
in turn rely on oak bud burst, is a well-known system [29]
and showed different rates in shifts between trophic levels
due to changing environments [6, 9, 30, 31]. Recently, a
comprehensive molecular toolbox became available,
including a well annotated reference genome [32], whole
transcriptomes and methylomes from several tissues
[32–34] and two SNP chips, 10 k and 650 k [35, 36],
making the exploration of the (epi)genetic architecture of
life-history traits possible [34, 37–40]. In addition to this
toolbox, using the 650 k SNP chip, selection lines for early
and late egg-laying were created using genomic selection,

Fig. 1 A schematic representation of the hypothalamic-pituitary-
gonadal-liver axis in female birds (adapted from Williams 2012)
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which is selection based on multi-marker genotypes rather
than on the phenotype [21, 41]. Nestlings (the F1 gener-
ation) were taken from wild broods of which the mother
was either an extremely early or extremely late breeder.
These chicks were genotyped and, based on their “gen-
omic breeding values” (GEBVs), individuals were selected
for early and late line breeding pairs to produce the F2
generation in captivity (for details see [21, 41]). The F3
generation was then generated from the F2.
Here, making use of abovementioned tools, we mea-

sured overall gene expression levels by means of RNA-
seq based expression profiling in three different tissues
in great tit females housed in contrasting temperature
treatments at three different time points related to egg-
laying. As such, we explore time, temperature and tis-
sue-specific gene expression patterns underlying timing
of breeding. In order to identify molecular pathways
likely to be involved in timing of breeding and the
potential effect of temperature on these pathways, we
performed functional gene enrichment analysis, network
construction and hierarchal clustering of the RNA-seq
datasets. In addition to exploring the molecular basis of
seasonal breeding, our datasets and results will be an
important starting point for future studies, especially on
wild avian reproduction.

Results
Phenotypic results
The phenotypic results are described in detail in [21]. In
short, we found no effect of either selection line,
temperature treatment or their interaction (see “Experi-
mental setup and samples” in materials and methods) on
egg-laying dates (see “First breeding season” in materials
and methods) and follicle size (see “Second breeding sea-
son” in materials and methods). However, follicles were
significantly larger at time point 3 compared to time
points 1 and 2.

Sequencing and alignment
For the downstream analyses, we sequenced on average
18 ± 3 million (mean ± s.d.) single end reads in hypothal-
amus, 16 ± 2 million reads in liver and 15 ± 2 million
reads in ovary and the overall alignment rate was on
average 82.3% in hypothalamus, 79.8% in liver and 91.2%
in ovary (Additional file 1: Table S1).

Differentially expressed genes (DEGs)
When using the ‘regularized log transformation proced-
ure’ (rld) transformed expression values from the
DeSeq2 [42] package in the principal component anayl-
sis (PCA), we found that in the hypothalamus there was
no clear clustering among time points, line or treatment
(Additional file 18: Figure S1a). The PC1 explained 38%
of the variance and that of PC2 is 22%. However, in liver

and ovary the PC1 (with over 50% variation explained)
clearly separated time point 3 samples from time points
1 and 2 (Additional file 18: Figure S1b&c, respectively).
Taken together, the PCA analysis provided the first evi-
dence of a clear distinction of gene expression profiles
between different time points especially within liver and
ovary in our dataset.
In the differential gene expression analysis with

DeSeq2, we found significant differences between time
points in 491, 569 and 5175 transcripts in hypothalamus,
liver and ovary, respectively (Table 1, Fig. 2; Additional
files 3, 4, 5: Tables S3–S5 and Additional files 19, 20, 21:
Figures S2-S4). We also did pairwise comparison with
one time point to the two other time points and most of
the expression differences occurred in time point 1 and
3 (Additional file 2: Table S2).
There was a line effect in hypothalamus and ovary

(Table 1). In the line main effect model for ovary one
gene, the zona pellucida glycoprotein 4 (ZP4), clearly
stood out having a strong differentiation between lines
(Additional files 21 and 26: Figures S4 and S9, Add-
itional file 5: Table S5).
Most of the DEGs between warm and cold treatments

were found in liver while, interestingly, the hypothalamus
showed a significant interaction effect between time point
and temperature forming two clear clusters of upregulated
genes (Fig. 2d, Additional file 2: Table S2). The pools from
the warm condition were shifted between time points com-
pared to the cold treatment (Fig. 2d). For the other inter-
action models there were 0 to 14 differentially expressed
genes in all of the tissues (Additional file 2: Table S2).

Hierarchical clustering of DEGs and GO enrichment
analysis
We used hierarchical clustering of the DEGs to determine
clusters of genes that changed through time in a similar
way. We identified four, three and two clusters in hypothal-
amus, liver and ovary time point models respectively, and
two groups in the hypothalamus time point-temperature
interaction model (Fig. 2, Additional files 22, 23, 24, 25: Fig-
ures S5-S8 and Additional files 3, 4, 5: Tables S3-S5). Each
cluster had a particular expression profile over time (and

Table 1 The number of genes showing significant differential
expression in the main effect models for the three tissues. Time
point refers to contrasts between the three time points. Line
refers to contrasts between the early and late selection line and
temperature is the contrast between the warm and cold
treatment

Tissue Timepoint Line Temperature

Hypothalamus 491 26 5

Liver 569 10 30

Ovary 5175 46 2
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temperature in the hypothalamus interaction model). In
most clusters there was a linear increase or decrease of ex-
pression towards time point 3, but there were one cluster
in hypothalamus (clusters 2) and one cluster (cluster 3) in
liver which showed relatively higher/lower expression at
time point 2 compared to time points 1 and 3.
A functional enrichment analysis was possible for the

time point main-effect models for all of the tissues and
also for the time point-temperature interaction model
for hypothalamus when the significance level was set to
p < 0.05 for DEGs. Enrichment analysis for the main ef-
fect model in hypothalamus showed that in genes that
were upregulated in time point 1 (cluster 1) 11 different
GO categories and KEGG pathways were overrepre-
sented. These were related especially to circadian
rhythm related GO terms and pathways (Additional file
6: Table S6). Genes that had increased expression to-
wards time point 3 (clusters 3 and 4) had 45 different
GO terms and KEGG pathways overrepresented and
from these especially GABA activity and other neuronal
function related GO groups were significantly enriched.

Cluster 2 (low expression at time point 2) had one GO
category overrepresented.
In the interaction model between time point and

temperature for hypothalamus, there were two gene
clusters. Cluster 1 genes contained upregulated genes at
time point 3 in both temperatures but the expression
pattern in time points 1 and 2 differed between warm
and cold treatments. In Cluster 2 the expression pattern
was the opposite; upregulated genes at time points 1 and
2 compared to time point 3 and differing patterns be-
tween temperature treatments in time point 3. The
genes and GO groups in cluster 1 (242 functional terms)
were similar to the main model results with functions
related to neuronal activity and the GABA pathway.
However, the upregulated genes in cluster 2 (323 func-
tional terms) were related to ribosomal, mitochondrial
and ATP related metabolic functions (Additional file 7:
Table S7).
In liver, there were 130 GO terms and KEGG path-

ways enriched in genes that were upregulated in time
point 1 (cluster 2). These terms and pathways were

Fig. 2 Heat map of genes that were significantly differentially expressed in the time point main models in hypothalamus (a), liver (b) and ovary
(c) and in the time point x temperature interaction model in hypothalamus (d) (Note that in (d) samples were grouped based on temperature
treatment, which differs from a-c). Genes were clustered by distances based on Pearson correlation coefficients in both figures. Lighter colours
indicate lower differential expression; row Z- score scales from − 3 (dark blue) to 3 (dark orange)
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related to immunological functions, hormone responses
and insulin response. Genes upregulated at time point 2
(cluster 3) were linked to two GO terms: carbon-nitrogen
lyase activity and oxidoreductase activity. In time point 3
(cluster 1) 32 GO groups and KEGG pathways were
enriched which were especially related to protein process-
ing and amino acid response (Additional file 8: Table S8).
Furthermore, egg-laying related genes, cathepsin E-A-like
gene (LOC107205210, CTSEAL), vitellogenin 2 (VTG2;
LOC107208431 and LOC107208432) and apovitellenin 1
(APOV1, LOC107200088) were expressed at this time
point (Additional file 27: Figure S10 and Additional file 4:
Table S4). The expression level increase of VTG2 and
APOV1 had fold change of nine and CTSEAL fold change
of 7 from time point 1 to time point 3 where early line
showed larger increase.
In ovary, the genes that were upregulated at time point

1 (cluster 1 with 130 functional groups) were related to
cell cycle, chromosome functions and spindle formation
(Additional file 9: Table S9). Five bird-specific egg re-
lated genes; VTG2, ovalbumin (OVAL; LOC107215075),
ovalbumin-related protein Y (OVALY, LOC107214443),
lamin-L(III)-like (LMINA; LOC107209405) and avidin
(AVD; LOC107198337), were expressed at time point 1.
In time point 3 (cluster 2 with 803 functional groups)
genes were related to morphogenesis and development.
The “egg-laying gene” APOV1 was expressed at time
point 3 and also bird specific major histocompatibility
complex class II beta chain (BLB2; LOC107199337) gene
(Additional file 5: Table S5).
To explore the tissue specific circadian gene activity,

we compared our DEGs to the genes from the super
pathway ‘BMAL1-CLOCK, NPAS2 activates circadian
gene expression’ from Path Cards, a pathway unification
database (http://pathcards.genecards.org; [43]), which
lists 86 genes that activate the circadian gene expression
pathway. In total, we found 41 genes of this pathway
that were significantly differentially expressed between
time points or in interaction with temperature in hypo-
thalamus. Most of these circadian genes were found in
ovary (28 genes) (Additional file 10: Table S10).

Weighed correlation network and hub gene analysis
To investigate the patterns of co-expression among tran-
scripts, we analysed the rld transformed data using
weighed correlation network analysis (WGCNA) [44].
We constructed five, nine and six co-expression modules
for hypothalamus, liver and ovary, respectively that were
significantly associated with the treatments (Table 2).
There were modules that were significantly correlated
with every treatment in liver but in hypothalamus and
ovary none of the modules correlated with the
temperature (Table 2, Additional files 29, 30, 31: Figures
S12-S14). There was an overlap with the genes between

modules and DEGs where most of the overlap was with
the time point model in every tissue type and also the
interaction of time and temperature in hypothalamus
suggesting time point being the most driving effect of
co-expression in our samples (Table 3). Details of the
transcripts belonging to the modules are provided in
Additional files 11, 12, 13: Tables S11–13.
We could determine 13 “real” hub genes out of 21

modules based on combination of co-expression and
PPI network connections (Table 2). The network
analysis of “real” hub genes from each module signifi-
cantly associated with the treatments showed that all
the genes (Additional files 14, 15, 16: Tables S14–16),
were in the same PPI network with all of them
belonging to molecule binding GO term and most
significant pathways were estrogen signalling and pro-
gesterone-mediated oocyte maturation pathways (Fig. 3
and Additional file 17: Table S17).

Discussion
We measured gene expression levels in 12 pools of three
female great tits each, from two lines selected for early
and late egg-laying, which were kept at two contrasting
temperature treatments, and were sampled at three time
points across the breeding season. Most of the DEGs
varied between time points 1 (well before egg-laying)
and 3 (at the time of egg-laying). Gene expression levels
of females from both lines and temperature treatments
were following similar patterns in ovary and liver. In
hypothalamus, however, we found a significant inter-
action between time point and temperature, which could
indicate that temperature affects the timing of certain
gene expression levels mainly in the brain. We found no
effect of temperature on either egg-laying date in the
first breeding season or follicle size in the second breed-
ing season (see “Downstream regulation of timing of
breeding” below). Many of the highly DEGs had an un-
known function; either being non-coding RNA or the
gene has an unknown function especially in birds. Fur-
thermore, in every tissue we identified hub genes that
may play a central role in timing of reproduction in
great tits.

Limitations of the data
Due to the small sample size for each time point in this
study, the statistical analysis likely suffered from low
power to detect differences between time points,
temperature and line. We used pooled data without any
replication and especially the interaction in hypothal-
amus would have benefitted of having individual level
expression data with replication. Unfortunately, it is not
possible to obtain tissue samples from the same individ-
ual in every time point to see how the expression pat-
terns change in one individual. In great tits it has been

Laine et al. BMC Genomics          (2019) 20:693 Page 5 of 16

http://pathcards.genecards.org


shown that there is some genetic variation both in the
onset and termination of egg-laying, and in the under-
lying mechanisms, and sometimes there is also an inter-
action with temperature [45, 46]. Some families of birds
are able to respond more quickly than others to the in-
creasing temperature, which leads to differences in tim-
ing of breeding between families [46–50]. However, in
our case we tried to minimize the relatedness within the
pools and both lines were grouped in a similar way with
regards to the temperature so relatedness might not play
an important role for these results. We are thus positive
that our results give a comprehensive overview of the
different genes being expressed during seasonal timing
as the PCA, differential expression and WGCNA give
similar results. In addition, the results found also match
with those described in the literature. In future studies,
however, it is essential to confirm these results at the in-
dividual level and have additional time points before
time point 1, as used here, in order to pin point the

exact moment when preparing for breeding starts (i.e.
activation of the HPGL axis). Furthermore, having gene
expression levels in both the ovary tissue and follicular
tissue could help us to recognise specific ovarian and/or
follicular functions. Also, the addition of other tissues
would help building the whole network of interacting
genes [51].

Downstream regulation of timing of breeding?
Although gene expression levels in the hypothalamus
seem to be affected by temperature, this does not dir-
ectly lead to earlier egg-laying, because we found no ef-
fect of temperature on either egg-laying date (first
breeding season) or follicle size (second breeding sea-
son). Our data are in line with the hypothesis that down-
stream processes in the liver and ovary play a more
important role in the fine-tuning of egg-laying date than
hypothalamic processes [22, 52–54]. In this sense, the
absence of an effect on egg-laying date of temperature is

Table 2 Summary of gene modules identified with weighted correlation network analysis (WGCNA). Only showing modules with
significant correlation with the treatments. Network/module is number of genes found by STRING analysis out of the whole set of
module genes that passed the selection threshold (ModuleMembership > 0.8 and treatment p-value > 0.05). Top hub genes were
chosen based on high modular membership (kME) value and highest degree in PPI network

Tissue Module color Number of
genes

Most significant
correlation

Network/
module

Hub gene
symbol

Gene name

Hypothalamus

Brown 1668 Time point 117/130 ADCY2 adenylate cyclase 2

Turquoise 5631 Time point 395/493 HSPA8 heat shock protein family A (Hsp70) member 8

Blue 5068 Time point 784/911 MAPK1 mitogen-activated protein kinase 1

Green 1022 Time point 65/72 EPRS glutamyl-prolyl-tRNA synthetase

Yellow 1031 Line 55/58

Liver

Pink 714 Temperature 41/49

Turquoise 3149 Time point 202/264 GART phosphoribosylglycinamide formyltransferase…

Magenta 537 Time point 30/31 SNAP25 synaptosomal-associated protein 25

Red 901 Time point 32/39

Green 951 Time point 39/46 HSPA4 heat shock protein family A (Hsp70) member 4

Blue 3115 Time point 263/289 PTPRC protein tyrosine phosphatase, receptor type C

Purple 434 Time point 21/25

Salmon 363 Line 25/34 POLR3B RNA polymerase III subunit B

Midnightblue 160 Line 6/13

Ovary

Yellow 2229 Time point 147/174 HSP90AA1 heat shock protein 90 alpha family class A member 1

Turquoise 6579 Time point 913/1372 ACLY ATP citrate lyase

Blue 5573 Time point 1722/2252 SRC SRC proto-oncogene, non-receptor tyrosine kinase

Brown 3093 Time point 557/658 AKT1 AKT serine/threonine kinase 1

Cyan 123 Line 5/15

Midnightblue 102 Line 3/3
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informative on where in the neuro-endocrine cascade
fine-tuning occurs, rather than that it hampers new
insights.

Time point effects
Time point 1
At time point 1, the genes expressed in the hypothal-
amus were related to circadian rhythm and photoperiod-
ism. In fact, in every time point and every tissue, also in
the interaction model in hypothalamus, several genes in-
volved in circadian rhythms were differentially
expressed. In addition to the HPGL axis, the role of the
circadian clock in annual cycles has been suggested for
some time [55, 56]. The circadian phase at which light
affects the photoreceptive elements causes reproductive
changes [57]. The core of the avian circadian system is
located in the pineal gland [58]. This core clock acts as a
master regulator of the rhythms of peripheral tissues. In
birds a rhythmic expression of the clock genes has been
identified in the mediobasal hypothalamus, suggesting

that this structure contains the circadian pacemaker as-
sociated with photoperiodic time measurement [15, 59].
Interestingly, there was not much overlap in circadian

genes between tissues and also between the two models
(main effect and interaction) in hypothalamus. The more
downstream tissues (i.e. ovary and liver) also possess
their own circadian clockworks and entrain their tissue-
specific rhythms through their own, the core or both
outputs of the circadian system [60–62]. Especially the
circadian clocks in the ovary may play a role in the tim-
ing of ovulation [61–63]. The circadian genes from the
hypothalamus main model were mostly related to regula-
tion and entrainment of the circadian rhythm. In the
hypothalamus genes related to activin receptor signalling
pathway were also upregulated at time point 1. Activin
which is produced by gonads but also in extragonadal tis-
sues, can enhance FSH biosynthesis in the pituitary gland
and in hypothalamus activin stimulates GnRH release and
thereby affects the levels of FSH and LH [64–67].
In liver, eight differentially expressed molecular clock

related genes were mainly expressed at time point 1 with
their majority being circadian regulators of gene expres-
sion (nuclear receptor subfamily 1 group D member 1,
NR1D1; neuronal PAS domain protein 2, NPAS2; period
circadian clock 2, PER2; period circadian clock 3, PER3
and basic helix-loop-helix family, member e41,
BHLHE41). In birds, changes in circadian gene expres-
sion in liver has been linked to alteration in the seasonal
state [68]. However, timing of the circadian clock in liver
is often controlled by feeding rather than by the core
clock system the brain [69, 70]. At time point 1 also the
estrogen signalling pathway and hormone stimulus
related GO terms were enriched suggesting that the liver
could be processing hormonal signals from the ovary in
order to start vitellogenesis later in the season. In
addition, at time point 1 there were also genes upregu-
lated that were belonging to immunological and insulin
related functions. Both adaptive and innate immune
responses produced by liver have been found in chicken
ovaries, and these systems function to protect against
colonization and infection by microbial pathogens, as
well as to maintain normal functions of the ovary [71].
Insulin is suggested to be one of the key regulators of re-
productive function by having an effect on GnRH/LH
secretion [72].
We found that the ovary exhibited the most DEGs and

co-expressed genes. In the pools at time point 1 ovary
was expressing genes that were related to cell cycle,
mitosis and meiosis suggesting that it already started
with the ovarian maturation, along with follicle develop-
ment [73, 74]. For example, the expression of the genes
important for follicular development such as the trans-
forming growth factor beta (TGF-β) superfamily (such
as growth differentiation factor-9, GDF9 and bone

Table 3 The number of significantly differentially expressed
genes from time point, temperature and line models
overlapping with the members of gene modules from WGCNA
(see Table 2). Only showing modules with significant correlation
with the treatments

Tissue Module color Total Time Temperature Line

Hypothalamus

Brown 96 57 0 6

Turquoise 770 78 1 1

Blue 1070 280 1 0

Green 41 32 0 6

Yellow 44 21 0 4

Liver

Pink 10 5 5 0

Turquoise 185 176 4 0

Magenta 8 7 0 0

Red 83 71 10 0

Green 53 48 3 0

Blue 214 205 4 1

Purple 16 16 0 0

Salmon 7 2 0 5

Midnightblue 1 1 0 0

Ovary

Yellow 184 172 0 7

Turquoise 1996 1967 0 17

Blue 2242 2233 1 2

Brown 579 576 0 2

Cyan 7 6 0 1

Midnightblue 3 3 0 0
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morphogenetic protein 15, BMP15) [75, 76] and other
genes such as forkhead box L2 (FOXL2) and NOBOX
oogenesis homeobox (NOBOX) [74] were already high
so it seems that great tits start folliculogenesis six weeks
before laying the first eggs. There is an intermediate pre-
vitellogenic follicle development phase in chicken which
resides between the slow stage which is the development
of primordial follicles and can last several months and
the rapid follicle/rapid yolk development growth stage
which can happen just few days before laying the first
eggs [71]. During this intermediate phase small amount
of lipoprotein rich white yolk are incorporated to the
follicles increasing slightly their size and some of them
are selected to final maturation stage [71]. Because vitel-
logenesis in liver and the increased expression of LH re-
ceptors in ovary happens at time point 3, our birds
might indeed be in the pre-vitellogenic phase at time
point 1 (and also 2), as shown by follicular measure-
ments in the same females [54].

Time point 2
Many of the DEG clusters from the time point 1 were
also upregulated at time point 2 such as the circadian
and activin related genes in hypothalamus and ovary’s
cell cycle related genes. In hypothalamus there was also
a cluster of genes that were starting to be expressed at

time point 2 and continued to be highly expressed at
time point 3 as well. These genes were related to female
reproduction such as the genes progesterone receptor
(PGR) and prolactin receptor (PRLR, see below). There
were also genes part of angiogenesis and one of them
being fibroblast growth factor (FGF1) which has also
been shown to be linked to egg fecundity in chicken
albeit from the bone RNA samples [77].
In liver there was a specific upregulated gene cluster

on time point 2. These genes were related to oxidore-
ductase and carbon-nitrogen lyase activity which do not
have known function in reproduction. Both GO groups
shared one gene, the aldo-keto reductase family 1 mem-
ber B10 (AKR1B10) which is known to be part in detoxi-
fying compounds under oxidative stress conditions and
it has also been shown in humans that aldo–keto reduc-
tases are part of steroid hormone action and nuclear re-
ceptor signalling [78]. Oxidoreductase related functions
continued being important as well at time point 3 where
also amino acid metabolism and protein processing re-
lated GO groups were associated in which both oxidore-
ductase enzymes are important factors.

Time point 3
In time point 3 in hypothalamus the upregulated genes
were related to many neuronal function groups but also

Fig. 3 The PPI network of the “real” hub genes from all tissues combined. The line thickness indicates the node connection score; thicker line
means more evidence for the connection from existing research (experimental, co-expression, database). Colours correspond with modules from
Tables 2 and 3
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to GABA receptor functions. GABA, the main inhibitory
neurotransmitter, and glutamate, the main stimulatory
neurotransmitter, set a level of sensitivity in the hypo-
thalamus that decreases or increases the likelihood that
GnRH will be synthesized or released based on the
reproduction status of the females [79]. Other HPGL-
axis genes that are known to be expressed in hypothal-
amus such as gonadotropin-releasing hormone 1
(GnRH1) was not expressed in our hypothalamus sam-
ples. However, GnIH (but annotated as neuropeptide VF
precursor, NPVF in great tit), iodothyronine deiodinase
2 (DIO2) and thyroid stimulating hormone receptor
(TSHR) were active in hypothalamus and from these
TSHR was especially expressed on time point 3 indicat-
ing HPG cascade going towards egg production [59].
At time point 3 in liver in addition to above men-

tioned metabolism and protein processing functional
groups, vitellogenesis related genes were upregulated
such as VTG2 and APOV1 which also showed line dif-
ferences in expression levels where early lines had higher
expression especially in the early-warm condition at this
time point. Furthermore, cathepsin E-A-like gene
(LOC107205210, CTSEAL) was upregulated at time
point 3, which has been shown to be over-expressed
during vitellogenesis in chicken liver and is regulated by
estrogen [80, 81]. Next to CTSEAL in the great tit gen-
ome is bestrophin 3 (BEST3) which was also upregulated
at time point 3. BEST3 is an important gene in chloride
channel activity but there is no known function in
regards to reproduction. The similar expression pattern
between BEST3 and CTSEAL and their closeness in the
genome suggests that they might be co-regulated but it
is unclear in the current study if mRNA from BEST3
used in the liver in the end. It is known that mRNA goes
through several regulatory processes after it is made and
this is often seen when comparing the expression levels
from transcriptomes and proteomes [82, 83]. In addition
to BEST3, we found additional genes from every tissue
that have unknown function in bird reproduction. There
were also transcripts that are annotated as ncRNA by
the NCBI. This type of RNA has been shown to be im-
portant in eukaryotic gene regulation and also in hormo-
nal pathways and meiosis during reproduction [84].
Furthermore, there is evidence that miRNAs are differ-
entially expressed in the ovary from sexually immature
versus mature chickens, and in developing ovarian folli-
cles relative to the stage of maturation [85].
Most of the circadian genes were expressed in the

ovary and especially at time point 3 supporting the idea
that these genes are important in starting the ovulation
in birds [62, 63]. At time point 1 the two period genes,
PER2 and PER3, were upregulated. In poultry these two
have been linked to preovulatory follicle expression [61].
In general, it is suggested that expression of ovarian

circadian clock genes may be influenced by the increase
of LH which may be a mechanistic link for communicat-
ing circadian timing information from the core clock in
the brain to the ovary [61, 86]. The receptors for FSH
and LH (follicle-stimulating hormone receptor FSHR/
LOC107202460 and lutropin-choriogonadotropic hor-
mone receptor, LHCGR/LOC107201154) were expressed
in ovary and especially the expression of LHCGR
increased towards time point 3 suggesting increased LH
activity in our ovary samples. In birds the increased
expression of LH receptors in ovary starts the final fol-
licle maturation [87]. In addition to of the circadian
genes, many of the upregulated genes were also related
to developmental and morphogenesis GO groups and
pathways. Interestingly, the mitogen-activated protein
kinase (MAPK) signalling pathway was active at this
time point as well. MAPK is proposed to inhibit FSHR
transcription and is part of the cascade where pre-hier-
archal follicles are selected into the preovulatory hier-
archy [88] which is important at the rapid follicle
development stage.

Temperature and line effects
In the hypothalamus gene expression was affected by the
interaction between time point and temperature. How-
ever, due to limitations of the dataset the results should
be treated as suggestive. Circadian genes were mostly
expressed in time point 3 but there was a set of five
circadian genes that were expressed at time point 1
which were mostly related to ubiquitination. Mutation
in ubiquitin related genes can cause either elongation or
shortening of the endogenous circadian period (tau)
[89]. Interestingly, while photoperiod, nutrient and redox
status can entrain the clock [60], temperature can affect
the endogenous circadian period in great tits [90]. Fur-
thermore, in the interaction model in hypothalamus
there were circadian genes that are regarded as the core
genes in the circadian rhythm pathway such as clock
circadian regulator (CLOCK), PER2 and RAR related or-
phan receptor A (RORA) which also have pleiotropic
effects to many metabolic processes [60, 91].
In general, the interaction model had two gene clusters

that showed distinctive patterns. The genes that were
upregulated more during time point 1 and 2 in cold and
warm environments, respectively were associated with
metabolic-related terms and pathways such as ATP,
NADH and ribosomal metabolic processes. The molecu-
lar clock constantly receives feedback from the
metabolic signals in the cells [60, 92] and can affect
metabolism of the organism and is also controlled by
metabolic pathways. The terms related to the second
cluster which had genes upregulated more at time point
3 were similar to main effect time point model in hypo-
thalamus by having the GABA pathways but also the
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circadian related terms. However, in this cluster there
were also dopaminergic synapse pathway related genes
upregulated. Dopamine together with prolactin influ-
ences the HPG axis primarily at the level of the hypo-
thalamus and pituitary, by regulating the release of the
gonadotropic hormones [93, 94]. PRLR was indeed also
upregulated at time point 3 in our samples suggesting
that both dopamine and prolactin were active in
hypothalamus.
In contrast to the hypothalamus, no convincing effect

of an interaction between time point and temperature
(or just temperature alone) was found in liver and ovary,
which was not surprising as no difference in egg-laying
was observed between the temperature treatments. Liver
had 30 differentially expressed genes between the tem-
peratures and it was the only tissue with a co-expression
module associated with temperature. However, no GO
enrichment analysis could be conducted with the genes
and hub gene was not found in the module.
All the tissues showed some line differences in gene

expression but in ovary one gene was highly differen-
tially expressed. This was zona pellucida sperm-binding
protein 4 (ZP4) which had a two to three times higher
expression in early line compared to late line. It also ap-
pears in the co-expression results and is also under se-
lection in these selection line birds [21]. ZP4 is one of
the genes responsible to making the zona pellucida (in
mammals) or vitelline envelope (in fish, amphibians and
birds), a glycoprotein layer surrounding oocytes [95].
The zona pellucida mediates sperm–egg interaction,
provides a post-fertilization block to polyspermy, and
protects the embryo prior to implantation [96]. In our
selection line birds it is not known what role this gene
plays between the lines.

Real hub genes for every tissue
All the “real” hub genes that shared high interaction
both in the co-expression and the PPI networks were all
transcribing binding molecules and they were all in the
same final PPI network. Six genes were found in the estro-
gen signalling pathway (three from hypothalamus;
MAPK1, HSPA8, ADCY2 and three from ovary; AKT1,
HSP90AA1, SRC). In addition, MAPK pathway being im-
portant in the ovary, MAPK1 is estrogen activated in the
brain and is important in female sexual behaviour [97].
Both MAPK1 and HSPA8 have been found to be differen-
tially expressed in hypothalamus during spring migration
in black-headed buntings (Emberiza melanocephala) [98].
ADCYC2 in hypothalamus and SNAP25 in liver are im-
portant genes in insulin secretion and four genes are im-
portant in temperature detection (two in hypothalamus:
MAPK1, HSPA8 and two in ovary: AKT1, HSP90AA1). In
addition to estrogen signalling pathway, other hormonal
pathways related to reproduction were associated with

these hub genes such as progesterone, thyroid, prolactin
and oxytocin binding/signalling pathways suggesting that
our hub genes are important in female reproduction.

Conclusions
We generated comprehensive RNA expression data from
a set of three tissues important in the neuro-endocrine
cascade underlying avian seasonal timing of breeding,
from three different time points and from two
temperature treatments and two selection lines for
breeding time. Time was the strongest driving variable
in our dataset, as we would expect, but there was an in-
teresting interaction between time and temperature in
hypothalamus which should be studied more intensively
in the future studies. It could be possible that gene ex-
pression in the brain is affected by temperature, perhaps
through changes in expression of genes involved in the
circadian clock which affect the sensitivity to photo-
period. However, because laying dates were not directly
affected by temperature, the effect of temperature on
timing of breeding is likely fine-tuned downstream in
the reproductive axis, i.e. the liver and/or the ovary, ra-
ther than upstream, in the hypothalamus. These find-
ings, as well as our datasets, will further the knowledge
of the mechanisms of tissue-specific avian seasonality in
the future.

Methods
Experimental setup and samples
A detailed description of the experimental setup and
sampling is described in [21]. In short, 36 great tit pairs
(18 early line and 18 late line pairs) originating from the
second generation (F2) of lines artificially selected for
early and a late timing of breeding (for details see [21,
41]), were housed in 36 climate-controlled aviaries (2
m × 2m × 2.25 m) at the Netherlands Institute of Ecol-
ogy (NIOO-KNAW). Birds were subjected to a photo-
period mimicking the natural photoperiod and to two
contrasting environments mimicking a cold spring
(2013) and a warm spring (2014) in the Netherlands
(Additional file 32: Figures S15). Temperatures changed
every hour to follow as closely as possible the observed
hourly temperatures in these years. The combination of
selection line and temperature environment resulted in
four groups: ‘early-warm’, ‘early-cold’, ‘late-warm’ and
‘late-cold’. Birds were fed ad libitum with a constant
daily amount, had water available for drinking and bath-
ing and their welfare were assessed twice a day by ani-
mal caretakers [46]. The pairs were used in two
consecutive breeding seasons within one year (see
[54] for details); a first breeding season in spring and
a second breeding season in autumn, after the birds
went to a period of short-day length and low temper-
atures (see below).
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First breeding season
In the first breeding season, initiated on 4 January 2016, the
four groups were kept in pairs in the climate-controlled avi-
aries during spring. Nesting material (moss and hair) was
provided from the second week of March onwards. Females
could choose between three nest boxes of which two were
accessible from the outside to minimalize disturbance. Fe-
males initiated nest building and subsequent egg-laying,
which were recorded together with other reproductive traits
(e.g. clutch size). In addition, both sexes were blood sam-
pled bi-weekly throughout the breeding season as part of
another study [99].

Second breeding season
After the first breeding season, when birds were well on
their way moulting (~mid-July), days were shortened to
9 L:15D and temperatures decreased to 10 °C for seven
weeks to make the birds photosensitive and temperature
sensitive again. From September onwards, the pairs were
subjected to the same photoperiod and temperature re-
gimes again as in their first breeding season, to initiate
their second breeding season. Four females were re-
placed with a sister, because they did not initiate egg-
laying in the first breeding season. Females showed simi-
lar phenotypic responses in the first and the second
breeding season (a significant correlation between lay
date in the first breeding season and ovary size at time
of sacrifice in the second breeding season; [54]). There-
fore, pairs were divided in three groups (n = 12 pairs per
group) as such that the egg-laying date distribution (re-
corded in the first breeding season) were similar per
group. Every group was sacrificed at a different time
point (see “Tissue collection and preparation”, Fig. 4).

Tissue collection and preparation
Three time points throughout the second breeding sea-
son were chosen, based on the reproductive behaviour
from the first breeding season: (1) October 7 (resembling
March 7) when photoperiod exceeded 11 h [100], (2)
October 28 (resembling March 30) when nest building
occurred in the first breeding season, but prior to egg-
laying and (3) November 18 (or April 20) when about
25% of the females in 2015 had initiated egg-laying in
the first breeding season. We sacrificed one group (both
males and females, but we focus on the females in this
study) per time point (see [54] for details, Fig. 4). In
short, birds were caught per pair between 9 and 12 AM
from the aviaries, taken to the operation room and
deeply anaesthetized with Isoflurane (IsoFlo, Zoetis, Kal-
amazoo, Michigan) using breathing mask during which a
blood sample was also taken, followed by decapitation.
Tissues, including brain, gonads and liver were dissected
and stored in − 80 °C until further processing. At a later
stage, the hypothalamus was isolated from the rest of
the brain and, until further processing, stored in − 80 °C.

RNA extraction and sequencing
From hypothalamus, ovary and liver, RNA was isolated
by Trizol extraction (see [54] for details). We pooled
RNA of three females per time/line/treatment group,
resulting in a total of 12 pools (Fig. 4). The library prep-
aration and sequencing were performed at Baseclear,
Leiden, The Netherlands. Libraries were made using the
Illumina TruSeq strand-specific mRNA method ((Illu-
mina, San Diego, CA, USA). We used one lane of Illu-
mina HiSeq 2500 (single-end 50 bp) for 12 pools. About
192 million single-end reads of 50 bp were generated for

Fig. 4 Visualization of the experiments through which the F2 females (representing all four selection line x treatment combinations) in this study
went. Females subjected to the warm and cold treatment are indicated in red and blue, respectively. The blue arrows indicate the three time
points on which the tissues were collected: time point 1 when day length exceeds 11 h, time point 2 when nest building occurs in the first
breeding season and time point 3 when egg-laying was initiated in the first breeding season by 25% of the females
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liver, 219 million reads for hypothalamus and 181 mil-
lion reads for ovary.

RNA-seq analysis
Sequence data processing and differential gene expression
analysis
Filtering of low quality reads was conducted at Baseclear
by removing PhiX and adaptor sequences. The trimmed
reads were mapped to the Parus major reference gen-
ome build 1.1. (https://www.ncbi.nlm.nih.gov/assembly/
GCF_001522545.2) using Hisat2 v2.1.0 [101] with default
parameters. Transcript assembly was done using Cuf-
flinks v2.2.1 [102], with default parameter settings and
based on the Parus major annotation release 101 in
NCBI (https://www.ncbi.nlm.nih.gov/genome/annota-
tion_euk/Parus_major/101/). The obtained annotations
were merged using cuffmerge. Unique reads that
mapped to merged transcripts were counted using
HTSeq v0.9.1 [103].
All analyses were performed and figures made in R

v.3.4.4. Clustering of the samples was done using Princi-
pal Component Analysis (PCA) using the ‘regularized
log transformation procedure’ (rld) transformed expres-
sion values in order to diminish the number of variables
and summarize the data. Differential expression of genes
(DEG) between different time points, line and
temperature were performed with DeSeq2 v3.6 [42]
using the standard DeSeq2 protocol and Likelihood Ra-
tio Test (LRT). LRT is useful for testing multiple terms
at once compared to the default Wald test. The test ex-
amines two models, a full model with a certain number
of terms and a reduced model, in which some of the
terms of the full model are removed. The test deter-
mines if the increased likelihood of the data using the
extra terms in the full model is more than expected if
those extra terms are truly zero. Following the Deseq2
guidelines we created three main effect models: time
point (1 vs. 3), temperature and line, and included the
two main variables that were not analysed in each of
these three models as controlling variables. For the time
point we also compared the expression patterns between
one time point to the two others. We also had three
interaction models using all two-way interactions of
these three factors. Genes were considered differentially
expressed if the adjusted p-value was below 0.05. Heat-
maps were generated using the rld transformed expres-
sion values for DEGs using gplots and Pheatmap
implemented in R.

Hierarchical clustering analysis and GO enrichment
Clustering of the DEGs was done separately for each
tissue. A hierarchical dendrogram was generated using
the “hclust” function in R (R v.3.4.4), whereas the “ward.
D” objective criterion was used to merge a pair of

clusters at each step. Trees were cut at k = 5, k = 3 and
k = 3 in hypothalamus, liver and ovary time point models
respectively and at k = 3 in hypothalamus for the time
point-temperature interaction model to obtain clusters
of genes that are expressed the similar way where k is
the number of groups. Each cluster’s fold change values
at each time point were plotted as profile plots using
ggplot2 in R.
For the significant DEGs a GO enrichment analysis

was conducted per tissue using the Cytoscape plugin
ClueGo 2.5.2 [104] with the human (30.9.2018) gene
ontology and KEGG pathway databases [105]. Any tran-
scripts that fell in multiple genes were removed from the
analysis. Gene symbols starting with LOC (‘LOC’ + the
GeneID is given when published symbol is not available,
and orthologs have not yet been officially determined)
were investigated by hand to determine if they had an
ortholog in other species or if it was non-coding RNA
(ncRNA). ClueGo constructs and compares networks of
functionally related GO terms with kappa statistics. A
two-sided hypergeometric test (enrichment/depletion)
was applied with GO term fusion, network specificity
and Kappa score were set as default and false discovery
correction was carried out using the Bonferroni step-
down method.

Weighed correlation network and hub gene analysis
The weighed correlation network analysis (WGCNA)
[44] was used for getting the co-expression patterns
among transcripts and we used the rld transformed data.
WGCNA clusters genes with similar patterns of expres-
sion across samples to create modules of genes that are
likely co-expressed. Because this method uses hierarch-
ical clustering of expression values to group genes into
modules, the connectivity of the genes in the modules
could reflect the response to time, temperature, line or
their interaction. After the modules were created, the
correlation of the module eigengenes with time,
temperature and line was calculated to examine the
strength of the correlation of the module with a given
trait. We first removed transcripts with low expression
levels across time points (counts smaller than or equal
to 4 at one time point) to only have high confidence
transcripts and ran the function blockwiseModules to
identify potentially co-regulated genes. We created a
signed network using soft thresholding power based on
the module results of the pickSoftThreshold function
(hypothalamus = 6, liver = 20, ovary = 10), minimum
module size of 30 transcripts, and a merge cut height of
0.25, 0.45, 0.35 in hypothalamus, liver and ovary,
respectively in order to combine the similar modules
from same nodes to larger modules (Additional file 28:
Figure S11). After this we identified modules that were
significantly associated with line, time point and
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temperature by correlating the module eigengenes with
the treatments.
We further analysed the hub genes from the significant

modules from each tissue and conducted a STRING path-
way analyses [106] in order to see how co-expression
translates to functional pathways. Hub genes were defined
by module connectivity, measured by the absolute value of
the Pearson’s correlation (ModuleMembership > 0.8) and
the significance of the relationship with treatments > 0.05.
We analysed the hub genes in the STRING plugin (version
1.4.0) in Cytoscape, choosing confidence > 0.4 to construct
a protein-protein interaction (PPI) network. In the PPI
network, genes with a connectivity degree of ≥10 were
also defined as hub genes. The common hub genes both
in the co-expression network and the PPI network were
regarded as “real” hub genes for subsequent GO enrich-
ments analysis in STRING with default settings. In the
PPI network we combined all the tissues together to see
how the genes interact together between tissues.

Additional files

Additional file 1: Table S1. Summary of the sequencing and alignment
of the three tissue types and 12 pools. (XLSX 11 kb)

Additional file 2: Table S2. The number of genes showing significant
differential expression in the time point comparisons and interaction
models for the three tissues. Time1 is comparison of time point 1 to time
point 2 and 3, Time2 is comparison of time point 2 to time point 1 and 3,
Time3 is comparison of time point 3 to time point 1 and 2. (XLSX 10 kb)

Additional file 3: Table S3. The Likelihood Ratio Test results of the nine
models and annotations for the transcripts in hypothalamus. Log2 fold
changes are reported in the Log2FC –columns and P-values were
adjusted for multiple comparisons using Benjamini-Hochberg method.
Annotations were based on the Parus major annotation release 101 in
NCBI. Clusters and modules from the hierarchical clustering analysis and
WGCNA are also reported. In the time point main effect model the log2
fold change is between time points 3 vs 1. (XLSX 4991 kb)

Additional file 4: Table S4. The Likelihood Ratio Test results of the nine
models and annotations for the transcripts in liver. Log2 fold changes are
reported in the Log2FC –columns and P-values were adjusted for
multiple comparisons using Benjamini-Hochberg method. Annotations
were based on the Parus major annotation release 101 in NCBI. Clusters
and modules from the hierarchical clustering analysis and WGCNA are
also reported. In the time point main effect model the log2 fold change
is between time points 3 vs 1. (XLSX 4342 kb)

Additional file 5: Table S5. The Likelihood Ratio Test results of the nine
models and annotations for the transcripts in ovary. Log2 fold changes
are reported in the Log2FC –columns and P-values were adjusted for
multiple comparisons using Benjamini-Hochberg method. Annotations
were based on the Parus major annotation release 101 in NCBI. Clusters
and modules from the hierarchical clustering analysis and WGCNA are
also reported. In the time point main effect model the log2 fold change
is between time points 3 vs 1. (XLSX 5693 kb)

Additional file 6: Table S6. Significant GO terms associated with the
time point main effect model gene clusters in hypothalamus. Results
based on human GO-database. (XLSX 19 kb)

Additional file 7: Table S7. Significant GO terms associated with the
time point - temperature interaction model gene clusters in
hypothalamus. Results based on human GO-database. (XLSX 120 kb)

Additional file 8: Table S8. Significant GO terms associated with the
time point main effect model gene clusters in liver. Results based on
human GO-database. (XLSX 31 kb)

Additional file 9: Table S9. Significant GO terms associated with the
time point main effect model gene clusters in ovary. Results based on
human GO-database. (XLSX 489 kb)

Additional file 10: Table S10. The genes from the super pathway
‘BMAL1-CLOCK, NPAS2 activates circadian gene expression’ found in our
time point main effect models and from the time point - temperature
interaction model. (XLSX 10 kb)

Additional file 11: Table S11. Modules of genes significantly correlated
with time, temperature or line in hypothalamus. Gene symbol =
annotation, GS = gene significance, p.GS = P-value of gene significance,
MMcolor = ModuleMembership correlation coefficient, p.MMcolor =
ModuleMembership p-value. (XLSX 4497 kb)

Additional file 12: Table S12. Modules of genes significantly
correlated with time, temperature or line in liver. Gene symbol =
annotation, GS = gene significance, p.GS = P-value of gene
significance, MMcolor = ModuleMembership correlation coefficient,
p.MMcolor = ModuleMembership p-value. (XLSX 5375 kb)

Additional file 13: Table S13. Modules of genes significantly
correlated with time, temperature or line in ovary. Gene symbol =
annotation, GS = gene significance, p.GS = P-value of gene
significance, MMcolor = ModuleMembership correlation coefficient,
p.MMcolor = ModuleMembership p-value. (XLSX 6338 kb)

Additional file 14: Table S14. List of highly connected module genes
in hypothalamus that have at least one connection degree in the PPI
network. (XLSX 42 kb)

Additional file 15: Table S15. List of highly connected module genes
in liver that have at least one connection degree in the PPI network.
(XLSX 13 kb)

Additional file 16: Table S16. List of highly connected module genes
in ovary that have at least one connection degree in the PPI network.
(XLSX 100 kb)

Additional file 17: Table S17. Significant GO terms associated with the
real hub genes. Results based on human GO-database. (XLSX 18 kb)

Additional file 18: Figure S1. Clustering of samples based on
principal component analysis (PCA). Samples collected from warm
(W) and cold (C) temperature treatments from two different lines,
early (E) and late (L), from three different time points and from
three different tissues: a. hypothalamus, b. liver and c. ovary.
(PDF 102 kb)

Additional file 19: Figure S2. Volcano plots of all the transcripts
analysed in hypothalamus RNA-seq in six different models. Genes
differentially expressed with p < 0.05 after correcting for false discovery
rate are in orange. Genes with a p > 0.05 after correcting for false
discovery rate are in black. (PDF 20 kb)

Additional file 20: Figure S3. Volcano plots of all the transcripts
analysed in liver RNA-seq in six different models. Genes differentially
expressed with p < 0.05 after correcting for false discovery rate are in
orange. Genes with a p > 0.05 after correcting for false discovery rate are
in black. (PDF 19 kb)

Additional file 21: Figure S4. Volcano plots of all the transcripts
analysed in ovary RNA-seq in six different models. Genes differentially
expressed with p < 0.05 after correcting for false discovery rate are in
orange. Genes with a p > 0.05 after correcting for false discovery rate are
in black. (PDF 20 kb)

Additional file 22: Figure S5. Expression patterns of DEG clusters in
hypothalamus time point main effect model. (PDF 31 kb)

Additional file 23: Figure S6. Expression patterns of DEG clusters in
hypothalamus time point-temperature interaction model. (PDF 144 kb)

Additional file 24: Figure S7. Expression patterns of DEG clusters in
liver time point main effect model. (PDF 22 kb)

Additional file 25: Figure S8. Expression patterns of DEG clusters in
ovary time point main effect model. (PDF 72 kb)
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Additional file 26: Figure S9. The raw expression levels of ZP4 in ovary.
Numbers indicate different time points from the study. (PDF 8 kb)

Additional file 27: Figure S10. The raw expression levels of CTSEAL,
VTG2 (VTG2a - LOC107208431and VTG2b - LOC107208432) and APOV1 in
liver. (PDF 12 kb)

Additional file 28: Figure S11. Hierarchical clustering tree based on
WGCNA module eigengenes in A. hypothalamus, B. liver and C. ovary.
(PDF 105 kb)

Additional file 29: Figure S12. Matrix with the module-treatment
relationships and corresponding p-values between the detected modules
on the y-axis and treatments on the x-axis based on hypothalamus RNA-
seq. The relationships are coloured based on their correlation: red is a
strong positive correlation, while blue is a strong negative correlation.
The value at the top of each square represents the correlation coefficient
between the module eigengene and the treatment with the correlation
p-value in parentheses. (PDF 42 kb)

Additional file 30: Figure S13. Matrix with the module-treatment
relationships and corresponding p-values between the detected modules
on the y-axis and treatments on the x-axis based on liver RNA-seq. The
relationships are coloured based on their correlation: red is a strong
positive correlation, while blue is a strong negative correlation. The value
at the top of each square represents the correlation coefficient between
the module eigengene and the treatment with the correlation p-value in
parentheses. (PDF 51 kb)

Additional file 31: Figure S14. Matrix with the module-treatment
relationships and corresponding p-values between the detected modules
on the y-axis and treatments on the x-axis based on ovary RNA-seq. The
relationships are coloured based on their correlation: red is a strong
positive correlation, while blue is a strong negative correlation. The value
at the top of each square represents the correlation coefficient between
the module eigengene and the treatment with the correlation p-value in
parentheses. (PDF 44 kb)

Additional file 32: Figure S15. Daily minimum (A) and daily maximum
(B) temperatures for the cold (blue) and warm (red) spring provided in
the first and second breeding season. The open triangle indicates the
day on which the first breeding season stopped and birds went into the
phase of the experiment where days were shortened and the
temperature set at 10 °C (see ‘Second breeding season’) in to prepare
them for the second breeding season. The black triangles indicate the
three time points (66 January = 7 March, 89 January = March 30, 110
January = April 20) on which the birds were sacrificed in the second
breeding season. (PDF 9 kb)
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