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Abstract

Background: Single cell transcriptome sequencing has become an increasingly valuable technology for dissecting
complex biology at a resolution impossible with bulk sequencing. However, the gap between the technical expertise
required to effectively work with the resultant high dimensional data and the biological expertise required to interpret
the results in their biological context remains incompletely addressed by the currently available tools.

Results: Single Cell Explorer is a Python-based web server application we developed to enable computational and
experimental scientists to iteratively and collaboratively annotate cell expression phenotypes within a user-friendly and
visually appealing platform. These annotations can be modified and shared by multiple users to allow easy collaboration
between computational scientists and experimental biologists. Data processing and analytic workflows can be integrated
into the system using Jupyter notebooks. The application enables powerful yet accessible features such as the
identification of differential gene expression patterns for user-defined cell populations and convenient annotation of cell
types using marker genes or differential gene expression patterns. Users are able to produce plots without needing
Python or R coding skills. As such, by making single cell RNA-seq data sharing and querying more user-friendly, the
software promotes deeper understanding and innovation by research teams applying single cell transcriptomic
approaches.

Conclusions: Single cell explorer is a freely-available single cell transcriptomic analysis tool that enables computational
and experimental biologists to collaboratively explore, annotate, and share results in a flexible software environment
and a centralized database server that supports data portal functionality.
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Background
Rapidly evolving single cell sequencing technologies are en-
abling researchers to generate data that have the potential to
lead to unprecedented biological insight, albeit at the cost of
greater complexity of analysis. Open-source, point-and-click,
web-based interfaces have become a popular choice to share
the analytic results of single cell experiments [1]. More
authors now provide R Shiny apps as a solution to share re-
sults from specific studies or collections. Other software
such as iS-CellR [2] and ASAP [3] provide graphical inter-
faces for non-R programmers to use specific R packages
such as Seurat [4]. However, because of a continuous

increase in the creation of experiment types, pipelines and
methods, it may be considered impossible to generate a sin-
gle graphical user interface (GUI) that covers a large number
of methods without impairing usability. Many present tools
are specialized ‘build to fit’ applications that focus on data
exploration of processed data, but do not permit duplication
of research findings from raw data. Furthermore, these often
are constrained as data exploration tools, rather than being
sufficiently full-featured to allow open-ended analysis.
We developed Single Cell Explorer using hybrid ap-

proaches, including the application of a Python based
programming environment and web app GUI, to enable
result sharing and fluid data exploration. The Python
based environment was chosen for enhancement of data
reproducibility and flexible implementation of a variety
of algorithms/workflows, since the integration of Jupyter
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notebook is becoming increasingly popular in the bio-
informatics research community [5]. Single Cell Ex-
plorer’s GUI was developed with a focus on easy use and
intuitiveness for experimental biologists to explore with
minimal training. Single Cell Explorer was developed as
a generalized platform for research teams to share and
use single cell transcriptome data generated from either
pipelines or processed data, with full open access to
complex workflows, tools, and methodologies-all behind
a simple interface. In contrast to the existing R-based
frameworks, Single Cell Explorer will scale to large col-
lections of studies by integrating with modern, perfor-
mant databases and workflows such as Scanpy [6].

Implementation
Single Cell Explorer was written using the Python 3.0
programming language, and built with the Django
framework. User interactions such as drawing and label-
ing were written using Javascript. The software is open
source and currently available through GitHub at
https://github.com/d-feng/SingleCellExplorer. It can be
launched by servers which support the Python environ-
ment. Python WSGI HTTP Servers for UNIX such as
Gunicorn are suggested to support concurrent use of
this app. A component view of the system is shown in
Fig. 1a, which reveals the integration of analytic pipelines
via the Single Cell Explorer database. The steps to use
the application are:

1. Raw Data Processing. Initial processing of data is
performed using Python Jupyter Notebook or
JupyterLab. This step includes read mapping
alignment, gene quantitation, and quality control
employing Cell Ranger v3.0 (http://10xgenomics.com)
to process Chromium single-cell RNA-seq FASTQ
data. Alternatively, raw data can be processed using
Bash or Nextflow. We provided the Python scripts to
integrate the raw data processing pipeline Cell Ranger.
The required input files are FASTQ files and the
appropriate genome reference files for the relevant
organism.

2. Preliminary Analysis in Python Environment. This
step runs quality control and dimensionality reduction
using the results generated from step 1. The
application is agnostic to the method used for
dimensionality reduction; both t-Distributed
Stochastic Neighbor Embedding (t-SNE) and Uniform
Manifold Approximation and Projection (UMAP)
coordinates have been generated with Seurat or
Scanpy methods and used. The principal output of
this step includes the filtered cell/gene expression
matrix as well as the matrix describing the 2D
coordinates of the cells in lower dimensional space.

The output is then loaded into a MongoDB database,
along with basic metadata about the project to enable
project-level queries.

3. Collaborative Analysis through Web and API. After
the data has been loaded, the web front end enables
users to visualize and query downstream analytic
results through interaction with the lower-dimensional
map of the cells. This step relies on JavaScript, SVG
(Scalable Vector Graphics), HTML5 (Hypertext
Markup Language), and CSS (Cascading Style Sheet)
to enable an interface which is highly responsive and
scales well. In addition to basic data exploration, cell
type annotations can be captured by users and stored.
For highly customized analyses, API (Application
Programming Interface) functions enable
bioinformaticians to work directly with the database.

Results and discussion
Single cell RNA-seq data processing and analysis
As an example of the utility of Single Cell Explorer, a test
run was performed on a publicly available dataset of hu-
man peripheral blood mononuclear cells (PBMCs) from
(https://support.10xgenomics.com/single-cell-gene-ex-
pression/datasets). We showed the case of using a Jupyter
notebook to drive a 10X genomics based cell processing
pipeline. The Cell Ranger pipeline can be started using
runCellrangerProcess, a function in the notebook, and is
followed by the Scanpy analytic workflow in the same
Jupyter notebook for quality control and dimensionality
reduction. For Jupyter notebook users, we provided scpi-
peline, which is a python script for a helper function that
runs Cell Ranger and loads the result to MongoDB. The
project metadata, cell/gene expression matrix, normalized
data, and results of the 2D cell mapping will be uploaded
by the notebook to the MongoDB instance.

Interactive tertiary results access from web page
For high-dimensional single cell data, lower dimensional
representations such as t-SNE or UMAP are necessary to
interact with the data and to easily observe broad relation-
ships between cells (Fig. 1b). Single Cell Explorer supports
all types of low-dimensional representation [7]. Here we
showed the re-analysis of single cell RNA-seq data for cells
from the early human maternal-fetal interface [8]. The mul-
tiple types of metadata, including cell types, cluster infor-
mation, and sample information such as tissue, donor, and
any other clinical features, can be overlaid on the feature
plot. The user interface provides a simple gene expression
search function for each feature plot. A box plot of normal-
ized counts and the percentage of cells with positive expres-
sion (counts > 1) will be shown for querying single gene
expression. The interface also supports queries for two
genes simultaneously, with the gene expression pattern
painted with different colors. If multiple genes were
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Fig. 1 (See legend on next page.)
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searched, users are able to generate a heatmap using nor-
malized counts or z score (Fig. 2b).

Cell type identification and annotation
A key challenge for analyzing single cell RNA-seq data is
choosing an optimal cell clustering parameter that best de-
lineates the key cell sub types. For example, the data plot in

Fig. 3a shows various clustering results using different reso-
lution parameters by the leiden algorithm (scanpy.api.tl.lei-
den function). Note that the default resolution value of 1
produces more clusters of cell types than the key major im-
mune cell types we typically like to identify in our routine
expression analyses. It remains quite difficult to determine
which resolution value to use for optimal future analyses.

(See figure on previous page.)
Fig. 1 Single Cell Explorer workflow architecture process and component view. a Overview of the data process workflow steps for Single Cell
Explorer. Step #1: Run pipeline to process FASTQ files using Python wrapper through Jupyter Notebook. Step #2: Quality control of data,
generation of 2d representation, and database upload. Step #3: Interactive data analyses and annotation of cell types. Step #4: Recording of
annotated results in MongoDB for sharing with all users. Step #5: All results from MongoDB can be accessed directly or via API. b A screenshot
for Single Cell Explorer data navigator page and a t-SNE map for one dataset

Fig. 2 Interactive FeaturePlot. a A t-SNE and UMAP representation from first-trimester placentas with matched maternal blood and decidual cells.
Individual pre-labeled cell types are painted in different colors. The function of painting two genes (CD8A and CD3D) highlights the location of
CD8 T cell clusters. A 2D plot of circles indicates the proportion of the single positive and double positive cells. b To query a list of genes, a
heatmap can be generated after freehand selection of cells of interest. ILC3 cells can be identified using markers including KIT and DLL1
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Fig. 3 Understanding single cell clustering results. a UMAP of human normal PBMC with various clustering results using different resolution
parameters by the leiden algorithm (scanpy.api.tl.leiden function). b Feature plot of cells which are positive for each individual marker gene. c A
heatmap of marker gene expression within each cluster defined by leiden algorithm
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Fig. 4 Cell type and feature discovery. Step #1: Load 2D embedding map. Step #2 Use a freehand tool to select the cells of interest. Step #3:
Compare the differentially expressed genes of selected cells with all unselected cells. Step #4: Interactively visualize gene expression levels using
the resulting table. Step #5: Record cell types and marker genes for future reference. Step #6: Position the newly-labelled cells on the map and
compare with other specific cell types
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Single Cell Explorer enables users to examine expression
of key cell type markers in UMAP (e.g. CD14 (Monocyte
1), CD19 (B cells), CD3D (T cells), NKG7 (NK cells),
FCGR3A (Monocyte 2), CD8A (CD8 T cells), FCER1A
(DC), IL3RA (Plasmacytoid Dendritic Cells), PPBP (Plate-
lets)). Users can match the marker gene expression with
the cell cluster identification number using the heatmap
function (Fig. 3b). In this case, it is most reasonable to use a
value of 0.2 for the resolution setting. When cell type com-
position is unclear or cell marker information remains un-
known, differentially expressed genes can be obtained first.
Then these newly identified cell markers or domain know-
ledge can be used to annotate cell clusters in the 2D map
(Fig. 4). First, the user can click and draw circles to select
the cell cluster of interest. Next, a contrast function is exe-
cuted for computing differentially-expressed genes between
selected clusters and all other cells. The non-parametric
Wilcoxon rank sum test is chosen as the default method
due to fast execution time and comparable performance
among other algorithms [9]. The computed results will be
shown as a table with p-value-ranked genes increased or de-
creased in expression. The user can click the differentially-
expressed genes which will be distinguished by their color
on the t-SNE plot. The user can name the cell type by
choosing cell type name from a list (to enforce controlled
vocabulary), or add new names that do not exist in the data-
base. The other statistical methods can be applied in Jupyter
Notebook or R Studio. This capability not only allows users
to delineate and explore potential new cell subset types, but
also enables single cell data sets to be viewed from different
dimensions beyond pre-set or pre-conceived cell marker
paradigms, potentially fostering innovative viewpoints and
new hypotheses.

Database and API
The annotated data will be displayed in the web application.
The following Python API functions (Table 1) were de-
signed to retrieve data from the Single Cell Explorer data-
base. The map id is unique for each map. clusterName is
the annotated cell type. clusterType includes cell type and
other information such as donor, samples, and shared near-
est neighbor’s cluster id. The API can be used to compute
differentially expressed genes, or for other bioinformatics

analysis between annotated cells within samples as well as
across different samples, using Jupyter notebook.

Comparison to other software
To our best knowledge, no other single cell sequencing
software currently provides reanalysis capabilities that in-
clude drawing, annotation, saving the results in a database,
and integration with Jupyter notebook for more complex
analyses. Cellxgene [10] is a Python-based interactive data
visualization tool for single-cell transcriptomic datasets, but
it focuses on well curated single data sets without compre-
hensive database support. It will show data objects, but for
each data object, it requires a new instance or independent
port. Since the time required to load a data object file (h5ad
file) is long, it is difficult to use Cellxgene as a data portal.
On the other hand, our application is built for concurrent
users to explore an unlimited number of datasets, due to
our implementation of MongoDB. Also, in contrast to can-
vas, which is suitable for displaying large numbers of cells,
we use SVG to allow faster information accessibility and
better interactive performance for data sets with fewer cells.

Conclusions
We developed Single Cell Explorer, a Python-based plat-
form which promotes a collaborative data sharing experi-
ence for single cell transcriptomic data. It balances a high
degree of automation integration with open source tool
sets and a visually-attractive end user experience. For a
genomics core lab, a complete workflow analysis empow-
ered with automation allows experimental scientists ease
in previewing their results, quickly promoting faster cycles
of hypotheses building and experimental innovation.
Computational biologists can also analyze data sets using
different methods to generate 2D plots of data findings to
load and share with research teams. Using the web app
coupled with a centralized MongoDB server, team mem-
bers can label and share findings to promote further cycles
of inquiry and hypothesis generation.

Abbreviations
API: Application programming interface; GUI: Graphical user interface;
HTML5: Hypertext Markup Language 5; PBMCs: Peripheral blood
mononuclear cells; SVG: Scalable Vector Graphics; t-SNE: t-Distributed
Stochastic Neighbor Embedding; UMAP: Uniform Manifold Approximation
and Projection

Table 1 API function to retrieve data from database

Name Function

getAllClstrsByClstrsType retrieve a table of cell barcodes and annotated cell types in a specific map

getNormalizedGeneExpr get normalized counts matrix for genes of interest from specific cell types in a specific map

getAllNormalizedGeneExpr get full normalized gene counts matrix from specific cell types in specific map

getMarkGenesByMapidAndClusterType get annotated marker genes

getMaps get meta data from a specific map

exportAllClstrsByClstrsType export the cell barcodes and annotated cell types of the cells from a specific map into a csv file
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