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Abstract

Background: Although DNA sequence plays a crucial role in establishing the unique epigenome of a cell type,
little is known about the sequence determinants that lead to the unique epigenomes of different cell types
produced during cell differentiation. To fill this gap, we employed two types of deep convolutional neural networks
(CNNs) constructed for each of differentially related cell types and for each of histone marks measured in the cells,
to learn the sequence determinants of various histone modification patterns in each cell type.

Results: We applied our models to four differentially related human CD4
+ T cell types and six histone marks

measured in each cell type. The cell models can accurately predict the histone marks in each cell type, while the
mark models can also accurately predict the cell types based on a single mark. Sequence motifs learned by both
the cell or mark models are highly similar to known binding motifs of transcription factors known to play important
roles in CD4

+ T cell differentiation. Both the unique histone mark patterns in each cell type and the different
patterns of the same histone mark in different cell types are determined by a set of motifs with unique
combinations. Interestingly, the level of sharing motifs learned in the different cell models reflects the lineage
relationships of the cells, while the level of sharing motifs learned in the different histone mark models reflects their
functional relationships. These models can also enable the prediction of the importance of learned motifs and their
interactions in determining specific histone mark patterns in the cell types.

Conclusion: Sequence determinants of various histone modification patterns in different cell types can be revealed
by comparative analysis of motifs learned in the CNN models for multiple cell types and histone marks. The learned
motifs are interpretable and may provide insights into the underlying molecular mechanisms of establishing the
unique epigenomes in different cell types. Thus, our results support the hypothesis that DNA sequences ultimately
determine the unique epigenomes of different cell types through their interactions with transcriptional factors,
epigenome remodeling system and extracellular cues during cell differentiation.
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Background
Cell differentiation is achieved by the remodeling of the
same genome that each cell inherits from the zygote.
Genome remodeling involves alterations of methylation
of certain cytosine residues in the genomic DNA and
changes in various covalent modifications of histones in
the nucleosomes, conferring a unique epigenome to each
resulting cell type that expresses a unique set of gene
products [1]. Increasing lines of evidence have suggested
that the epigenome in a cell type is established step-

wisely along the developmental lineage through the
interplay of genomic sequence, chromatin remodeling
systems and extracellular environmental cues [2–5]. As
the latter two factors are the results of interactions of
the products of genomic sequences, the epigenome of a
cell type is ultimately determined by the genomic se-
quence that recruits the chromatin remodeling systems
[6–9]. For example, in a recent study, Whitaker and col-
leagues [8] have shown that short DNA motifs enriched
in the epigenetically modified genomic regions could
predict the specific histone modifications in specific cell
types using a random forest-based method. However,
this method could not discover sequence determinants
ab initio because pre-selected motifs were needed to
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train the models. Therefore, new methods are needed to
gain a better understanding of the sequence determi-
nants that specify the unique epigenome of each cell
type produced during cell differentiation.
Recent progress in machine-learning has demonstrated

that deep convolutional neural networks (CNNs) can
achieve very high accuracy in predicting transcription
factor (TF) binding affinity [10] and epigenetic marks in
various cell types [11–13]. Unlike traditional neural net-
works, the kernels in the convolutional layers in a CNN
can automatically learn the features of the objects (i.e.,
the sequence motifs in epigenetically modified regions),
and thus the learned features can provide insights into
the underlying mechanisms of the modeling systems. Al-
though efforts have been made to explain the learned
motifs in epigenetically modified regions in biological
contexts types [11–13], the mixed CNN models
employed in these earlier studies lack the power of com-
parison, limiting their ability to explain the learned mo-
tifs for their roles in determining the unique epigenetic
modification patterns in different cell types. To over-
come these shortcomings, we developed two types highly
accurate CNN models to facilitate the explanation of the
learned motifs: the cell type model to predict different
histone marks in a given cell by learning motifs that spe-
cify the histone marks in the cell type, and the histone
mark model to predict different cell types by learning
motifs that determine different patterns of a given his-
tone mark in different cell types. To evaluate the cap-
ability of the models to learn the histone mark-
determining motifs, we applied them to a dataset of six
histone marks obtained in four human CD4

+ T cell types
produced at different stages of cell differentiation [14],
i.e., the native T (Tn) cells, central memory T (Tcm)
cells, T effector memory (Tem) cells and CD4

+ termin-
ally differentiated CD45RA

+ memory (Temra). The rela-
tively rich knowledge about the regulators and the
differentiation process of these T cell subpopulations
could facilitate the validation of predictions. Indeed, we
found that many sequence motifs learned in the CNN
models of both the cell types and histone modifications
are highly similar to known binding motifs of TFs
known to play important roles in CD4

+ T cell differenti-
ation. Intriguingly, the shared motifs learned in different
cell models support the linear model of CD4

+ T cell de-
velopment, consistent with the earlier results based on
the patterns of changes in DNA methylation and DNase
accessibility of the genome as well as transcriptomes in
the cells [14], while the shared motifs learned in differ-
ent histone mark models reflect the functional relation-
ships of the marks. Furthermore, by computing the s of
the learned motifs on the prediction of the CNNs, we
were able to pinpoint specific roles and interactions of
their cognate TFs in determining unique histone

modification patterns in different cell types, thereby pro-
viding new insights into the underlying mechanisms of
histone modifications during cell differentiation.

Results
The cell type CNN models are highly accurate and robust
for predicting various histone modifications in different
cell types
In the genome of a cell type, different loci are modified by
the same and/or different chromatin marks in unique
ways. It is the different combinations of these chromatin
marks that determine the distinct chromatin states of the
genomes in different cell types [15]. To learn the sequence
determinants that govern the unique combinations of his-
tone modifications in a cell type, we constructed a CNN
model for the cell type for predicting the histone marks in
its genome. We first evaluated the model using the data
set of six histone marks collected from the four human
CD4

+ T cell types derived during T-cell differentiation
[14]. Specifically, we used 459,814, 653,272, 978,543 and 2,
131,540 histone modification peaks in building the models
for the Tn, Tcm, Tem and Temra cells, respectively
(Methods). As shown in Fig. 1a, all the models perform
very well for predicting the patterns of the six histone
marks in each of the four cell types, with an average accur-
acy and AUC (area under the receiver operating charac-
teristic (ROC) curve) of 91.53% and 0.916, respectively,
which are better than the results achieved by the earlier
state-of-the-art CNN models for the same marks although
their results were based on a different dataset [11].
To evaluate the generality and robustness of our model,

we applied it to a dataset for the six histone marks col-
lected from the H1 human embryonic stem (H1) cells,
trophoblast-like (TBL) cells, mesendoderm (ME) cells,
mesenchymal (MSC) cells and neural progenitor (NPC)
cells [16], which has been studied intensively [8]. In this
case, we used 1,038,201, 363,349, 880,462, 1,011,252, and
315,266 histone modification peaks in building the models
for the H1, TBL, ME, MSC and NPC cells. As show in
Additional file 1: Figure S1A, the models also perform
very well for predicting the patterns of the six histone
marks in the five cell types, with an average accuracy
90.6% and AUC 0.917, which are comparable to those ob-
tained in the CD4

+ cell dataset (91.53% and 0.916), but
also are better than the results achieved by the earlier
state-of-the-art CNN models for the same markers albeit
on a different dataset (AUC 0.856) [11]. Our models (aver-
age accuracy 90.6% and AUC 0.917) also outperform the
earlier random forest-based algorithm on the same dataset
(average accuracy 79.0%, average AUC 0.837, Additional
file 1: Figure S1B). The relative performance of our models
on predicting the six marks also is consistent with the ran-
dom forest-based method (Additional file 1: Figure S1B)
except for H3K9me3, which holds the second place in our
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model while it was ranked fifth in the earlier study. Such
consistent performance of the different methods in differ-
ent datasets strongly suggests that the active enhancer
marks H3K27ac (AUC 0.880) and H3K4me1 are more
complicatedly used in the cell types than the other marks.
Therefore, our cell type CNN models are very robust and
highly accurate for predicting unique patterns of various
histone marks in given different cell types.

The histone mark CNN models are highly accurate and
robust for predicting different cell types based on a
histone mark
To reveal the determinants that specify different patterns
of the same histone mark in different cell types, we

constructed a CNN model for each histone mark for
predicting different cell types based on the different pat-
terns of the same mark. We also first evaluated the ac-
curacy of the models using the dataset collected from
the four CD4

+ T cell types [14], and employed 227,420,
691,032, 839,057, 867,398, 296,079 and 435,351 histone
peaks in building the models for H3K27ac, H3K27me3,
H3K36me3, H3K4me1, H3K4me3 and H3K9me3, re-
spectively (Methods). As shown in Additional file 1: Fig-
ure S2A and B, the models generally perform very well
for predicting each cell type, although the models for the
gene repression-related mark H3K27me3 (AUC 0.95)
and the heterochromatin-related mark H3K9me3 (AUC
0.93) perform better than the models for the activation-

Fig. 1 Performance of the CNN models of the four cell types for predicting the six histone marks. a. The ROCs of the Tn, Tcm, Tem and Temra
cell models for predicting the six histone marks. b. Mean AUC for each histone mark across the four cell type models
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related marks H3K36me3 (AUC 0.87), H3K27ac (AUC
0.85), H3K4me3 (AUC 0.83) and H3K4me1 (AUC 0.71).
To evaluate the generality and robustness of the mark

model, we also applied it to the dataset collected from
the human embryonic cells H1 and four of its derived
types [16], and used 332,704, 458,844, 952,615, 185,182,
253,289, 360,040 histone modification peaks in building
the models for H3K4me1, H3K9me3, H3K36me3,
H3K4me3, H3K27me3 and H3K27ac, respectively
(Methods). As shown in Additional file 1: Figures S3A
and B, similar to the results from the CD4

+ T cell dataset
(Additional file 1: Figure S2A and B), the models also
generally perform very well, although the models for the
gene repression-related mark H3K27me3(AUC 0.909)
and the heterochromatin-related mark H3K9me3(AUC
0.862) perform better than the models for the activation-
related H3K4me3 (AUC 0.815), H3K4me1 (AUC 0.720),
H3K27ac (AUC 0.770) and H3K36me3 (AUC 0.679).
These consistent results from different datasets from dif-
ferent sources strongly suggest that the two repressive
histone marks are more distinctly used in different cell
types than the four activation-related marks. Therefore,
our histone mark CNN models are highly accurate and
very robust for predicting different cell types based on
the pattern of single histone marks.

Patterns of different histone marks in a cell type as well
as different patterns of the same histone mark in
different cell types are largely determined by a unique
set of motifs
The superior performance of our cell models indicates
that the filters in the convolutional layers have largely
learned the sequence determinants for specifying the
patterns of various histone marks in the cell type; while
the superior performance of our histone mark models
suggest that the filters in the convolutional layers have
largely learned the sequence determinants for governing
different patterns of the same histone mark in different
cell types. These results promoted us to reveal these se-
quence determinants by looking into the filters in the
convolutional layers of the models. In particular, we ex-
pect that the filters in the first convolutional layer may
have learned the binding motifs of TFs involved in the
specification of different histone modification patterns in
different cell types. In other words, these filters may cor-
respond to position weight matrices (PWMs) of the TF
binding motifs. To this end, we constructed motif models
for all the filters learned in the first constitutional layers,
resulting in 295, 295, 278 and 285 motifs in the Tn, Tcm,
Tem and Temra cell models, respectively; and 280, 291,
271, 270, 293, 267 motifs for the H3K27ac, H3K27me3,
H3K36me3, H3K4me1, H3K4me3, H3K9me3 mark
models, respectively. Some of the motifs learned in differ-
ent models are highly similar to each other, thus we

clustered them according to their similarity (Methods),
resulting in 2474 clusters. Of these clusters, 203 are
formed by more than two learned motifs, and we call each
of them a Merged Motif (M-Motif), while the remaining
2271 are singleton motifs, and we consider each of them
as a cell- or mark-specific motif dependent on the type of
the model by which it is learned. Interestingly, 113 (4.57%)
of these 2474 unique motifs are shared by at least a cell
type model and a histone mark model, indicating that
common sequence determinants were captured by the
two types of models. On the other hand, the remaining
958 and 1403 motifs are unique to the cell type models
and histone mark models, respectively (Fig. 2a). Thus, be-
sides the common motifs, both the cell type models and
mark models captured quite different sets of motifs for
predicting the patterns of different histone modifications
in the cells and the cell types based on single histone
marks, respectively. Furthermore, 42 (3.92%) of the 1071
motifs learned in the cell type models and 68 (4.49%) of
the 1516 motifs learned in the histone mark models are
shared by more than two cell models (42/1071 = 3.92%)
and two mark models (68/1516 = 4.49%) (Fig. 2b~e), re-
spectively. However, only two (0.21%) and one (0.10%)
motifs are shared by all the four cell type models and all
the six histone mark models, respectively. The remaining
1029 (96.08%) and 1448 (95.51%) motifs are unique to a
single cell type model and a single mark model, respect-
ively. These results suggest that the unique patterns of
various histone marks in each cell type as well as the dif-
ferent patterns of the same histone mark in different cell
types are largely determined by a unique set of motifs, al-
though they may share some common ones. This conclu-
sion agrees with the general understanding about how the
unique epigenomes are established in different cells type
by the interplay of TF, chromatin remodeling systems and
environment cues [2–5].
At an E-value threshold of 0.5, 974 (39.37%) of the

2474 motifs match known human TF binding motifs in
the HOCOMOCO database [18], and many of them are
known to be involved in T cell differentiation (Fig. 2f).
We described a few examples of them. M-Motif 12
shared by all the cell type models matches that of ETS1
that controls T cell differentiation by regulating the ex-
pression of signaling molecules [19, 20] in response to
external environment stimuli. M-Motif 67 shared by the
H3K9me3 and Tem models matches that of ATF2 that
is an histone acetyltransferase for histones H2B and
H4, playing an essential role in the T cells activation
in late-stage [21, 22]. Temra-Motif 117 learned in the
Temra model matches that of RUNX3, which plays a
crucial role in T cell’s differentiation by interacting
with master regulators cooperatively [23]. M-Motif
178 shared by the Tn and H3K4me1 models resem-
bles that of SMAD4 that cooperatively regulates
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interleukin 2 receptor in T cells and balances the dif-
ferentiation of CD4

+ T cells [24, 25]. H3K27ac-Motif
229 learned in the H3K27ac model matches that of
ZN274 that is involved in transcription repression
[26]. H3K27me3-Motif 127 learned in the H3K27me3
model resembles that of FOXP1, which is the “naive
keeper” for T memory cell differentiation [14, 27].
These results suggest that at least 39.37% of the
learned motifs that match known ones are likely to
be authentic motifs of the cognate TFs.

Motifs learned in the cell type models reflect the lineage
of the cells
It is now well established that along the lineage of cell
differentiation, the epigenomes of cells undergo step-
wise changes with each cell division through the regula-
tion of a specific set of both common and unique TFs in
the derived intermediate and terminal cell types [2–5,
28, 29]. Cells in adjacent differentiation stages possess
more similar epigenomes [10], presumably because they
share more TFs than those that are distal from each

Fig. 2 Known and novel TF binding motifs learned in the first convolution layers of the CNN models. a. Overlap of motifs learned in the cell
models and histone mark models. b. Number of learned motifs shared by different number of cell models. c. Venn diagram showing the number
of learned motifs shared by the cell models. d. Number of learned motifs shared by different number of histone mark models. e. Venn diagram
showing the number of learned motifs shared by the histone mark models. f. Examples of learned motifs matching known motifs involved in T
cell functions. g, h. Hierarchical two-way clustering of the cells and histone marks, respectively, based on the similarity of the learned motifs
profiles in the models using hamming distance and average linkage. The Venn diagrams were drew using INteractiVenn [17]
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other along the lineage of differentiation. To see whether
this is reflected in the motifs learned by the cell type
models, we hierarchically clustered the cell types based
on the similarity of the learned motif profiles in the cell
type models. As shown in Fig. 2g, Tn branches earliest
in the tree while the three memory/effector T cell types
form a clade, indicating that Tn is most distinct from
the more developed cell types as generally believed. Tem
and Temra form a clade, indicating that they are more
similar to each other than to Tcm, which is in agree-
ment with early observations [30]. These results suggest
a linear lineage model of the development of these cells:
Tn→ Tcm→ Tem→ Temra, which is in line with the
results derived based on changes in the DNA methyla-
tion, gene expression and DNAase accessibility in these
cells [14]. Therefore, the sequence motifs learned in the
cell type models indeed reflect the lineage relationships
of the cells. It is highly likely that the unique motifs to a
cell model account for the distinction of the cell type
from the other cell types, while the shared motifs are re-
sponsible for the shared features of linearly closely-re-
lated cell types.

Motifs learned in histone mark models reflect functional
relationships of the marks
It is well-known that certain types of sequences can be
co-modified by different histone marks, while other
types of sequences tend to be exclusively modified by a
specific mark [31]. To see whether such co-modifica-
tions and exclusiveness of the marks are reflected by the
learned motifs in the histone mark models, we hierarch-
ically clustered the histone marks based on the similarity
of the learned motif profiles. As shown in Fig. 2h,
H3K4me1 and H3K27ac form a group, which is con-
sistent with the fact that they co-mark active en-
hancers, thus the respective modification systems
might be recruited by some common motifs or simi-
lar mechanisms. On the other hand, H3K9me3,
H3K27me3, K3K36m3 and H3K4me3 form a singleton
group by themselves, which is consistent with the
facts that they exclusively mark DNA domains with
different epigenomic states [32]. For instance,
H3K9me3 marks heterochromatins, H3K27me3 labels
polycomb-associated domains, K3K36m3 marks tran-
scribed gene body and H3K4me3 labels active pro-
moters. Therefore, the learned motifs in the histone
mark models indeed reflect the known functional re-
lationships of the marks.

The learned motifs have varying inferences on the
prediction accuracy of the models
To evaluate the contribution and importance of a
learned motif to the prediction of a model, we nullified
the motif and then calculated its inference score on the

predictions (Methods). The inference scores of the mo-
tifs learned in both the cell type models (Fig. 3a) and the
histone mark models (Fig. 3b) have bell-shape distri-
butions with different extent of right skewness. These
results suggest that most learned motifs have inter-
mediate inferences, while a small portion have large
inferences on predicting the patterns of different his-
tone marks in a cell type or different cell types based
on single histone marks. The motifs with high influ-
ences might play crucial roles in the cell differenti-
ation process. For example, in the Tn model, the
motif with the highest influence score 4.26 (Fig. 3a)
resembles that of FOXD1 that is involved in T cell
proliferation [33]; in the H3K4me1 model, the motif
with the highest inference score 2.74(Fig. 3b) resem-
bles that of SP1 that plays a role in T cell differenti-
ation [34]. The inferences of the motifs learned in
either the cell type models (Fig. 3a) or the histone
mark models (Fig. 3b) do not significantly correlate
with their information contents, suggesting that only
few positions of the motifs have a strong predictive
power, which is consistent with the general under-
standing about the mechanisms of TF-DNA interac-
tions. The learned motifs that do not match known
motifs have similar inference scores to those match-
ing known motifs (Fig. 3a and b), indicating that they
are equally likely to be true motifs, and the un-
matched ones are likely to be novel motifs of un-
known TFs.
Interestingly, the inferences of motifs learned in Tn,

Tcm, Tem cell models increased along the proposed
linear cell lineage, and then decreased in the Temra
cell model (Fig. 3c). These results suggest that the
functions of learned motifs become more and more
specific in determining the patterns of various histone
modifications in the cells along the differentiation
lineage Tn→ Tcm→ Tem, and then somehow be-
come less specific in Temra. Furthermore, the infer-
ence scores of motifs learned in the six histone mark
models are also significantly different from one an-
other (Fig. 3d). Specifically, motifs learned in the
models of H3K4me1, H3K27ac and H3K4me3 that
mark active enhancers and promoters have the lowest
inference scores, while those learned in the models of
H3K9me3 and H3K27me3 that are associated with re-
pression regions have the moderate inference scores,
and those learned in the model of H3K36me3 that
marks actively transcribed regions have the highest
inference scores (Fig. 3b). These results suggest that
the motifs specifying histone modifications in actively
transcribed regions have the highest specificity,
followed by those for determining histone modifica-
tions in repression regions, active promoters and en-
hancers regions.

Ni and Su BMC Genomics          (2019) 20:709 Page 6 of 18



The motifs learned in a cell type model have highly
variable inferences on different histone marks
An important question in epigenomics study is to
understand how different histone marks are placed at
specific domains of the genome in a cell type. Our
cell models might provide an easy way to address this
question by simply finding out the learned motifs that
impose a high inference on the prediction of each
histone mark in the models. More specifically, we
computed an inference score of each learned motif
on each histone mark in a cell type model. Shown in
Fig. 4 are the results for the learned motifs that are
ranked top 100 for their inferences on predicting at
least one histone mark in the cell type models.
Clearly, the motifs learned in each cell type model
have highly variable inferences on different histone
marks. For example, in all the four cell type models,
H3K36me3 and H3K27me3 are highly impacted by a
large number of the learned motifs, while H3K4me3
is only highly impacted by a few learned motifs, such
as Tn-26:FOXD1, Tn-106:HXB4, TN-21 and Tn- 294
in Tn (Fig. 4). H3K27ac is highly impacted by a large
number of learned motifs in Tcm, but is highly im-
pacted by only a few learned motifs in Tn, Tem and
Temra. H3K4me1 is highly impacted by a larger

number of learned motifs in Tcm, Tem and Temra,
but is highly impacted by a few learned motifs in Tn.
H3K9me3 is highly impacted by an intermediate
number of learned motifs in all the four cell types.
Moreover, in all the four cell models, only a few
learned motifs have high inferences on all the histone
marks, while most motifs have a high inference only
on 1–3 histone marks (Fig. 4). For instance, in Tn
model, only motifs Tn-26:FOXD1, Tn-106:HXB4, Tn-
21 and Tn-294 have high inferences on all the six
histone marks, while most of other motifs have high
inferences only on one or two histone marks. Thus,
each histone mark is impacted by a unique combin-
ation of motifs that may have inferences on more
than two histone marks. These results suggest that
the cognate TFs of most learned motifs exerting more
specific inferences on one or two histone marks
might play crucial roles in specifying the unique pat-
terns of different histone marks in the cell type, while
the cognate TFs of a few learned motifs having high
inferences on multiple histone marks might be in-
volved in the establishment of multiple histone marks,
probably by playing roles in the common mechanisms
of different histone modifications such as opening up
of DNA domains.

Fig. 3 Distributions of the inference scores of learned motifs in cell type and histone mark models. a, b. Relationship between the inference
scores and information contents of motifs learned in the four cell models and six histone mark models, respectively. c, d. Boxplots of the
inference scores of the motifs learned in the cell models and histone mark models, respectively (***, p < 0.001; ****p < 0.0001; Wilcoxon test)
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Fig. 4 Inferences of the learned motifs on the prediction of each histone mark by the cell type models. The heatmaps show the influence scores
of the top 100 learned motifs on predicting the six histone marks in the indicated cell type models. The scale bar shows range of the inference
score of a motif on a histone mark
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The motifs learned in a histone mark model have highly
variable inferences on different cell types
Another important question in epigenomics study is to
understand how the same histone mark is differentially
placed in the genomes of different cell types. Our his-
tone mark models might provide a convenient way to
tackle this question by simply identifying the learned
motifs that impose a high inference on the prediction of
each cell type by the models. More specifically, we calcu-
lated an inference score of each learned motif on the
prediction of each cell type by a histone mark model.
Shown in Additional file 1: Figure S4 is the result of the
motifs that are ranked top 100 for their inferences on
predicting at least one cell type by the six histone mark
models. Interestingly, motifs learned in each histone
mark model have highly variable inferences on different
cell types. For instance, in the H3K4me1 model, most of
the learned motifs have similarly small inferences on all
the four cell types, only few have high inferences on at
least one cell type. However, the latter set of motifs exert
high inferences only on one or two cell types with the
exception that motif H3K4me1–236:HXC10 has high in-
ferences on all the four cell types. Thus, it seems that
H3K4me1 in each cell type is specified by a small set of
motifs with unique combinations. In both the H3K4me3
and H3K27ac models, most of the learned motif have
similarly small inferences on the Tem, Tcm and Tn cell
types, only few have high inferences on at least one of
these three cells types, suggesting that these two histone
marks are specified by a small set of motifs with unique
combination in these three cell types. However, most of
the motifs learned in the H3K4me1 and H3K27ac
models impose high inferences on the Temra cells, sug-
gesting that these cells might have more complex
H3K4me3 and H3K27ac modifications than the other
three cell types, which is in line with the fact that Temra
is the terminally differentiated cells with more activated
enhancers and promoters. In the H3K9me3 and
H3K27me3 models, each cell type is impacted by a large
number of learned motifs with few having high infer-
ences on more than three cell types, suggesting these
two histone modifications in each cell type are specified
by a large set of motifs with unique combinations. This
result might be related to the functions of H3K9me3
that marks heterochromatins and of H3K27me3 that la-
bels polycomb-associated domains. In the H3K36me3
model, the numbers of learned motifs having high infer-
ences in the cells increase along their linear lineage:
Tn→ Tcm→ Tem→ Temra. Each cell type is highly
impacted by a large number of the learned motifs that
impact adjacent cells along the lineage. These results re-
flect the similarity of the transcriptomes of these adja-
cent cell types [8], and thus are in excellent agreement
with the functions of H3K36me3 that marks actively

transcribed genes. Taken together, the cognate TFs of
few learned motifs that exert high inferences on multiple
cell types might account for the similar patterns of a his-
tone mark and the common mechanisms of the histone
modification in different cell types, while the cognate
TFs of the motifs that have more specific inferences
might play crucial roles in specifying the different pat-
terns of the histone modification in different cell types.

Conserved learned motifs tend to have higher inferences
on the predictions
We also examined the relationships between the infer-
ence scores and the conservation levels of the motifs
learned in the cell and histone mark models. As shown
in Fig. 5a, there is positive correlation between the infer-
ence scores and the conservation levels of motifs learned
in all the cell models (Tn: r = 0.15, p = 0.011; Tcm: r =
0.11, p = 0.052; Tem: r = 0.079, p = 0.19; and Temra: r =
0.17, p = 0.003), though with varying levels of signifi-
cance. Moreover, as shown in Fig. 5b, there is a positive
correlation between the inference scores and the conser-
vation levels of motifs learned in the models of the four
activation-related histone marks H3K4me1 (r = 0.43, p =
2.3e-13), H3K4me3 (r = 0.17, p = 0.0043), H3K27ac (r =
0.35, p = 2.6e-9) and H3K36me3 (r = 0.23, p = 0.00016).
However, there is negative or no significant correlation
between the inference scores and the conservation levels
of motifs learned in the models of the two repression-re-
lated marks H3K9me3 (r = − 0.13, p = 0.036) and
H3K27me3 (r = 0.063, p = 0.29). These results indicate
that more conserved motifs learned in either the cell or
histone mark models generally have higher inferences on
the respective predictions than less conserved ones, with
the exception that rapidly evolving motifs in the
H3K9me3 mark peaks (heterochromatins) tend to have
higher inferences on the prediction of cell types than
more conserved ones. These observations are in line
with the general understanding of the evolution of DNA
sequences that functionally important sequences tend to
be either more conserved due to purifying selection or
evolved more rapidly due to positive selection. Thus,
these results further corroborate our predicted motifs.
Interestingly, motifs learned in the Tn and Tcm

models tend to be more conserved than those learned in
the Tem and Temra models, and the motifs learned in
the Temra model are least conserved (Fig. 5c). Thus,
there is a trend that the more differentiated the cells, the
less conserved the motifs learned from the correspond-
ing models, suggesting that more conserved mechanisms
might be used in the cells at the earlier stages of differ-
entiation to specify their histone modification patterns
than in the cells in the later stages of differentiation.
This conclusion is consistent with the general under-
standing about the development of animals during
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embryogenesis [35]. Moreover, motifs learned in the
models of gene activation-related marks H3K4me3,
H3K27ac, H3K4me1 and H3K36me3 are more con-
served than those learned in the models of repression-
related marks H3K9me3 and H3K27me3 (Fig. 5d). This
result suggests that more conserved mechanisms might
be used to specify the patterns of the four activation-re-
lated marks than those used to govern the patterns of
the two repression-related marks.

The CNN models can predict cooperative TFs for
specifying histone modifications in cells
To see if the models can be used to identify cooperative
TFs that define the histone modification patterns in the
T cells, we quantified the interactions between each pair
of learned motifs using a linear regression model where
a positive or negative interaction coefficient indicates
positive or negative interaction (Methods). To reduce
the computational time, we only focused on the top 50
of learned unique motifs with the highest inference
scores for both the cell models and histone mark
models. Shown in Fig. 6 are the results for the Temra
cell model. Clearly, there are different patterns of posi-
tive and negative interactions between the learned motifs
for predicting different histone marks in the cell type.

Interestingly, the motifs can be clustered into groups
based on the patterns of their interactions in predicting
the histone modifications. For example, in the case of
predicting H3K4me1 modifications, learned motifs
matching those of RUNX3, ETS1 and PATZ1 form a
group with positive interactions among them; learned
motifs matching those of EOMES, NFIA, ELK1, HINFP
and ITF2 form a group with many putative novel motifs
with largely positive interactions among them; learned
motifs matching those of TEAD3, ZN121, HMGA1,
ZN436, GLI1, ZN274, COT2, RX, TEF, ZN394 and
TYY1 form a group with many putative novel motifs
with largely negative interactions among them. Some of
the predicted interactions are supported by experimental
evidences. For example, we predicted ITF2 (also named
T cell specific transcription factor 4 (TCF4)) had signifi-
cant interactions with ETS1 for predicting histone marks
H3K27ac (γ = 1.27, p = 3.69e-65), H3K27me3 (γ = 0.18,
p = 0.01), H3K36me3 (γ = 0.21, p = 0.00077), H3K4me3
(γ = 1.15, p = 8.54e-57) and H3K9me3 (γ = − 0.39, p =
6.70e-06). In agreement with these predictions, it has
been shown that ITF2 might be involved in histone ace-
tyltransferase CBP recruitment by interacting with ETS1
[36]. Furthermore, we predicted that ITF2 had a positive
interaction with RUNX3 for determining histone marks

Fig. 5 Relationship between the inference scores and PhastCons scores of the learned motifs. a, b. Relationship between the inference scores
and PhastCons scores of the learned motifs in the cell models and the histone mark models, respectively. The red line is the linear regression
between the inference scores and PhastCons scores. c, d. Boxplots of the PhastCons scores of the motifs learned in cells models and histone
models, respectively (**, p < 0.01; ****, p < 0.0001; Wilcoxon test)
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Fig. 6 (See legend on next page.)
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H3K27ac (γ = 1.40, p = 4.29e-49), H3K27me3 (γ = − 0.20,
p = 0.013), H3K36me3 (γ = − 0.59, p = 6.40e-25),
H3K4me1 (γ = 0.32, p = 8.91e-05), H3K4me3 (γ = − 1.13,
p = 4.00e-40), and H3K9me3 (γ = − 0.18, p = 0.03), which
is in line with the earlier finding that RUNX3 involves in
regulating Wnt signaling activity by interacting with
ITF2 (TCF4) in a ternary complex manner [37]. The
predicted interactions between known and unknown
motifs as well as between unknown motifs are likely to
be novel interactions, in particular those with strong and
highly significant interactions, such as the interactions
for predicting the H3K27ac mark, between GLI2 and
Temra 146 (γ = 2.137, p = 4.95e-43), between TEAD3
and Temra 54 (γ = 1.97, p = 4.43e-50), and between
Temra 141 and Temra 146 (γ = 1.99, p = 4.41e-43), etc.
Similar patterns of interactions were observed in the
models of the other three T cell types (Additional file 1:
Figures S5-S7).
Shown in Additional file 1: Figure S8. are the results

for the H3K4me1 model. Again, there are distinct pat-
terns of positive and negative interactions between the
motifs for predicting different cell types by the model.
As in the cases of cell models, the motifs can be clus-
tered into groups based on the patterns of their interac-
tions for predicting the cell types. For instance, in the
case of predicting the Tn cells, the putative novel motifs
M-Motif-71 and H3K4me1–30 form a group with a
negative interaction; learned motifs matching those of
HIC2, HXD2, TFE2, ZN547, HAND1, COT1, SMAD4,
TBX1, ANDR, ZN263, THA, ZN784, ZSCA4, ZN436,
PTF1A and ZN770 form a group with many putative
novel motifs with largely positive interactions among
them; learned motifs matching those of HXC10, PO3F3,
POXJ3, HMGA2, HXC10, DLX1 and ZN250 form a
group with many putative novel motifs with largely
negative interactions among them. Some of the pre-
dicted interactions are supported by experimental evi-
dences. For example, we predicted that TFE2 interacted
with HAND1 for predicting Tn (γ = 5.38, p = 1.84e-137),
Tcm (γ = 4.00, p = 6.94e-115), Tem (γ = 2.82, p = 1e-70)
in Temra (γ = − 7.61, p = 1.97e-45), while it is has been
reported that TFE2 (also named E47) directly interacts
with HAND1 [38]. We predicted that SMAD4 interacted
with ANDR for predicting Tn (γ = 2.91, p = 2.68e-47),
Tcm (γ = 3.49, p = 1.86e-77), Tem (γ = 2.99, p = 3.47e-
79) and Temra (γ = − 0.93, p = 0.0002), while SMAD4 is
known to interact with ANDR, which might be involved
in differential regulation of the androgen receptor gene

transactivation [39]. We predicted that TFE2 interacted
with PTF1A for predicting Tn (γ = 5.22, p = 3.69e-20),
Tcm (γ = 3.247, p = 2.84e-29), Tem(γ = 2.40, p = 1.86e-
13), and Temra (γ = − 5.54, p = 1.89e-68), while it has
been reported that SMAD4 physically interacted with
PTF1A and plays a crucial role in regulating signal path-
ways [40]. We predicted that HMGA2 interacted with
SMAD4 for predicting Tn (γ = − 0.41, p = 0.026), Tcm
(γ = − 2.24, p = 2.84e-13) and Temra (γ = 0.90, p = 8.77e-
05), while it is known that HMGA2 interacts with
SMAD3/SMAD4 to regulate SNAIL1 gene expression
[41]. The predicted interactions between known and un-
known motifs as well as those between unknown motifs
are likely to be novel interactions, in particular those
with strong and highly significant interactions, such as
the negative interaction between M-Motif-71 and
H3K4me1–30 for predicting Tn (γ = − 4.17, p = 2.75e-
274), Tcm(γ = − 2.88, p = 3.40e-115) and Tem (γ = −
2.28, p = 2.36e-100), and a positive interaction for pre-
dicting Temra(γ = 3.78, p = 2.09e-63). Similar patterns of
interactions are seen in the models of the other five his-
tone marks (Additional file 1: Figures S9-S13).

Discussion
DNA sequence plays a crucial role in determining its
epigenomic state through interacting with the TFs and
epigenome remodeling systems. However, our current
understanding of these sequence determinants is still
limited, and thus new methods are needed to reveal
them. Recently, Whitaker and colleagues [8] trained a
random forest classifier based on a set of pre-specified
DNA motifs to predict six histone marks in H1 and its
derived cell types with high accuracy. The results
strongly support the pivotal roles of these motifs in spe-
cifying the unique epigenomes in the cells. However, this
method could not discover sequence determinants ab
initio, therefore, new methods are needed to gain a bet-
ter understanding of the sequence determinants of epi-
genomes of cell types. CNNs have been proved to be a
powerful approach to predict epigenomic features in-
cluding TF binding [10], DNase I accessibility [13], DNA
methylation [11, 42] and histone modifications [11]. And
one of the advantages of CNNs, which other machine-
learning methods often lack, is their ability to automatic-
ally learn the features of the objects through the filters
in the convolutional layers [43]. In the case of epige-
nomic analysis, these features include sequence determi-
nants that define the unique patterns of epigenetic

(See figure on previous page.)
Fig. 6 Interactions between each pair of the top 50 learned motifs on the predictions of the histone marks by the Temra cell model. The
heatmaps show the values of interaction coefficient γ between the top 50 learned motifs on predicting the indicated histone marks in the Temra
cell model. The scale bar shows the range of interaction coefficient γ. A negative value indicates a negative interaction while a positive value
indicates a positive interaction between the pair of motifs
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modifications in different cell types produced during
embryogenesis and development. Thus, CNNs can be a
powerful approach to real the epigenomic sequence
determinants.
Indeed, efforts have been made to interpret the se-

quence features learned by CNN models for predicting
epigenomic marks [10–13]. However, these studies used
a single mixed model to predict a combination of mul-
tiple epigenetic marks with multiple cell types, thus lack
the power of comparative analyses for the learned se-
quence features. To overcome this limitation and facili-
tate interpreting CNN models which can be otherwise
highly challenging [44], we developed two types of CNN
models to capture the sequence features for various his-
tone modifications in different cell types: 1) the cell type
model for predicting patterns of various histone modifi-
cations in a cell type, and 2) the histone mark model for
predicting various cell types based on a histone mark. In
this way, by comparing the motifs earned in different
cell type models, we could identify the common and
unique motifs that specify unique patterns of various
histone modifications in a cell type; and by comparing
the motifs learned in different histone mark models, we
could detect the common and unique motifs that deter-
mine different patterns of the same histone mark in dif-
ferent cell types. Furthermore, the models enable us to
evaluate the inferences of learned motifs and their inter-
actions on the prediction accuracy, thereby predicting
roles of each motif in specifying the epigenome and the
type of cells.
To validate this strategy, we applied it to a dataset of

six histone marks derived from four well-studied CD4
+

T cell types in humans, i.e., Tn, Tcm, Tem and Temra.
Both our histone mark models and cell type models
achieved very high accuracy and were highly robust
when tested on the dataset for H1 and its derived cell
types, suggesting that our models have largely learned
the relevant sequence features in determining the unique
histone mark patterns in these cells. Not surprisingly, a
large portion of the learned motifs in the first convolu-
tional layers in the models resemble those of TFs that
are known to play crucial roles in T cell development,
while the remaining ones could be novel motifs of un-
known TFs participating in T cell differentiation. By
comparing the motifs learned in different cell models,
we predicted that the unique patterns of various histone
modifications in each cell type were largely determined
by a unique set of motifs (Fig. 2b and c) and at the same
time, the number of common motifs shared by two cell
models reflected the linear lineage relationships of the
four CD4+ T cell types (Fig. 2g), which is consistent with
the results based on DNA methylation, DNase hypersen-
sitivity and transcription patterns in the earlier study
that produced the datasets used in our analysis.

Furthermore, by comparing the motifs learned in differ-
ent histone mark models, we predicted that different
patterns of the same histone marks in different cell types
were largely determined by a unique set of motifs (Fig.
2b and c), while the number of common motifs shared
by two histone mark models reflected their co-modifica-
tion and exclusiveness natures (Fig. 2h). All these results
suggest that at least most of the learned motifs are likely
to be authentic and play roles in T cell differentiation.
Moreover, by computing the inference scores of the
learned motifs, we further predicted the specific roles of
each learned motif in determining the patterns of vari-
ous histone modifications in a cell (Fig. 3a and c), or dif-
ferent patterns of the same histone modification in
different cells (Fig. 3b and d). Finally, by computing an
interaction score, we predicted the interactions of the
cognate TFs of the learned motifs in either the cell
models or histone mark models. Some of these predic-
tions have experimental supports. Thus, our results sup-
port the hypothesis that sequences ultimately determine
the unique epigenomes of different cell types through
their interactions with TFs, epigenome remodeling sys-
tem and extracellular cues during cell differentiation in a
stepwise manner. Therefore, the motifs learned in our
CNN models are highly interpretable and may provide
insights into the underlying molecular mechanisms of
establishing the unique histone modifications in different
cell types.

Conclusions
We have developed two types of highly accurate CNNs
constructed for cell types and for histone marks to pre-
dict the different histone marks in a cell type and differ-
ent patterns of same mark in different cells, respectively.
We showed that both the unique histone modification
patterns in a cell type and the different patterns of the
same histone mark in different cell types are determined
by a set of motifs with unique combinations. The level
of sharing motifs learned in the different cell models re-
flects the lineage relationships of the cells, while the level
of sharing motifs learned in different histone mark
models reflects their functional relationships. The
models enable the prediction of the importance of the
learned motifs and their interactions in determining spe-
cific histone mark patterns in the cell types. Therefore,
the motifs learned in the models are highly interpretable
and may provide insights into the underlying molecular
mechanisms of establishing the unique histone modifica-
tions in different cell types. Our results suggest the hy-
pothesis that DNA sequences ultimately determine the
unique epigenomes of different cell types through their
interactions with TFs, epigenome remodeling system
and extracellular cues during cell differentiation in a
stepwise manner.
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Methods
The datasets
Human CD4+ T cells dataset
We downloaded from European Genome-Phenome
Archive the ChIP-seq datasets for six histone marks
H3K4me1, H3K4me3, H3K27me3, H3K27ac, H3K9me3
and H3K36me3 in four different human CD4

+ T cell
types native T (Tn), central memory T (Tcm), T effector
memory (Tem), and CD4

+ terminally differentiated
CD45RA

+ memory T (Temra) cells [14].

Human embryonic stem cells dataset
We downloaded from the Roadmap Epigenomics Project
[16] the ChIP-seq datasets for six histone marks
H3K4me1, H3K4me3, H3K27me3, H3K27ac, H3K9me3
and H3K36me3 in H1 human embryonic stem cells (H1)
and in four cell types derived from H1, including
trophoblast-like (TBL), mesendoderm (ME), mesenchy-
mal (MSC) and neural progenitor (NPC) cells.

Peak calling, filtering and merging
To identify genome regions that are modified by differ-
ent histone marks, we called tight and broad histone
modification peaks [8] using MACS2 [45]. The tight
peaks including H3K27ac, H3K4me1 and H3K4me3 are
typically < 1 kbp. The broad peaks including H3K27me3,
H3K36me3 and H3K9me3 are typically > 1 kbp. The
tight peaks were called as follows:
macs2 callpeak -t bam/tagAlign file -n name -c control

file –outdir output dir -g hs -q 0.05 –nomodel –extsize
fragment length.
The broad peaks were called as follows:
macs2 callpeak -t bam/tagAlign file -n name -c control

file –outdir output dir -g hs –broad –broad-cutoff 0.1 –
nomodel –extsize fragment size.
The fragment sizes were estimated using phantom-

peakqualtools [46, 47].
We discarded peaks whose − log 10(qvalue) was less

than 2 or whose length was greater than 10,000 bp for
their low quality or too long length. We also removed
the peaks that overlapped the blacklisted regions of the
human genome [48], which are regions showing artifi-
cially high signal in all NGS experiments. To ensure only
regions of high confidence were considered, we only
used the intersection of at least two replicates when pos-
sible. We extracted and merged the peaks using Bed-
Tools [49], and used the CRCh37/hg19 genome
assembly for all the analyses.

Data representation
To prepare the input for the deep CNN models, we seg-
mented the human whole genome (CRCh37/hg19) into
200-bp bins [11]. For a cell model, we labeled each bin
with a binary vector with each bit indicating whether it

was modified by the corresponding histone mark (1) or
not (0) in the cell type. For a histone mark model, we la-
beled each bin with a binary vector with each bit indicat-
ing whether it was modified by the mark in the
corresponding cell type (1) or not (0). We say that a bin
overlaps with a peak if the overlapping portion of the
bin with the peak is above a threshold. To achieve the
best prediction results, we tested different thresholds of
0.5, 0.6, 0.7, 0.8 and 0.9, and chose the threshold with
the highest accuracy for the final analysis. We discarded
the bins that had no overlap with any histone modifica-
tions. We then extended the 200-bp bin into 1000-bp se-
quence centered on the middle of the 200-bp bin for
context learning [11]. Each extended 1000-bp sequence
was represented by a 1000 × 4 binary matrix as the input
to the CNN models, and each row was one hot vector to
represent the presence or absence of A, C, G, T at the
nucleotide position. If a nucleotide position is N in the
genome, we represented it as [0.25, 0.25, 0.25, 0.25] [13].

Convolutional neural networks
CNNs are a type of feed-forward artificial neural net-
works, usually consisting of an input layer, multiple con-
volutional layers, one or more fully connected layers and
an output layer. Our CNN models (Fig. 7) are made of a
stack of three units each consisting of a convolutional
layer, a pooling layer and a batch normalization layer,
followed by a fully connected layer and an output
layer. We apply a rectified linear unit (ReLU) trans-
form as the activation function after a convolution
layer (Fig. 7), which helps to prevent vanishing gradi-
ent problem [50, 51]:

Convolution Xð Þlk ¼ ReLU
XL−1

l¼0

XD−1

d¼0

Wk
ldXiþl;d

 !
; ð1Þ

where X is the input, L is the input length, D is the input
dimension, i is the output position, and k is filters’
index.

ReLU xð Þ ¼ max 0; xð Þ ð2Þ

To decease internal covariate shift and accelerate
training, we apply a batch normalization layer after the
convolutional layer [52]. Furthermore, we apply a max
pooling layer after the batch normalization layer, which
extracts the maximum activation value from each recep-
tive field in the prior layer. Three convolutional layers
contain 320, 300 and 300 kernels, respectively, and the
fully connected layer has 1000 units with a sigmoid acti-
vation function feeding into the output layer (Fig. 7). We
use a sigmoid function as the activation function of the
output layer to conduct multi-task prediction,
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y Xð Þ ¼ Sigmoid Xð Þ ¼ 1
1þ e−WX

ð3Þ

where y(X) is the prediction of the output layer, X is the
output of the previous layer, W is the weight matrix of
the output layer. We implemented the CNN models
using Theano [53] and Lasagne [54].

Model training, validation and evaluation
We split a dataset into a training dataset, a validation
dataset and a test dataset with a ratio about 2:1:1, and
the objective function is binary cross entropy. We apply
a stochastic gradient descent to minimize the objective
function by updating all model parameters using
RMSprop with a learning rate 0.001 on minibatch [55].
To avoid overfitting, we apply L1 and L2 regularization
terms and the early stopping strategy. To keep the filters
free to grow based on input sequences, we only apply L1
and L2 regularization terms to the fully connected layer.
To quickly choose the best set of hyperparameters of the
models, we use parallel random search and apply L1 and
L2 as well as maximum epochs as shown in Table 1.
We performed the receiver operating characteristic

(ROC) curve analysis and used the area under the curve

(AUC) to evaluate the performance of the models. We
also define the accuracy of a model as follows:

Accuracy ¼ TP þ TN
TP þ FN þ TN þ FP

ð4Þ

where TP is true positive, TN true negative, FN false
negative and FP false positive.

Interpretation of the kernels/filters in the first
convolutional layer
The first convolutional layer of the models scans the
DNA sequences with its kernel or filters to capture the

Fig. 7 An Illustrative schematic of the convolutional neural network models. ReLU is the rectified linear unit activation function, for details, see
the text

Table 1 Hyper-parameter configurations for training the models

Trail L1 L2 Patience Max epochs Batch size

1 1e-07 2e-08 5000 20 128

2 2e-07 4e-08 5000 20 128

3 3e-07 8e-08 5000 20 128

4 4e-07 2e-07 5000 20 128

5 5e-07 4e-07 5000 20 128

6 6e-07 8e-07 5000 20 128

Overlap is 0.5, 0.6, 0.7, 0.8, 0.9

Ni and Su BMC Genomics          (2019) 20:709 Page 15 of 18



k-mer motifs that differentiate modified and unmodified
DNA sequences. Thus these filters potentially corres-
pond to the binding motifs of TFs or chromatin remod-
eling proteins whose interactions with the motifs may
lead to the specific modifications at the loci. To reveal
such these motifs, we construct a position weight matri-
ces (PWMs) for each filter by extracting k-mers in the
test dataset, which has a score against the filter greater
than a threshold defined as,

Threshold ¼ αmax−αminð Þ � β; ð5Þ
where αmax and αmin are the maximum and minimum
activations for a k-mer across all sequences in the test
dataset, respectively, and β is a ratio constant. For each
filter, we evaluated β ranging from 0.3 to 0.8, and chose
the resulting PWM with the highest information con-
tent. We discard the resulting PWMs with 0 information
content. To evaluate the inference of a filter on the
model’s prediction, we nullify forward information of the
filter by setting its output as its mean output over all nu-
cleotides of all sequences in the test dataset [13], and
quantify each filter’s inference as sum of square of the
difference of the prediction probability in the test dataset
before and after the nullification as follows,

Influence kð Þ ¼
X

x∈D

Ppre xð Þ−Paft xð Þ� �2
; ð6Þ

where D is the test dataset and Ppre(x) and Paft(x) are the
prediction probabilities before and after nullifying the fil-
ter k, respectively.

Motif conservation analysis
We used Fimo [56] to scan sequences for binding sites
of each motif as follows:
fimo –parse-genomic-coord –thresh 1e-5 –bgfile fasta

file background model –oc output_folder motifs_meme
target_sequences.
We used a 5th-order Markov model [57] to generate

the background sequences as follows:
fasta-get-markov -m 5 -dna sequences background_model.
We extracted the phastCons [58] score for each pos-

ition in each binding site, and calculated a conservation
score for each motif as the mean the PhastCons scores
of all the binding sites of each motif learned in the
models. To study the relationship between the inferences
of the learned motifs and their conservation levels, we
computed the Pearson correlation coefficient between
them, and tested the null hypothesis of non-correlation
using two-tailed p-values,

r ¼ cov I;Cð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Ið Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var Cð Þp ; ð7Þ

where I, C are the inference and phastCons scores of

motifs, respectively, and r Pearson correlation
coefficient.

Merging highly similar motifs
To merge similar motifs learned in all the cell and his-
tone mark models, we compared each motif with all
other motifs using TOMTOM [59], and constructed a
graph by connecting two motifs if they were a pair of bi-
directional best hits with a minimum overlap of 7 bps
and E value < 0.1. We then cut the network into con-
nected components using Networkx [60]. Some compo-
nents are singletons containing a single original motif,
while others are formed by multiple highly similar ori-
ginal motifs. We consider each of these components as a
unique motif. To find the PWM for the merged motifs,
we performed motifs finding on the merged binding sites
using ProSampler [61].

Prediction of interactions between cognate TFs of learned
motifs
To predict possible interactions between the cognate
TFs of the learned motifs, we applied a linear model to
the changes in the prediction probability for random se-
lected 2000 sequences after the two motifs were simul-
taneously nullified, defined as:

ΔPij ¼ α� ΔPi þ β� ΔP j þ γ � ΔPiP j; ð8Þ
where ΔPij is the sum square of changes in the prediction
probability after simultaneously nullifying motifs i and j,
ΔPi and ΔPj are the sum square of changes in the predic-
tion probabilities after nullifying motifs i and j, respect-
ively, and α, β and γ are constants. Clearly the absolute
value of γ reflects the intensity of the interaction, while its
sign (+/−) indicates a positive or negative interaction.
Therefore, we call γ the interaction coefficient and used it
to quantify the interaction between two motifs.

Additional files

Additional file 1: Figure S1. Performance of the CNN models of the
five cell types for predicting the six histone marks. Figure S2.
Performance of the CNN models of the six histone marks for predicting
the four cell types. Figure S3. Performance of the CNN models of the six
histone marks for predicting the five cell types. Figure S4. Influences of
the learned motifs on the prediction of each cell type by the histone
mark models. Figure S5. Interactions between each pair of top 50
learned motifs on the prediction of the six marks by the Tn cell model.
Figure S6. Interactions between each pair of top 50 learned motifs on
the prediction of the six marks by the Tcm cell model. Figure S7.
Interactions between each pair of top 50 learned motifs on the
prediction of the six marks by the Tem cell model. Figure S8.
Interactions between each pair of the top 50 learned motifs on the
prediction of the four cell types by the H3K4me1 model. Figure S9.
Interactions between each pair of top 50 learned motifs on the
prediction of the four cell types by the H3K4me3 model. Figure S10.
Interactions between each pair of top 50 learned motifs on the
prediction of the four cell types by the H3K9me3 model. Figure S11.
Interactions between each pair of top 50 learned motifs on the

Ni and Su BMC Genomics          (2019) 20:709 Page 16 of 18

https://doi.org/10.1186/s12864-019-6072-8


prediction of the four cell types by the H3K27ac model. Figure S12.
Interactions between each pair of top 50 learned motifs on the
prediction of the four cell types by the H3K27me3 model. Figure S13.
Interactions between each pair of top 50 learned motifs on the
prediction of the four cell types by the H3K36me3 model.
(DOCX 10608 kb)

Abbreviations
AUC: Area under the ROC curve; CNNs: Convolutional neural networks;
FN: False negative; FP: False positive; H1: H1 human embryonic stem cells;
ME: Mesendoderm cells; M-motif: Merged Motif; MSC: Mesenchymal cells;
NPC: Neural progenitor cells; PWM: Position weight matrix; ReLU: Rectified
linear unit; ROC: Receiver operating characteristic (ROC); TBL: Trophoblast-like
cells; TCF4: T cell specific transcription factor 4; Tcm: Central memory T cells;
Tem: T effector memory cells; Temra: Terminally differentiated CD45RA

+

memory; TF: Transcription factor; Tn: Native T cells; TN: True negative;
TP: True positive

Acknowledgements
The authors would like to thank Dr. Meng Niu for assisting in preprocessing
the original ChIP-seq datasets, and members in the Su Lab for discussion.
We also thank Dr. Polansky for providing the T cell Epigenome datasets.

Authors’ contributions
ZS and PN conceived the project and computational experiments. PN
developed the algorithm and carried out all computational experiments. ZS
and PN wrote the manuscripts. All authors read and approved the final
manuscript.

Funding
The work was partially supported by US National Science Foundation (DBI-
1661332) and NIH (R01GM106013) to ZS. The funding bodies played no role
in the design of the study and collection, analysis, and interpretation of data
and in writing the manuscript.

Availability of data and materials
Human embryonic stem cells dataset analyzed during the current study are
available in the NIH Roadmap Epigenomics Mapping Consortium repository,
https://egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/ .
Human CD4+ T cells dataset analyzed during the current study are available
in The German epigenome programme ‘DEEP’ repository, http://deep.dkfz.
de/#/experiments .

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 7 March 2019 Accepted: 29 August 2019

References
1. Strahl BD, Allis CD. The language of covalent histone modifications. Nature.

2000;403:41–5.
2. Rodriguez RM, Suarez-Alvarez B, Lavin JL, Mosen-Ansorena D, Baragano

Raneros A, Marquez-Kisinousky L, Aransay AM, Lopez-Larrea C. Epigenetic
networks regulate the transcriptional program in memory and terminally
differentiated CD8+ T cells. J Immunol. 2017;198:937–49.

3. Russ BE, Olshanksy M, Smallwood HS, Li J, Denton AE, Prier JE, Stock AT,
Croom HA, Cullen JG, Nguyen ML, et al. Distinct epigenetic signatures
delineate transcriptional programs during virus-specific CD8(+) T cell
differentiation. Immunity. 2014;41:853–65.

4. Juelich T, Sutcliffe E, Denton A, He YQ, Doherty PC, Parish C, Turner SJ,
Tremethick D, Rao S. Interplay between chromatin remodeling and
epigenetic changes during lineage-specific commitment to Granzyme B
expression. J Immunol. 2009;183:7063–72.

5. Zhu J, Adli M, Zou JY, Verstappen G, Coyne M, Zhang X, Durham T, Miri M,
Deshpande V, De Jager PL, et al. Genome-wide chromatin state transitions
associated with developmental and environmental cues. Cell. 2013;152:642–
54.

6. Thomson JP, Skene PJ, Selfridge J, Clouaire T, Guy J, Webb S, Kerr AR,
Deaton A, Andrews R, James KD, et al. CpG islands influence chromatin
structure via the CpG-binding protein Cfp1. Nature. 2010;464:1082–6.

7. Benveniste D, Sonntag HJ, Sanguinetti G, Sproul D. Transcription factor
binding predicts histone modifications in human cell lines. Proc Natl Acad
Sci U S A. 2014;111:13367–72.

8. Whitaker JW, Chen Z, Wang W. Predicting the human epigenome from
DNA motifs. Nat Methods. 2015;12:265–72 267 p following 272.

9. Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A, Ripke S,
Lee JC, Jostins L, Shah T, et al. Association analyses identify 38 susceptibility
loci for inflammatory bowel disease and highlight shared genetic risk across
populations. Nat Genet. 2015;47:979–86.

10. Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence
specificities of DNA- and RNA-binding proteins by deep learning. Nat
Biotechnol. 2015;33:831–8.

11. Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep
learning-based sequence model. Nat Methods. 2015;12:931–4.

12. Zeng H, Gifford DK. Predicting the impact of non-coding variants on DNA
methylation. Nucleic Acids Res. 2017;45:e99.

13. Kelley DR, Snoek J, Rinn JL. Basset: learning the regulatory code of the
accessible genome with deep convolutional neural networks. Genome Res.
2016;26:990–9.

14. Durek P, Nordstrom K, Gasparoni G, Salhab A, Kressler C, de Almeida M,
Bassler K, Ulas T, Schmidt F, Xiong J, et al. Epigenomic profiling of human
CD4(+) T cells supports a linear differentiation model and highlights
molecular regulators of memory development. Immunity. 2016;45:1148–61.

15. Ernst J, Kellis M. Interplay between chromatin state, regulator binding, and
regulatory motifs in six human cell types. Genome Res. 2013;23:1142–54.

16. Roadmap Epigenomics C, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen
A, Heravi-Moussavi A, Kheradpour P, Zhang Z, Wang J, et al. Integrative
analysis of 111 reference human epigenomes. Nature. 2015;518:317–30.

17. Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R. InteractiVenn: a
web-based tool for the analysis of sets through Venn diagrams. Bmc
Bioinformatics. 2015;16:169.

18. Kulakovskiy IV, Vorontsov IE, Yevshin IS, Sharipov RN, Fedorova AD,
Rumynskiy EI, Medvedeva YA, Magana-Mora A, Bajic VB, Papatsenko DA,
et al. HOCOMOCO: towards a complete collection of transcription factor
binding models for human and mouse via large-scale ChIP-Seq analysis.
Nucleic Acids Res. 2018;46:D252–9.

19. Li R, Pei H, Watson DK, Papas TS. EAP1/Daxx interacts with ETS1 and
represses transcriptional activation of ETS1 target genes. Oncogene. 2000;19:
745–53.

20. Wasylyk C, Schlumberger SE, Criqui-Filipe P, Wasylyk B. Sp100 interacts with
ETS-1 and stimulates its transcriptional activity. Mol Cell Biol. 2002;22:2687–702.

21. Feuerstein N, Firestein R, Aiyar N, He X, Murasko D, Cristofalo V. Late
induction of CREB/ATF binding and a concomitant increase in cAMP levels
in T and B lymphocytes stimulated via the antigen receptor. J Immunol.
1996;156:4582–93.

22. Kawasaki H, Schiltz L, Chiu R, Itakura K, Taira K, Nakatani Y, Yokoyama KK.
ATF-2 has intrinsic histone acetyltransferase activity which is modulated by
phosphorylation. Nature. 2000;405:195–200.

23. Wong WF, Kohu K, Chiba T, Sato T, Satake M. Interplay of transcription
factors in T-cell differentiation and function: the role of Runx. Immunology.
2011;132:157–64.

24. Kim HP, Kim BG, Letterio J, Leonard WJ. Smad-dependent cooperative
regulation of interleukin 2 receptor alpha chain gene expression by T cell
receptor and transforming growth factor-beta. J Biol Chem. 2005;280:
34042–7.

25. Malhotra N, Kang J. SMAD regulatory networks construct a balanced
immune system. Immunology. 2013;139:1–10.

26. Valle-García D, Qadeer ZA, McHugh DS, FVG G, Chowdhury AH, Hasson D,
Dyer MA, Fl R-T, Bernstein E. ATRX binds to atypical chromatin domains at
the 3â? Exons of zinc finger genes to preserve H3K9me3 enrichment.
Epigenetics. 2016;11:398–414.

27. Hedrick SM, Hess Michelini R, Doedens AL, Goldrath AW, Stone EL. FOXO
transcription factors throughout T cell biology. Nat Rev Immunol. 2012;12:
649–61.

Ni and Su BMC Genomics          (2019) 20:709 Page 17 of 18

https://egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/
http://deep.dkfz.de/#/experiments
http://deep.dkfz.de/#/experiments


28. He B, Xing S, Chen C, Gao P, Teng L, Shan Q, Gullicksrud JA, Martin MD, Yu
S, Harty JT, et al. CD8(+) T cells utilize highly dynamic enhancer repertoires
and regulatory circuitry in response to infections. Immunity. 2016;45:1341–
54.

29. Crompton JG, Narayanan M, Cuddapah S, Roychoudhuri R, Ji Y, Yang WJ,
Patel SJ, Sukumar M, Palmer DC, Peng WQ, et al. Lineage relationship of
CD8(+) T cell subsets is revealed by progressive changes in the epigenetic
landscape. Cellular & Molecular Immunology. 2016;13:502–13.

30. Henson SM, Riddell NE, Akbar AN. Properties of end-stage human T cells
defined by CD45RA re-expression. Curr Opin Immunol. 2012;24:476–81.

31. Wang Z, Willard HF. Evidence for sequence biases associated with patterns
of histone methylation. BMC Genomics. 2012;13:367.

32. Ho JW, Jung YL, Liu T, Alver BH, Lee S, Ikegami K, Sohn KA, Minoda A,
Tolstorukov MY, Appert A, et al. Comparative analysis of metazoan
chromatin organization. Nature. 2014;512:449–52.

33. Lin L, Peng SL. Coordination of NF-κB and NFAT antagonism by the
forkhead transcription factor Foxd1. J Immunol. 2006;176:4793–803.

34. Moskowitz DM, Zhang DW, Hu B, Le Saux S, Yanes RE, Ye Z, Buenrostro JD,
Weyand CM, Greenleaf WJ, Goronzy JJ. Epigenomics of human CD8 T cell
differentiation and aging. Sci Immunol. 2017;2:0192.

35. Gilbert SF: Developmental biology. 6th edn: Sinauer Associates; 2000.
36. Tushir JS, D'Souza-Schorey C. ARF6-dependent activation of ERK and Rac1

modulates epithelial tubule development. EMBO J. 2007;26:1806–19.
37. Ito K, Lim AC, Salto-Tellez M, Motoda L, Osato M, Chuang LS, Lee CW, Voon

DC, Koo JK, Wang H, et al. RUNX3 attenuates beta-catenin/T cell factors in
intestinal tumorigenesis. Cancer Cell. 2008;14:226–37.

38. Morin S, Pozzulo G, Robitaille L, Cross J, Nemer M. MEF2-dependent
recruitment of the HAND1 transcription factor results in synergistic
activation of target promoters. J Biol Chem. 2005;280:32272–8.

39. Kang HY, Huang KE, Chang SY, Ma WL, Lin WJ, Chang C. Differential
modulation of androgen receptor-mediated transactivation by Smad3 and
tumor suppressor Smad4. J Biol Chem. 2002;277:43749–56.

40. Shimamoto T, Nakamura S, Bollekens J, Ruddle FH, Takeshita K. Inhibition of
DLX-7 homeobox gene causes decreased expression of GATA-1 and c-myc
genes and apoptosis. Proc Natl Acad Sci U S A. 1997;94:3245–9.

41. Thuault S, Tan EJ, Peinado H, Cano A, Heldin CH, Moustakas A. HMGA2 and
Smads co-regulate SNAIL1 expression during induction of epithelial-to-
mesenchymal transition. J Biol Chem. 2008;283:33437–46.

42. Angermueller C, Lee HJ, Reik W, Stegle O. DeepCpG: accurate prediction of
single-cell DNA methylation states using deep learning. Genome Biol. 2017;
18:67.

43. Shrikumar A. Greenside P. Learning Important Features Through
Propagating Activation Differences: Kundaje A; 2017.

44. Wainberg M, Merico D, Delong A, Frey BJ. Deep learning in biomedicine.
Nat Biotechnol. 2018;36:829–38.

45. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum
C, Myers RM, Brown M, Li W, Liu XS. Model-based analysis of ChIP-Seq
(MACS). Genome Biol. 2008;9:R137.

46. Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S,
Bernstein BE, Bickel P, Brown JB, Cayting P. ChIP-seq guidelines and
practices of the ENCODE and modENCODE consortia. Genome Res. 2012;22:
1813–31.

47. Kharchenko PV, Tolstorukov MY, Park PJ. Design and analysis of ChIP-seq
experiments for DNA-binding proteins. Nat Biotechnol. 2008;26:1351–9.

48. Consortium TEP. An integrated encyclopedia of DNA elements in the
human genome. Nature. 2012;489:57–74.

49. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics. 2010;26:841–2.

50. Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to
document recognition. Proc IEEE. 1998;86:2278–324.

51. Nair V, Conference GH-PottiEH-Potti, U, international Conference GEH-Pott:
Rectified linear units improve restricted boltzmann machines. cstorontoedu.

52. Ioffe S, Szegedy C: Batch normalization: accelerating deep network training
by reducing internal covariate shift. pp. 448–456: JMLR.org; 2015:448–456.

53. Team TD: Theano: A Python framework for fast computation of
mathematical expressions. arXiv e-prints 2016, abs/1605.0.

54. Dieleman S, Schlüter J, Raffel C, Olson E. Sønderby SrK, Nouri D, others:
Lasagne: first release; 2015.

55. Hinton G, Srivastava N, Swersky K: Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent.

56. Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given
motif. Bioinformatics. 2011;27:1017–8.

57. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW,
Noble WS. MEME SUITE: tools for motif discovery and searching. Nucleic
Acids Res. 2009;37:W202–8.

58. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K,
Clawson H, Spieth J, Hillier LW, Richards S, et al. Evolutionarily conserved
elements in vertebrate, insect, worm, and yeast genomes. Genome Res.
2005;15:1034–50.

59. Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS. Quantifying similarity
between motifs. Genome Biol. 2007;8:24.

60. Hagberg A, Swart P, S Chult D: Exploring network structure, dynamics, and
function using NetworkX. Los Alamos National Lab.(LANL), Los Alamos, NM
(United States); 2008.

61. Li Y, Ni P, Zhang S, Li G, Su Z. ProSampler: an ultrafast and accurate motif
finder in large ChIP-seq datasets for combinatory motif discovery.
Bioinformatics. 2019.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Ni and Su BMC Genomics          (2019) 20:709 Page 18 of 18

http://jmlr.org

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	The cell type CNN models are highly accurate and robust for predicting various histone modifications in different cell types
	The histone mark CNN models are highly accurate and robust for predicting different cell types based on a histone mark
	Patterns of different histone marks in a cell type as well as different patterns of the same histone mark in different cell types are largely determined by a unique set of motifs
	Motifs learned in the cell type models reflect the lineage of the cells
	Motifs learned in histone mark models reflect functional relationships of the marks
	The learned motifs have varying inferences on the prediction accuracy of the models
	The motifs learned in a cell type model have highly variable inferences on different histone marks
	The motifs learned in a histone mark model have highly variable inferences on different cell types
	Conserved learned motifs tend to have higher inferences on the predictions
	The CNN models can predict cooperative TFs for specifying histone modifications in cells

	Discussion
	Conclusions
	Methods
	The datasets
	Human CD4+ T cells dataset
	Human embryonic stem cells dataset

	Peak calling, filtering and merging
	Data representation
	Convolutional neural networks
	Model training, validation and evaluation
	Interpretation of the kernels/filters in the first convolutional layer
	Motif conservation analysis
	Merging highly similar motifs
	Prediction of interactions between cognate TFs of learned motifs

	Additional files
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

