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Abstract

Background: Targeted therapy for non-small cell lung cancer is histology dependent. However, histological classification
by routine pathological assessment with hematoxylin-eosin staining and immunostaining for poorly differentiated tumors,
particularly those from small biopsies, is still challenging. Additionally, the effectiveness of immunomarkers is limited by
technical inconsistencies of immunostaining and lack of standardization for staining interpretation.

Results: Using gene expression profiles of pathologically-determined lung adenocarcinomas and squamous cell carcinomas,
denoted as pADC and pSCC respectively, we developed a qualitative transcriptional signature, based on the within-sample
relative gene expression orderings (REOs) of gene pairs, to distinguish ADC from SCC. The signature consists of two genes,
KRT5 and AGR2, which has the stable REO pattern of KRT5 > AGR2 in pSCC and KRT5 < AGR2 in pADC. In the
two test datasets with relative unambiguous NSCLC types, the apparent accuracy of the signature were 94.44
and 98.41%, respectively. In the other integrated dataset for frozen tissues, the signature reclassified 4.22% of
the 805 pADC patients as SCC and 12% of the 125 pSCC patients as ADC. Similar results were observed in the clinical
challenging cases, including FFPE specimens, mixed tumors, small biopsy specimens and poorly differentiated
specimens. The survival analyses showed that the pADC patients reclassified as SCC had significantly shorter
overall survival than the signature-confirmed pADC patients (log-rank p= 0.0123, HR = 1.89), consisting with the knowledge
that SCC patients suffer poor prognoses than ADC patients. The proliferative activity, subtype-specific marker genes and
consensus clustering analyses also supported the correctness of our signature.

Conclusions: The non-subjective qualitative REOs signature could effectively distinguish ADC from SCC, which would be
an auxiliary test for the pathological assessment of the ambiguous cases.

Keywords: Non-small cell lung cancer, Histological subtype, Pathological assessment, Relative gene expression orderings,
Qualitative transcriptional signature
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Background
Lung cancer is the most frequent cause of cancer-related
deaths worldwide. Non-small cell lung cancer (NSCLC)
represents around 80% of lung cancers [1], with two
major histological subtypes: adenocarcinoma (ADC) and
squamous cell carcinoma (SCC) [2]. Despite sharing
many biological features, ADC and SCC differ in their
cell of origin, location within the lung and tumor pro-
gression [1, 3], suggesting that they are distinct diseases
that develop through differential molecular mechanisms.
Consequently, some therapy regimens for NSCLC are
histology dependent. For example, compared with SCC
patients, ADC patients have a higher response rate to
treatment of the epidermal growth factor receptor
(EGFR) tyrosine kinase inhibitor [4–6]. The angiogenesis
inhibitor bevacizumab is approved for non-squamous
patients but forbidden to SCC patients due to the high
rate of life-threatening pulmonary hemorrhag [4, 7].
Similarly, another chemotherapy drug, pemetrexed, also
has been demonstrated efficacy for ADC or non-squamous
patients [8]. These discrepancies in tumor biology and
response to drug treatment highlight the importance to
distinguish ADC from SCC accurately.
Microscopic morphological features observed from

hematoxylin-eosin (HE) staining are currently the “golden”
standard for the lung cancer histological classification. In
general, if there is an adequate tumor specimen and the
tumor is well or moderately differentiated, imaging tech-
nique is sufficient to determine ADC or SCC [1]. However,
the histological classification for the poorly differentiated
specimens or the small biopsy specimens, which account
for about 70% of the initial lung cancer diagnoses [9], is
still a challenge. Therefore, immunohistochemistry (IHC)
detection of subtype-specific markers has been proposed
for assisting the histological classification of NSCLC [10,
11]. Before the recommendations of the WHO 2015 Clas-
sification of lung cancer, most of the poorly differentiated
NSCLC cases without morphologic evidence of glandular
or squamous differentiation are assigned to the large cell
carcinoma (LCC) subtype [12, 13]. However, Rekhtman
et al. have reported that, except LCC with neuroendocrine
features (LCNEC), most LCC should be classified as ADC
or SCC [12]. Currently, many LCCs identified according to
previous criteria can be reclassified as ADC or SCC sub-
type based on their immunomarkers [12, 13]. However,
even with the auxiliary of immunomarkers, there is still a
certain percentage of misclassified cases because of the
subjective diagnoses of HE staining or immunostaining
results by pathologists using varying pathological criteria
or interpretations [14]. Additionally, based on the combi-
nations of SCC and ADC immunomarkers, such as TTF-1
and p63 [11], there is still about 10% samples could not be
classified as they are both positive or negative of two
immunomarkers [15].

Therefore, in recent years, considerable efforts have
been devoted to extracting signatures based on gene
expression profiles to stratify ADC and SCC [1, 16].
However, most of the reported transcriptional signa-
tures, such as the 42-gene signature [1], are based on
risk scores summarized from the quantitative expression
measurements of the signature genes, which lack robust-
ness for clinical applications due to large measurement
batch effects [17] and quality uncertainties of clinical
samples [18–20].
Fortunately, the within-sample relative expression or-

derings (REOs) of genes, which are the qualitative tran-
scriptional characteristics of samples, are robust against
to experimental batch effects and disease signatures
based on REOs can be directly applied to samples at the
individualized level [21–26]. Besides, we have reported
that the within-sample REOs of genes are highly robust
against to partial RNA degradation during specimen
storage and preparation [18], varied proportions of the
tumor cells in tumor tissues [19], and low-input RNA
specimens [20]. Therefore, it is worthwhile to apply the
within-sample REOs to find a robust qualitative signa-
ture for distinguishing ADC from SCC.
In this study, we developed a REOs-based qualitative

signature for individualized NSCLC histological reclassi-
fication. We tested the robustness of the signature in
two datasets with relative unambiguous NSCLC types,
concordantly determined by two independent routine
pathologists. For the other test datasets, we performed
the survival analyses, proliferative activity analyses,
subtype-marker genes expressions and consensus cluster-
ing analyses to provide evidences that the signature could
rectify some misclassifications of histological subtypes by
routine pathological assessments. Especially, the sample
reclassifications by the signature were validated in various
specimen types, including the frozen tissue specimens,
formalin fixed paraffin-embedded (FFPE) tissue specimens,
small biopsy specimens, mixed tumor specimens with high
varied proportions of tumor cells and poorly differentiated
tumor (LCC) specimens. Therefore, this signature would
be an effective auxiliary tool for precise diagnoses of lung
SCC and ADC.

Results
Identification of the signature for distinguishing ADC
from SCC
Figure 1 describes the flowchart of this study. First, from
the 20,283 genes detected in the GSE30219 dataset
(Table 1), we extracted 10,474 DE genes between the 85
pADC samples and the 14 normal controls, and 14,533
DE genes between the 61 pSCC samples and the 14 nor-
mal controls (SAM, FDR < 0.05). Interestingly, we found
295 genes that were DE genes in both the pADC and
pSCC samples but with opposite dysregulated directions

Li et al. BMC Genomics          (2019) 20:881 Page 2 of 16



in the two types of samples when compared with the
normal controls, and defined them as the subtype-
opposite genes. Similarly, from the 20,283 genes detected
in the GSE18842 dataset (Table 1), we extracted 9281
DE genes for the 14 pADC samples and 13,141 DE genes
for the 31 pSCC samples when compared to the 45
normal controls (SAM, FDR < 0.05). And, 481 subtype-
opposite genes were identified in this dataset. Notably,
all the 148 overlapped subtype-opposite genes between
the two datasets had consistently dysregulated directions
in both pADC and pSCC samples, compared with the
normal controls, respectively. Given that a dataset may
usually capture only a part of all DE genes due to insuffi-
cient statistical power [27, 28], we integrated together
the subtype-opposite genes extracted from the two

datasets, excluding the 133 genes that were subtype-
opposite genes in one dataset but had inconsistent
dysregulation directions (without statistical control) in
the other dataset. Finally, we obtained 495 subtype-
opposite genes to develop the qualitative transcriptional
signature for distinguishing ADC from SCC. Then, we
utilized the subtype-opposite genes to develop a qualita-
tive transcriptional signature for distinguishing ADC
from SCC. In the training data integrated from two
microarray datasets (GSE30219 and GSE18842), includ-
ing 99 pADC samples and 92 pSCC samples, from 122,
265 gene pairs consisting of the subtype-opposite genes,
we extracted 61,602 gene pairs with potentially subtype-
opposite REO patterns (Ea > Eb in pSCC or equally Eb >
Ea in pADC) occurring significantly more frequently in

Fig. 1 The flowchart of this study. Using gene expression profiles of pADC and pSCC, we developed a qualitative transcriptional signature to
individually distinguish ADC from SCC. The signature was tested in “golden” standard dataset, fresh frozen samples with survival data and clinical
challenging cases, including FFPE specimens, mixed tumors, small biopsy specimens and poorly differentiated specimens. The pADC and pSCC
represent pathologically-determined squamous cell carcinoma and pathologically-determined adenocarcinoma, respectively
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pSCC samples than in pADC samples (Fisher’s exact
test, FDR < 0.05). Next, for each subtype-opposite gene
pair, we calculated the apparent accuracy of the gene
pair for distinguishing ADC from SCC in the training
data, as the pathological assessments are not 100%
reliable [29]. Finally, using each of the top 50 subtype-
opposite gene pairs (Additional file 1: Table S2) as a
seed, we performed a forward selection procedure and
obtained 50 optimal sets of gene pairs (see Methods),
among which two sets reached the highest apparent
accuracy (98.43%). One set contained only one gene pair,
KRT5 and AGR2, as the addition of any other gene pair
did not increase the apparent accuracy. The other set,
consisting of two gene pairs, also contained the gene
pair (KRT5 and AGR2), indicating that this gene pair
had the optimal performance. Therefore, the gene pair,
KRT5 and AGR2, was selected as the signature for
distinguishing ADC from SCC. The classification rule of
the signature is that a sample was classified as SCC if
the mRNA expression level of KRT5 was higher than
that of AGR2; otherwise ADC. According to the classifi-
cation rule, two of the 61 pSCC samples in the
GSE30219 dataset and one of the 31 pSCC samples in

the GSE18842 dataset were reclassified as ADC and all
the 99 pADC samples in the two datasets were con-
firmed by the signature.

Krt5 and Agr2 proteins immunostaining in pADC and
pSCC
Immunohistochemical analysis of the Krt5 and Agr2 pro-
teins was performed for 96 pADC samples and 80 pSCC
samples, derived from Anenabio, Xi’an, China. The IHC
results for Krt5 and Agr2 proteins are shown in Fig. 2a.
For the 96 pADC samples, Agr2 protein was highly
expressed in 63 (65.63%) samples, while Krt5 protein
was only highly expressed in 7 (7.29%) samples (Fig. 2b).
In contrary, for the 80 pSCC samples, Krt5 protein was
highly expressed in 43 (53.75%) samples, while Agr2
protein was only highly expressed in 8 (10.00%) samples
(Fig. 2c). The results suggested that Krt5 protein was
mainly expressed in pSCC samples, while Agr2 protein
was mainly expressed in pADC samples. The representa-
tive IHC staining of Krt5 and Agr2 proteins in pADC
and pSCC samples are represented in Fig. 2d and e,
respectively. The results provided the biological evi-
dences of the signature in distinguishing ADC from

Table 1 The datasets analyzed in this study

Types Data Source Database Platform pADC pSCC Normal

Train (frozen) GSE30219 GEO Affy. Plus 2 85 61 14

GSE18842 GEO Affy. Plus 2 14 31 45

Total – – – 99 92 59

“Golden”standard data GSE19188 GEO Affy. Plus 2 45 27 –

E-MTAB-2435 ArrayExpress Affy. Plus 2 0 63 –

Total – – – 45 90 –

Integrated data (frozen) GSE42127a GEO Illu. WG V3.0 90 32 –

GSE50081a GEO Affy. Plus 2 127 43 –

GSE37745a GEO Affy. Plus 2 40 24 –

GSE31210a GEO Affy. Plus 2 204 0 –

GSE31546a GEO Affy. Plus 2 13 0 –

GSE14814a GEO Affy. U133A 32 26 –

GSE68465a GEO Affy. U133A 299 0 –

Total – – 805 125 –

FFPE GSE44170 GEO Affy. U133A 0 38 –

Mixed TCGA TCGA Illu. HiSeqV2 498 499 –

Biopsy GSE58661 GEO Affy. 2.0 42 36 –

Poorly differentiated GSE94601 GEO Illu. HT V4.0 19b 4b –

Total – – – 1364 702 –

pADC pathologically-determined ADC, pSCC pathologically-determined SCC, Affy. Plus 2 Affymetrix Plus 2, Affy. U133A Affymetrix U133A, Affy. 2.0 Rosetta/Merck
Human RSTA Custom Affymetrix 2.0, Illu. WG V3.0 Illumina HumanWG-6 V3.0, Illu. HT V3.0 Illumina HumanHT-12 V3.0, Illu. HiSeqV2 Illumina HiSeqV2, Illumina HT
V4.0 Illumina HumanHT-12 V4.0
athe data records the survival information of patients treated with curative surgery resection only
bthe 19 pADCs and 4 pSCCs samples are poorly differentiated which were improperly assigned to LCC subtype before and reclassified by the authors using ADC
and SCC immunomarkers
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SCC. However, the IHC analysis also showed that 6
(6.25%) pADC samples and 2 (2.50%) pSCC were highly
expressed of both Krt5 and Agr2 proteins, and 12
(12.50%) pADC and 13 (16.25%) pSCC samples were
low expressed of both Krt5 and Agr2 proteins, suggest-
ing the limitation of IHC of immunomarkers in distin-
guishing ADC from SCC.

Validation of the signature
First, we tested the signature on two datasets (GSE19188
and E-MTAB-2435) with relative unambiguous NSCLC
types, which were concordantly determined by two inde-
pendent routine pathologists. In the GSE19188 dataset
with 45 pADC and 27 pSCC samples, the apparent ac-
curacy of the signature for pADC (sensitivity) was
93.33%, the apparent accuracy for pSCC (specificity) was
96.30%, and the overall apparent accuracy was 94.44%
(Table 2). Similar, in the E-MTAB-2435 dataset, the ap-
parent accuracy of the signature for 63 pSCC samples
(specificity) was 98.41% (Table 2). Additionally, in the
two test datasets, we also compared our signature with
the other 49 optimal sets of gene pairs obtained from

the training data, and found our signature (KRT5 and
AGR2) had the optimal performance (Additional file 1:
Table S2), suggesting the robustness of our signature in
distinguishing ADC from SCC.
Since the histological classification of NSCLC in the

other test datasets were not mentioned whether they
were confirmed by independent pathologists or per-
formed additional detection, we calculated the apparent
accuracy of the signature and performed several bio-
logical analyses to indirectly support the reclassification
of our signature. Firstly, based on the knowledge that
SCC patients suffer poorer prognoses than ADC patients
[30], we evaluated the correctness of the reclassification
by our signature through survival analyses. For this
purpose, we integrated 7 datasets recording survival
information of patients treated with curative surgery re-
section only, including 805 pADC samples and 125
pSCC samples. In the integrated dataset, the apparent
sensitivity (pADC prediction) of the signature was
95.78% and the apparent specificity (pSCC prediction)
was 88.00% (Table 2). Notably, the signature reclassified
a total 34 (4.22%) pADC samples as SCC and a total 15
(12.00%) pSCC samples as ADC. The survival analyses

Fig. 2 Immunohistochemical analysis of Krt5 protein and Agr2 protein expressions in human lung cancer tissue microarray. a Krt5 and Agr2
proteins expression profile in lung cancer tissue array. The red frame containing samples from A1-E8 are pSCC. The green frame containing
samples from E18-K5 are pADC. The remaining samples are the other subtypes of lung cancer and normal controls. b, c Inverse correlation
between Krt5 protein and Agr2 protein expressions in pADC (b) and pSCC (c) samples. The protein expression score was quantified and
considered as low, medium and high expression, basing on a multiplicative index of the average staining intensity and the extent of staining (see
Methods). d, e Representative immunohistochemical staining results of Krt5 and Agr2 proteins in pADC (d) and pSCC (e) samples. Scale bar, 1 mm
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showed that the 34 pADC patients reclassified as SCC
had significantly shorter OS than the remained 771
signature-confirmed pADC patients (log-rank p = 0.0123,
HR = 1.89, 95% CI = 1.14–3.14, Fig. 3a), whereas the 15
pSCC patients reclassified as ADC showed longer OS than
the 110 signature-confirmed pSCC patients but without
significantly difference (log-rank p = 0.5538, HR = 1.32,
95% CI = 0.52–3.34, Fig. 3b). Multivariate Cox analysis
showed that the pADC patients reclassified as SCC also
had significantly shorter OS than the signature-confirmed
pADC patients (p = 0.0458, HR = 1.72, 95% CI = 1.01–
2.93, Table 3), after adjusting for data centers and clinical
parameters, including stage, age and gender. The multi-
variate results for data centers and clinical parameters are
displayed in Table 3. Notably, the 144 SCC patients classi-
fied by our signature had significantly shorter OS than the
786 ADC patients classified by the signature (log-rank p =
0.0012, HR = 1.60, 95% CI = 1.20–2.12, Fig. 3c), which was
more significant than the OS difference between the
original pSCC and pADC groups (log-rank p = 0.0249,
HR = 1.42, 95% CI = 1.04–1.93, Fig. 3d). The OS between
the two histological subtypes classified by our signature
remained significantly different (p = 0.0500, HR = 1.36,
95% CI = 1.00–1.85, Table 4) after adjusting for data
centers and clinical parameters. Furthermore, in order to
reduce the potential bias due to integration and truncation

of survival time, we removed one dataset from the inte-
grated data in turn and performed the survival analyses
for each new integrated data. All the results showed that
the OS differences between the two histological groups
classified by our signature were more significant than that
between the original histological groups (Additional file 1:
Figure S1). The above results suggested that the signature
could rectify some misclassifications by routine patho-
logical assessment which confused the survival difference
between the two histological subtypes. Besides, in the
GSE50081 dataset with the highest reclassification rate
(12.35%) in the integrated dataset, we analyzed the prolif-
erative activities of the reclassified samples by calculating
their proliferation scores. The results showed that the 15
pADC samples reclassified as SCC had significantly higher
proliferation scores than the signature-confirmed pADC
samples (Wilcoxon rank sum test, p = 0.0085, Fig. 3e),
indicating that the pADC samples reclassified as SCC are
more proliferative than the signature-confirmed pADC
samples which may cause worse prognoses. While the 6
pSCC samples reclassified as ADC had lower proliferation
scores than the signature-confirmed pSCC samples
though the difference was not significant possibly due to
the small sample size (Wilcoxon rank sum test, p = 0.1298,
Fig. 3e). Next, we also performed differential expression
analyses for the subtype-specific marker genes using the

Table 2 The performance of our signature for pSCC and pADC samples in test datasets

Data Source pADC pSCC A- Sen
(rate)

A- Spe
(rate)

A- Acc
(rate)

Re (SCC) (rate) Re (ADC) (rate)

“Golden”standard data GSE19188 45 27 93.33% 96.30% 94.44% 3 (6.67%) 1 (3.70%)

E-MTAB-2435 0 63 – 98.41% 98.41% – 1 (1.59%)

Total – 45 90 93.33% 97.78% 96.30% 3 (6.67%) 2 (2.22%)

Integrated data (frozen) GSE42127 90 32 90.00% 84.38% 88.52% 9 (10.00%) 5 (15.62%)

GSE50081 127 43 88.19% 86.05% 87.65% 15 (11.81%) 6 (13.95%)

GSE37745 40 24 95.00% 87.50% 92.19% 2 (5.00%) 3 (12.50%)

GSE31210 204 0 99.02% – 99.02% 2 (0.98%) –

GSE31546 13 0 100% – 100% 0 (0.00%) –

GSE14814 32 26 93.75% 96.15% 94.83% 2 (6.25%) 1 (3.85%)

GSE68465 299 0 98.66% – 98.66% 4 (1.34%) –

Total 805 125 95.78% 88.00% 94.73% 34 (4.22%) 15 (12.00%)

FFPE GSE44170 0 38 – 92.11% 92.11% – 3 (7.89%)

Mixed TCGA 498 499 97.59% 83.57% 90.75% 12 (2.41%) 82 (16.43%)

Biopsy GSE58661 42 36 95.24% 88.89% 92.31% 2 (4.76%) 4 (11.11%)

Poorly differentiated GSE94601 19a 4a 100% 50.00% 91.30% 0 (0.00%) 2 (50.00%)

Total – 1364 702 96.48% 84.90% 92.55% 48 (3.52%) 106 (15.10%)

A-Sen represents the apparent sensibility, A-Spe represents the apparent specificity and A-acc represents the apparent accuracy
Re (SCC) represents the number of pADC samples reclassified as SCC by signature
Re (ADC) represents the number of pSCC samples reclassified as ADC by signature
athe 19 pADCs and 4 pSCCs samples are poorly differentiated which were improperly assigned to LCC subtype before and reclassified by the authors using ADC
and SCC immunomarkers
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Fig. 3 The validation of the reclassifications by the signature for fresh frozen samples with survival data. a Kaplan-Meier curves of overall survival
(OS) respectively for the pADC reclassified as SCC and the signature-confirmed pADC groups. b Kaplan-Meier curves of OS respectively for the
pSCC reclassified as ADC and the signature-confirmed pSCC groups. c, d Kaplan-Meier curves of OS respectively for the SCC and ADC groups
reclassified by the signature (c) and original pathological assessment (d). e The violin plot of proliferation scores in the reclassified and signature-
confirmed samples, respectively, in the GSE50081 dataset with the higher reclassification rate in the fresh frozen samples. Wilcoxon rank sum test
was used to test the difference of proliferation scores between two groups. f The violin plot of mRNA expressions of the seven subtype-specific
marker genes in the GSE50081 dataset. The subtype-specific marker genes include ADC marker genes (NAPSA, TTF1), SCC marker genes (KRT5,
TP63) and neuroendocrine marker genes (CD56, SYP, CHGA). The RankProd (RP) algorithm was used to test the difference of the subtype-specific
marker genes between reclassified samples and signature-confirmed samples
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RankProd (RP) algorithm. The result showed that the 15
pADC samples reclassified as SCC had significantly
increased mRNA expression of the two SCC marker genes
(RP algorithm, KRT5: p < 0.0001; TP63: p < 0.0001,
Fig. 3f), and decreased mRNA expressions of an ADC
marker gene (RP algorithm, NAPSA: p < 0.0001, Fig. 3f)
than the signature-confirmed pADC samples. In contrast,
the 6 pSCC samples reclassified as ADC had significantly
increased mRNA expression of an ADC marker gene (RP
algorithm, NAPSA: p < 0.0001, Fig. 3f), and decreased
mRNA expressions of the two SCC marker genes (RP
algorithm, KRT5: p < 0.0001; TP63: p < 0.0001, Fig. 3f), re-
spectively, when compared with the signature-confirmed
pSCC samples. The mRNA expressions of three neuroen-
docrine marker genes were in very low level in all the
samples. Finally, based on the mRNA expression measure-
ments of top 1000 most variable genes in the GSE50081
dataset, the samples were optimally classified into two
subgroups (k = 2) using consensus clustering (Additional
file 1: Figure S2). The clustering result showed that 10 of

the 15 pADC samples reclassified as SCC were clustered
with the signature-confirmed SCC samples and 5 of the 6
pSCC samples reclassified as ADC were clustered with the
signature-confirmed ADC samples (Additional file 1:
Figure S2). Similar clustering results were observed for
top 2000 and 3000 most variable genes (Additional file 1:
Figure S3 and S4).
Our previous study has demonstrated that REOs of

gene pairs were highly stable in FFPE specimens with
partial RNA degradation [18]. Here, we applied the
signature to the GSE44170 dataset derived from FFPE
specimens, and found the apparent accuracy of the
signature for 38 pSCC samples (specificity) was 92.11%
(Table 2). The 3 (7.89%) reclassified as ADC samples
had lower proliferation scores than the signature-
confirmed pSCC samples though the difference was not
significant possibly due to the small sample size (Wilcoxon
rank sum test, p = 0.3193, Fig. 4a). Moreover, the 3 reclassi-
fied samples had (marginally) significantly decreased
mRNA expression of KRT5 (RP algorithm, p = 0.0765,
Fig. 4b) and TP63 (RP algorithm, p = 0.0033, Fig. 4b),
respectively, than the signature-confirmed pSCC
samples. Consensus clustering was not performed as
the dataset contains one subtype.
In another research, we also demonstrated that the

REOs of gene pairs were robust against tumor cell varia-
tions in mixed tumor specimens [19]. Thus, we applied
the signature to mixed tumor samples with 10% ~ 100%
tumor cells in the TCGA datasets. In the TCGA-ADC
dataset, the apparent accuracy of the signature for 498
pADC samples (sensitivity) was 97.59% (Table 2), which
were not significantly related with tumor cell propor-
tions (Spearman’s rank correlation, p = 0.9331). Here,
the signature reclassified 12 (2.41%) pADC samples as
SCC, whose proliferation scores were significantly higher
than that of the signature-confirmed pADC samples
(Wilcoxon rank sum test, p = 0.0211, Fig. 4c). And, these
reclassified samples had significantly increased mRNA
expressions of KRT5 (RP algorithm, p < 0.0001, Fig. 4d)
and TP63 (RP algorithm, p < 0.0001, Fig. 4d), and de-
creased mRNA expression of NAPSA (RP algorithm, p =
0.0126, Fig. 4d), respectively, when compared with the
signature-confirmed pADC samples. Similarly, in the
TCGA-SCC dataset, the apparent accuracy of the signa-
ture for the 499 pSCC samples (specificity) was 83.57%,
which were also not significantly related with tumor cell
proportions (Spearman’s rank correlation, p = 0.8886).
The 82 pSCC samples were reclassified as ADC by the
signature and their proliferation scores were significantly
lower than the signature-confirmed pSCC samples
(Wilcoxon rank sum test, p < 0.0001, Fig. 4e). Comparing
with the signature-confirmed pSCC samples, the 82
reclassified samples had significantly increased mRNA
expression of NAPSA (RP algorithm, p < 0.0001, Fig. 4f)

Table 3 Multivariate Cox regression analysis for the pADC
reclassified as SCC samples in the integrated dataset

Variable Hazard
ratio

p 95%
CI

Histological classification by the signature
(reclassified as SCC vs. signature-confirmed
ADC)

1.72 0.0458 1.01–
2.93

Data centers 1.05 0.0887 0.99–
1.12

Stage (III vs. II vs. I) 2.32 <
0.0001

1.95–
2.76

Age (> 65 vs. ≤65) 1.56 0.0009 1.20–
2.04

Gender (Male vs. Female) 1.54 0.0013 1.18–
2.01

CI confidence interval

Table 4 Multivariate Cox regression analysis for the histological
classification by the signature in the integrated dataset

Variable Hazard
ratio

P 95%
CI

Histological classification by the signature
(SCC vs. ADC)

1.36 0.0500 1.00–
1.85

Data centers 1.05 0.0729 1.00–
1.11

Stage (III vs. II vs. I) 2.08 <
0.0001

1.78–
2.45

Age (> 65 vs. ≤65) 1.54 0.0004 1.21–
1.97

Gender (Male vs. Female) 1.54 0.0005 1.21–
1.97

CI confidence interval
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Fig. 4 The validation of the reclassifications by the signature for the FFPE and mixed tumor specimens. a The violin plot of proliferation scores
and b mRNA expressions of the subtype-specific marker genes in the GSE44170 dataset derived from FFPE specimens. c The violin plot of
proliferation scores and d mRNA expressions of the subtype-specific marker genes in the TCGA-ADC dataset derived from mixed tumor
specimens. e The violin plot of proliferation scores and f mRNA expressions of the subtype-specific marker genes in the TCGA-SCC dataset
derived from mixed tumor specimens
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and decreased mRNA expressions of KRT5 (RP algo-
rithm, p < 0.0001, Fig. 4f) and TP63 (RP algorithm, p <
0.0001, Fig. 4f), respectively.
Previously, we have reported that the REOs of gene

pairs were also robust to low-input RNA specimens.
Thus, we next tested the performance of the signature in
the GSE58661 dataset for small biopsy specimens,
including 42 pADC and 36 pSCC samples. The results
that the apparent sensitivity (pADC prediction) and spe-
cificity (pSCC prediction) were 95.24 and 88.89%, re-
spectively (Table 2). The 4 (11.11%) pSCC samples
reclassified as ADC had marginally lower proliferation
scores than the signature-confirmed pSCC (Wilcoxon
rank sum test, p = 0.0501, Fig. 5a). Although the 2 pADC
samples reclassified as SCC had lower proliferation
scores, they had significantly increased mRNA expres-
sion of KRT5 (RP algorithm, p < 0.0001, Fig. 5b) and
TP63 (RP algorithm, p < 0.0001, Fig. 5b) than the
signature-confirmed pADC samples, indicating the
correctness of the reclassification for the 2 samples. In
contrast, the 4 pSCC samples reclassified as ADC had
significantly increased mRNA expression of NAPSA (RP
algorithm, p < 0.0001, Fig. 5b), and decreased mRNA
expressions of KRT5 (RP algorithm, p < 0.0001, Fig. 5b)
and TP63 (RP algorithm, p < 0.0001, Fig. 5b), than the
signature-confirmed pSCC samples. Additionally, con-
sensus clustering based on the top 1000 most variable
genes showed that all the 4 pSCC samples reclassified as
ADC by the signature were clustered with the signature-
confirmed ADC samples (Additional file 1: Figure S5).
Similar clustering results were observed for top 2000
and 3000 most variable genes (Additional file 1: Figure
S6 and S7).
Finally, we also evaluated the performance of the

signature for poorly differentiated specimens. In the
GSE94601 dataset, the 19 and 4 poorly differentially
samples initially assigned to the LCC subtype were
reclassified to pADC and pSCC with the positive expres-
sions of ADC markers (NAPSA/TTF1) and SCC markers
(Krt5/P40), respectively. The apparent sensitivity (pADC
prediction) and specificity (pSCC prediction) of the
signature for poorly differentially samples were 100 and
50%, respectively (Table 2). The proliferation scores of
the two pSCC reclassified as ADC samples were 8.82
and 8.83, respectively, which were similar with the
median proliferation scores (8.89) of the 19 signature-
confirmed pADC samples but lower than that (9.67 and
9.06) of the two signature-confirmed pSCC samples
though the difference was not significant possibly due to
the small sample size (Wilcoxon rank sum test, p =
0.3333, Fig. 5c). Additionally, we also performed differ-
ential expression analysis for the 44 proliferation-related
genes [31] and found 20 genes that were differentially
expressed in the 2 reclassified samples (RP algorithm,

p < 0.05), and all the 20 genes were down-regulated
(Fig. 5d), when compared with the two signature-con-
firmed pSCC samples. The results provide tentative evi-
dences for the correctness of the reclassification by our
signature. Consensus clustering was not performed as the
small sample size of pSCC.
Taken together, the above results indicated that the

signature could accurately distinguish ADC from SCC,
especially for the clinical challenging cases.

Discussion
In this study, we developed a robust qualitative tran-
scriptional signature consisting of two genes (KRT5 and
AGR2), which can accurately distinguish ADC from SCC
and is independent of the subjective experiences of
pathologists. It is known that Krt5 protein is expressed
primarily in basal keratinocytes in the epidermis, whose
overexpression is the unique characteristic of SCC [32].
Another gene in the signature, Agr2, is known as an
adenocarcinoma antigen, which promotes cell migration
and metastasis [33, 34]. Our immunohistochemistry
results demonstrated that krt5 protein was preferentially
expressed in pSCC, while Agr2 protein was preferentially
expressed in pADC, providing biological evidences of
the signature in distinguishing ADC from SCC. How-
ever, it is note that, there were 8 (4.55%) samples with
high expressions of the two proteins and 25(14.20%)
samples with low expressions of the two proteins, indi-
cating that a certain percentage of patients could not be
accurately classified by the immunohistochemical assess-
ment. The limitation was also observed in the commonly
used immunomarkers for ADC and SCC [15].
In the two test datasets with relative unambiguous

NSCLC types, the apparent accuracy of the signature
were 94.44 and 98.41%, respectively, suggesting the
robustness of our signature in distinguishing ADC from
SCC. In the other test datasets, including 2066 samples
derived from frozen tissues and clinical challenging
specimens, the apparent sensitivity (ADC prediction)
was 96.48%, the apparent specificity (SCC prediction)
was 84.90%, and the overall apparent accuracy was
92.55%. Notably, there were large differences in the ap-
parent accuracy (or reclassification) rates among cohorts.
It has been reported that different pathologists had
discordant histological classifications for about one third
of the cases because of their subjective diagnoses using
varying criteria or interpretations [14], which might be
the major factor causing different misclassification rates
among cohorts. Therefore, we first supported the reclas-
sifications of our signature by the survival and prolifera-
tive activity analyses based on the knowledge that SCC
suffers more proliferative activity than ADC, which may
cause worse prognoses [30, 35]. Next, subtype-specific
marker genes and consensus clustering analyses also
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provided the transcriptional evidences for supporting the
histological classifications by our signature. These results
together suggested that our signature could rectify some
misclassifications of NSCLC histological subtypes by
current pathological assessment, especially for the clin-
ical challenging cases, such as FFPE specimens with par-
tial RNA degradation, mixed tumors with varied tumor
cells proportions, small biopsy specimens with low-input
mRNA specimens and poorly differentiated specimens,
indicating the necessity for molecular classification.
Previously, several gene expression signatures to strat-

ify ADC and SCC have been reported [1, 16, 36]. We
additionally compared the performance of our signature

with a previously reported 42-gene signature for stratify-
ing ADC and SCC, which has more advantages than the
other reported signatures [1]. The apparent accuracy of
the 42-gene signature was 91.67% in the GSE19188 data-
set with relative unambiguous NSCLC types, which was
lower than that (94.44%) of our signature. In the other
dataset (E-MTAB-2435) with relative unambiguous
NSCLC types, the apparent accuracy of the two signa-
tures was the same (98.41%). In the other test datasets,
the total apparent accuracy of 42-gene signature was
91.87%, slightly lower than that (92.55%) of our signa-
ture. More importantly, the survival analyses showed
that the OS difference between the SCC and ADC

Fig. 5 The validation of the reclassifications by the signature for small biopsy and poorly differentiated specimens. a The violin plot of
proliferation scores and b mRNA expressions of the subtype-specific marker genes in the GSE58661 dataset derived from small biopsy specimens.
c The violin plot of proliferation scores of 23 poorly differentiated specimens in the GSE94601 dataset. d The volcano plot of the differential
expressions of the 44 proliferation-related genes in the pSCC samples reclassified as ADC when compared with the signature-confirmed pSCC
samples. For the 44 proliferation-related genes, 20 genes were significantly differentially expressed and all the genes were down-regulated in the
reclassified pSCC
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subtypes reclassified by our signature (log-rank p =
0.0012, HR = 1.60, 95% CI = 1.20–2.12, Fig. 3c) was more
significant than that between the two histological sub-
types reclassified by the 42-gene signature (log-rank p =
0.0130, HR = 1.45, 95% CI = 1.08–1.95, Additional file 1:
Figure S8). The above results indicated that our signa-
ture could perform better than the 42-gene signature in
rectifying some misclassifications by routine pathological
assessment. The proliferation scores and gene expression
patterns were not compared due to the small sample size
of the inconsistent samples reclassified by the two signa-
tures in each dataset. Moreover, comparing with the 42-
gene signature, whose classification is dependent on the
samples in its training dataset, our signature is much
more convenient as it only needs detection of two genes
within an individual and is independent of the other
samples.
However, a limitation of this study is that most of the

samples we used were diagnosed according to WHO
2004 criteria because few samples diagnosed according
to WHO 2015 criteria could be found in public data. It
is known that the current criteria auxiliary with immu-
nostaining could reclassify a subset of cases diagnosed
with the WHO 2004 criteria [37]. However, the choice
of immunomarkers [37] and the subjective diagnosis of
immunostaining results by pathologists have effects on
the histological classification [38]. For the 23 poorly
differentiated samples in the GSE94601 dataset, which
were classified according to WHO 2015 criteria, our
signature confirmed all the 19 pADC samples and
reclassified two of the four pSCC samples as ADC. We
provided tentatively evidences for supporting the reclas-
sifications by our signature through estimating the pro-
liferative activities of the two reclassified samples, based
on the phenomenon that SCC has higher proliferative
activity with poorer survival than ADC. In this study, we
provided several indirect biological evidences to support
the pathological reclassification of our signature, which
should be further evaluated by collecting clinical samples
for reevaluation by independent pathologists. Because
HE staining is the conventional method for determining
histological classification, the current qualitative signa-
ture, which is independent of the subjective diagnoses of
pathologists, would be an auxiliary test for the ambigu-
ous cases in the pathological assessment. Another limita-
tion of this study is that the current signature can only
distinguish ADC and SCC. We additionally applied the
signature to the other subtypes of lung cancer (GSE60644),
including three small cell lung cancer and nine large cell
neuroendocrine carcinoma. The result showed that all
these samples were reclassified into ADC group, indicating
that the signature might have a better performance in
distinguishing non-SCC from SCC, which should be
instructive for treatment as most histology-dependent

therapies for NSCLC are directed at ADC or non-
squamous histological types [39]. It is noted that, the REO
approach can handle more than 2 output classes [25],
which merits exploration in the future.

Conclusions
The non-subjective qualitative REOs signature would be
an auxiliary test for the pathological assessment of the
ambiguous cases, including the cases lacking the evidences
of glandular or squamous differentiation. Notably, it is
worthwhile to measure all possible qualitative transcrip-
tional signatures together (“a panel for all”) for disease
diagnosis, histological classification, prognosis and drug
evaluation of lung cancer through a single whole (or a
large panel of genes) RNA-sequencing for a sample to aid
or even replace multiple conventional clinical detection,
which could preserve precious tissue for the other mo-
lecular testing such as EGFR mutation detection.

Methods
The public data sources and data pre-processing
The 15 public gene expression datasets of NSCLC tissues
(Table 1) were collected from Gene Expression Omnibus
(GEO, http://www.ncbi.nlm.nih.gov/geo/), ArrayExpress
(https://www.ebi.ac.uk/arrayexpress/) and The Cancer
Genome Atlas (TCGA, http://cancergenome.nih.gov/).
The training data for extracting a REOs-based signature

was integrated from two microarray datasets (GSE30219
and GSE18842), including 99 pathologically-determined
ADC (denoted as pADC) samples, 92 pathologically-
determined SCC (denoted as pSCC) samples and 59 nor-
mal controls.
In this study, 2 datasets (GSE19188 and E-MTAB-

2435), were selected as “golden”standard datasets to test
the performance of the signature, as their histological
classifications were concordantly determined by two in-
dependent pathologists, whose subtypes were relative
unambiguous. Seven datasets recording survival infor-
mation were integrated for survival analyses, including
805 pADC and 125 pSCC samples of stage I-III patients
treated with curative surgery resection only. The clinical
information of the 7 datasets is displayed in Additional
file 1: Table S1. The signature was also tested in FFPE
specimens with partial RNA degradation (GSE44170),
mixed tumors with varied proportions of tumor cells
(TCGA-ADC, TCGA-SCC), small biopsy specimens with
low-input RNA (GSE58661) and poorly differentiated
specimens (GSE94601). Notably, the GSE94601 dataset
includes 19 poorly differentiated pADC and 4 poorly
differentiated pSCC samples, which were improperly
assigned to LCC subtype before and reclassified by the
authors using ADC and SCC immunomarkers according
to the WHO 2015 criteria [40]. Except these reclassified
LCC samples, histological classifications of the other
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tumors in the above datasets were diagnosed according
to the WHO 2004 criteria [1].
For data generated by the Affymetrix microarray plat-

forms, the Robust Multi-array Average algorithm [41]
was used for preprocessing the raw data and the other
datasets generated by the Illumina platforms, the origin-
ally processed data (series matrix files) were used. Probe
IDs were mapped to Gene IDs using the corresponding
platform files. For each sample, the expression measure-
ments of all probes corresponding to the same Gene ID
were averaged to obtain a single measurement. Probes
that did not match any Gene ID or matched multiple
Gene IDs were deleted. For TCGA data (ADC/SCC), the
normalized count values of level 3 gene expression data
derived from Illumina HiSeqV2 were extracted as gene
expression measurements.

Developing the signature for distinguishing ADC from
SCC
First, Significance Analysis of Microarrays (SAM) algo-
rithm [42] was used to identify differentially expressed
genes (DE genes) in pADC and pSCC respectively, when
compared with normal controls. The p values were ad-
justed using the Benjamini-Hochberg procedure for
multiple testing to control the false discovery rate (FDR)
[43]. We selected the genes which were differentially
expressed in both pADC and pSCC but with opposite
dysregulated directions when compared with normal
controls, and defined them as subtype-opposite genes.
Then, for a pair of genes (a and b) both derived from

the subtype-opposite genes, Fisher’s exact test was used
to evaluate whether the frequency of pSCC samples with
a specific REO pattern (Ea > Eb), where Ea and Eb repre-
sent the expression levels of gene a and b, respectively,
was significantly higher than the frequency in pADC
samples. The significant gene pairs were defined as
subtype-opposite gene pairs.
Finally, for each subtype-opposite gene pair, we calcu-

lated the apparent accuracy (Formula 1) of the gene pair
for distinguishing ADC from SCC, as the pathological
assessments are not 100% reliable [29]. We chose each
of the top 50 gene pairs ranked according to the appar-
ent accuracy as a seed and performed forward selection
procedure to iteratively added one subtype-opposite
gene pair that achieved the highest apparent accuracy,
based on the classification rule as follows: a sample was
determined to be SCC if more than half of the REOs of
the gene pairs within this sample voted for SCC, other-
wise ADC. Among the results derived from all of the
seeds, a set of gene pairs with the highest apparent
accuracy was chosen as the signature for distinguishing
ADC from SCC. If several sets of gene pairs achieved
the highest apparent accuracy, then the set with the

fewest gene pairs (primary condition) and the largest
median absolute rank difference of gene pairs in pSCC
and pADC samples (secondary condition) was selected
as signature. Here, the absolute rank difference for each
gene pair (Ga and Gb) between the two groups was
calculated as Formula 2.

apparent accuracy ¼ C=M�100% ð1Þ
where C is the number of samples which were accurately
classified by the signature when compared with their ori-
ginal histological classification, and M is the total num-
ber of samples used in the dataset. Here, M is 191 which
is the total number of the pADC and pSCC samples in
the training dataset.

Rab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rab pADCð ÞRab pSCCð Þ
q

ð2Þ

where RabðpADCÞ and RabðpSCCÞ are the geometric means
of the absolute rank differences of the gene pair (Ga and
Gb) in all samples of pADC and pSCC groups,
respectively.

Immunohistochemical analysis of lung cancer tissue
microarrays
The lung cancer array for immunohistochemical analysis
was bought from Anenabio, Xi’an, China (Cat#LC2161),
including 96 pADC samples and 80 pSCC samples. The
slides of human lung cancer tissue microarray used in
this study were dewaxed with xylene and rehydrated
through gradient ethanol into water. Antigens were
unmasked by 10 mM citric acid buffer. Endogenous per-
oxidase activity was blocked by 3% hydrogen peroxidase.
After further blocking for non-specific binding, the slides
were incubated with specific anti-Krt5 (#AF0194, Affin-
ity) or anti-Agr2 (ab76473, Abcam) primary antibody
and then with secondary antibody conjugated with HRP.
The slides were developed with DAB substrates, coun-
terstained with haematoxylin, dehydrated and mounted
with neutral balsam. Each tissue sample of the micro-
array was then imaged under miscroscope Carl Zeiss
GmbH with same settings. The protein expression was
quantified and scored basing on a multiplicative index of
the average staining intensity (1–4) and the extent of
staining (1–4 in the cores, yielding a 16-point staining
index that ranged from 1 (no staining) to 16 (extensive,
strong staining). The staining intensity was scored as fol-
lows: 1, negative; 2, weak; 3, moderate; and 4, strong.
The extent of staining was scored as follows: 1, less than
10% positive cells; 2, 10 to 30%; 3, 30 to 70%; and 4,
more than 70%. Score of staining index less than 5 was
considered low expression, score of 5–10 considered
medium expression and score of 11–16 considered high
expression. Fisher’s exact test was used to compare the
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frequencies of the Krt5 and Agr2 proteins expressions
between 96 pADC samples and 80 pSCC samples.

Survival analyses
To avoid the bias of patient follow-up duration among
different datasets, the overall survival (OS) of patients
were truncated at 60 months. Survival curves were esti-
mated using the Kaplan-Meier method and were com-
pared using the log-rank test [44]. A multivariate Cox
proportional-hazards regression model [45] was used to
assess whether the reclassified groups was independently
associated with patient survival after adjusting for data
centers and clinical parameters, including stage, age and
gender. Hazard ratios (HRs) and 95% confidence inter-
vals (CIs) were generated using univariate and multivari-
ate Cox proportional hazards model.

Proliferation score calculation
The proliferation score for each sample was calculated
by averaging the expressions of the 44 genes in a prolif-
eration signature [31] in a cohort. A higher proliferation
score indicates more proliferative activity. Wilcoxon
rank sum test was used to test the difference of prolifer-
ation scores between two groups.

Differential expression and consensus clustering analyses
The RankProd (RP) algorithm [46], which is a non-
parametric test, was used to estimate whether the subtype-
specific marker genes were differentially expressed between
reclassified samples and signature-confirmed samples. The
subtype-specific marker genes include SCC marker genes
(KRT5, TP63) [11], ADC marker genes (NAPSA, TTF1) [11]
and neuroendocrine marker genes (CD56, SYP, CHGA) [47].
Consensus clustering was performed using the Con-

sensusClusterPlus package according to the Ward
method for hierarchical clustering [48]. The samples
were clustered using top 1000 most variable genes across
all the pADC and pSCC samples in a cohort, which were
determined by the median absolute deviation. Briefly,
the expression data for each of the top 1000 genes were
first transformed to Z-scores, and then subsampled 80%
of samples (items) and genes (features) 2000 times and
partitioned each subsample up into k = 10 groups (k rep-
resents the number of clusters) by the agglomerative
hierarchical clustering algorithm using Pearson correl-
ation distance. To identify the optimum number of clus-
ters, k corresponding to the first downwards inflection
in cumulative distribution function (CDF) was used.
Additionally, we also performed the consensus clustering
using top 2000 and 3000 most variable genes,
respectively.
All statistical analyses were performed using the R

2.15.3 (http://www.r-project.org/).
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