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Abstract

Background: Knowledge of the three-dimensional structure of the genome is necessary to understand how gene
expression is regulated. Recent experimental techniques such as Hi-C or ChIA-PET measure long-range chromatin
interactions genome-wide but are experimentally elaborate, have limited resolution and such data is only available
for a limited number of cell types and tissues.

Results: While ChIP-seq was not designed to detect chromatin interactions, the formaldehyde treatment in the
ChIP-seq protocol cross-links proteins with each other and with DNA. Consequently, also regions that are not
directly bound by the targeted TF but interact with the binding site via chromatin looping are co-
immunoprecipitated and sequenced. This produces minor ChIP-seq signals at loop anchor regions close to the
directly bound site. We use the position and shape of ChIP-seq signals around CTCF motif pairs to predict whether
they interact or not. We implemented this approach in a prediction method, termed Computational Chromosome
Conformation Capture by Correlation of ChIP-seq at CTCF motifs (7C). We applied 7C to all CTCF motif pairs within
1 Mb in the human genome and validated predicted interactions with high-resolution Hi-C and ChIA-PET. A single
ChIP-seq experiment from known architectural proteins (CTCF, Rad21, Znf143) but also from other TFs (like TRIM22
or RUNX3) predicts loops accurately. Importantly, 7C predicts loops in cell types and for TF ChIP-seq datasets not
used in training.

Conclusion: 7C predicts chromatin loops which can help to associate TF binding sites to regulated genes.
Furthermore, profiling of hundreds of ChIP-seq datasets results in novel candidate factors functionally involved in
chromatin looping. Our method is available as an R/Bioconductor package: http://bioconductor.org/packages/sevenC.

Keywords: Chromatin interactions, Three-dimensional genome architecture, Transcription factors, ChIP-seq, 3C, 4C, 5C,
Hi-C, 6C, ChIA-PET, 7C, Prediction, Chromatin loops

Background
The three-dimensional folding structure of the genome and
its dynamic changes play a very important role in the regu-
lation of gene expression [1–3]. For example, while it was
well known that transcription factors (TFs) can regulate
genes by binding to their adjacent promoters, many TF
binding sites are in distal regulatory regions, such as en-
hancers, that are hundreds of kilo bases far from gene pro-
moters [4]. These distal regulatory regions can physically
interact with promoters of regulated genes by chromatin

looping interactions [5–7], thus it is not trivial to associate
TFs to regulated genes without information of the genome
structure [8]. Such looping interactions can be measured by
chromosome conformation capture (3C) experiments [9]
and its variations to either study all interactions from single
targeted regions (4C) [10] or multiple target regions (5C)
[11], interactions between all regions genome-wide (Hi-C)
[12, 13] or interactions mediated by specific proteins (6C
[14] ChIA-PET [15, 16], and HiChIP [17]).
While these experimental methods have brought many

exciting insights into the three-dimensional organization of
genomes [1–3, 18], these methods are not only elaborate
and expensive but also require large amounts of sample ma-
terial or have limited resolution [19, 20]. As a consequence,
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genome-wide chromatin interaction maps are only available
for a limited number of cell types and conditions.
In contrast, the binding sites of TFs can be detected

genome-wide by ChIP-seq experiments, and are available
for hundreds of TFs in many cell types and conditions
[21–23]. Here, we propose that it is possible to use these
data to detect chromatin loops.
Recent studies provide functional insights about how

chromatin loops are formed and highlight the role of
architectural proteins such as CTCF and cohesin [1].
CTCF recognizes a specific sequence motif, to which it
binds with high affinity [24, 25]. Interestingly, CTCF
motifs are present in convergent orientation at chroma-
tin loop anchors [13, 16, 26]. Furthermore, experimental
inversion of the motif results in changes of loop forma-
tion and altered gene expression [27–29]. Polymer simu-
lations and experimental perturbations led to a model of
loop extrusion, in which loop-extruding factors, such as
cohesin, form progressively larger loops but stall at
CTCF binding sites in convergent orientation [29–31].
According to these models, CTCF binding sites can
function as anchors of chromatin loops.
Our hypothesis is, that we can use convergently

aligned CTCF motifs to search for similar ChIP-seq sig-
nals at both sites of chromatin loops to predict looping
interactions from the largely available ChIP-seq data in
many diverse cell-types and conditions (Fig. 1a). We
then developed and tested a computational method to
predict chromatin looping interactions from only gen-
omic sequence features and TF binding data from single
ChIP-seq experiments. We show that our method can
predict chromatin loops that were measured by Hi-C
and ChIA-PET and that prediction performance depends
on the ChIP-seq target, which allows screening for TFs
with potential novel functions in chromatin loop forma-
tion. The predicted looping interactions might be used
to (i) increase performance of other loop prediction
methods to associate TF binding sites or enhancers to
regulated genes for conditions where Hi-C like data is
not available, and (ii) to increase the resolution of inter-
action maps, where low resolution Hi-C data is available.
We implemented our method in the R package sevenC.

Results
CTCF motif pairs as candidate chromatin loop anchors
In order to predict chromatin looping interactions from
ChIP-seq data, we first analyzed which features at loop-
ing anchors correlate with interacting and non-
interacting anchor pairs. As a starting point for all ana-
lyses we used 38,316 CTCF motif sites in the human
genome as potential chromatin loop anchors. We built a
dataset of all CTCF motif pairs located within a genomic
distance of 1Mb to each other. This resulted in 717,137
potential looping interactions; we expect that only a

minority of these motif pairs will be in physical contact
for a given cell type and condition. To label motif pairs
as true loops, we used chromatin loops from published
high-resolution in-situ Hi-C data and ChIA-PET data
for CTCF and Pol2 in human GM12878 cells [13, 16]. If
a motif pair was measured to interact in one of the data
sets, we labeled it as true interaction (Additional file 4:
Figure S1). Overall 30,025 (4.19%) of CTCF motif pairs
were considered as true loops using these data sets.

Similarity of ChIP-seq signals at looping CTCF motifs
The ChIP-seq protocol involves a cross-linking step, in
which formaldehyde treatment results in covalent bonds
between DNA and proteins [32]. This allows the pull-
down and detection of sites directly bound by the tar-
geted protein. However, cross-linking occurs also be-
tween proteins, which results in detection of sites that
are indirectly bound through protein-protein interac-
tions or chromatin looping interactions [33, 34].
We hypothesized that if any given protein binds dir-

ectly to a genomic region that is in chromatin contact
with other genomic regions, DNA from both loci might
be pulled out in the cross-linking and DNA-purification
step of ChIP-seq protocols. As a result, we expect ChIP-
seq signals (e.g. mapped reads) at both genomic regions:
the directly bound one and the chromatin loop inter-
action partner locus (Fig. 1a). Some proteins, like CTCF
and potentially also RAD21, might act as homo-dimer at
loop anchors. If both loop anchors are bound directly by
dimerizing proteins, we expect the ChIP-seq signal at a
similar distance to the CTCF motif. Thereby we assume
the loop forming complex to be symmetric, that is, that
the distance of the direct binding site to the CTCF motif
center is the same on both anchors. Although proteins
can theoretically dimerize while binding at different dis-
tance to the CTCF motif, we assume that the loop an-
chor complex is symmetric with the two CTCF motifs
facing each other directly. For cohesin, for example, it
was shown that it binds slightly upstream of CTCF mo-
tifs at both loop anchors [16].
To test our hypothesis, we used CTCF motif pairs as

anchors and compared the ChIP-seq signal from one an-
chor to the (reversed) signal of the corresponding an-
chor. Using ChIP-seq data for several TFs, we found
similar ChIP-seq coverage patterns around CTCF motifs
more often when the two sites perform looping interac-
tions than when they do not (Fig. 1b). To quantify the
similarity of ChIP-seq coverage from any two CTCF
sites, we correlated their ChIP-seq signals at ±500 bp
around the CTCF motif (Fig. 1c) (see Methods for de-
tails). Measuring ChIP-seq profile similarity by correl-
ation has the advantage that the correlation can be high
even if the anchor that is not bound directly has a much
lower ChIP-seq signal (which is often the case).
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Fig. 1 (See legend on next page.)
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Next, we compared ChIP-seq similarity at looping and
non-looping CTCF motif pairs for six selected TF ChIP-
seq data sets (Fig. 1d). Compared to non-interacting
CTCF sites the ChIP-seq correlation is significantly higher
at looping interactions (Fig. 2a). However, the overall cor-
relation as well as the difference between looping and
non-looping CTCF sites varies between TF ChIP-seq data-
sets (Fig. 2a). As expected, we observed a large difference
for the CTCF ChIP-seq dataset but, interestingly, also for
other known architectural proteins, such as Rad21 and
Znf143. Moreover, other TFs, such as STAT1 have signifi-
cantly higher ChIP-seq signal similarity at CTCF motifs
that interact via chromatin looping. Overall, this analysis
shows that ChIP-seq signals are more similar at

interacting CTCF sites, indicating that this similarity can
be used to predict looping interactions.

Genomic sequence features of CTCF motif pairs are
associated with looping
The frequency of two genomic regions to physically
interact depends on their genomic distance [12]. Conse-
quently, we observed that CTCF motif pairs are more
often in contact when they are close to each other in the
genomic sequence (Fig. 2b). Recent studies on 3D chro-
matin structure led to an increased understanding of the
molecular mechanism of chromatin loop formation and
suggested a functional role of CTCF proteins, which
bind specific DNA sequences [1]. The canonical CTCF

(See figure on previous page.)
Fig. 1 Chromatin looping interactions result in ChIP-seq coverage signals at direct and indirect bound loop anchors. a Schematic illustration of a
chromatin loop with CTCF motifs at the loop anchors (top right). A transcription factor (TF) binds directly at the right loop anchor close to the
CTCF motif. This results in a ChIP-seq coverage peak at the directly bound locus (bottom right) and in a minor signal at the other loop anchor
(bottom left), both at the same distance to each CTCF motif. b Znf143 ChIP-seq coverage at six selected example CTCF motif pairs of which the
ones in the left panel interact via loops according to Hi-C and ChIA-PET data and the ones in the right panel do not interact. The ChIP-seq
coverage signal for each loci pair is shown in red for the left anchor region and in blue for the right anchor region, according to the distance to
the CTCF motif (x-axis). Interacting CTCF motif pairs show more similar ChIP-seq coverage signals, which are often enriched at similar distances to
the CTCF motif pairs, while the profiles of non-interacting pairs are less similar. c The similarity of ChIP-seq profiles by correlation of the ChIP-seq
coverage signals of the selected motif pairs in (b). For each pair, the coverage at the right anchor is plotted versus the coverage at the left
anchor at the same distance (color coded) from each CTCF motif. The Pearson correlation coefficient (R) of the dots is higher for interacting loci
pairs. d Example loci on chromosome 1 shown in the genome-browser with six ChIP-seq tracks. Red and blue bars indicate CTCF recognition
motifs on the forward and reverse strand, respectively. The bottom panel shows CTCF motif pairs in gray (candidates) and actually interacting
pairs in green, according to ChIA-PET and Hi-C data

Fig. 2 ChIP-seq similarity and genomic features of looping and non-looping CTCF motif pairs. a Boxplot of Pearson correlation coefficients of
ChIP-seq signals between CTCF motif pairs for all CTCF motif pairs within 1 Mb genome-wide. The correlation is shown separately for non-
looping and looping motif pairs (according to HI-C and ChIA-PET data in GM12878 cells), and for six selected ChIP-seq data sets in GM12878 cells.
b Distance distribution between looping (green) and non-looping CTCF motif pairs. c Percent of looping and non-looping CTCF motif pairs in
convergent, divergent, both forward, or both reverse orientation. d Distribution of CTCF motif hit significance as -log10 transformed p-value for
looping and non-looping CTCF motif pairs. For each motif pair only the less significant motif is considered
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motif is non-palindromic and therefore occurs either in
the positive or in the negative DNA strand. Importantly,
it is known that CTCF motifs occur predominantly in
convergent orientation to each other at chromatin loop
anchors [13, 26]. Experimental inversions of CTCF mo-
tifs lead to changes of the interactions and expression of
the associated genes [27, 28]. Accordingly, we observed
that 55.6% of the looping CTCF pairs have convergent
orientation versus only 22.9% of the non-looping pairs
(Fig. 2c). We also observed that the motif match
strength, as measured by the significance of a motif loca-
tion to match the canonical CTCF motif [35], is higher
for motifs involved in looping interactions (Fig. 2d). To-
gether, the linear genome encodes several features, such
as motif strength, orientation, and distance, that correl-
ate with chromatin looping and can be used to predict
such interactions.

Chromatin loop prediction using 7C
To make use of both the condition specific ChIP-seq sig-
nals and the genomic features of CTCF motifs to predict
chromatin loops, we trained a prediction model that
takes only ChIP-seq data as input. To this end, we built
a logistic regression model that takes into account only
four features: the correlation coefficient between the
ChIP-seq signals of the paired CTCF motifs (in a win-
dow of 1000 bp around the motif), the genomic distance
between motifs, the orientation, and the (minimum)
motif hit significance score (see Methods for details).
For each ChIP-seq data set, we trained and evaluated a
separate model (Additional file 5: Figure S2A). The
method is implemented as the R package ‘sevenC’, which
predicts chromatin loops using as only input a bigWig
file from a single ChIP-seq experiment.

Prediction performance evaluation
We used 10-fold cross-validation to assess the perform-
ance of the predictions on independent data that was
not seen in the training phase. For each cutoff on the
predicted interaction probability score, we computed the
sensitivity, specificity and precision to plot receiver oper-
ator characteristic (ROC) and precision recall curves
(PRC). Since only 4.2% of CTCF pairs are measured to
interact, we mainly used the area under the PRC
(auPRC) to evaluate prediction performance since, com-
pared to ROC, the PRC gives a more accurate classifica-
tion performance in imbalanced datasets in which the
number of negatives outweighs the number of positives
significantly [36]. Furthermore, we defined an optimal
cutoff for the prediction probability p based on optimiz-
ing the f1-score. The six selected TF ChIP-seq data sets
have optimal f1-scores at about p = 0.15 (Additional file
5: Figure S2B). For binary prediction, we provide a de-
fault prediction score threshold as the average of

thresholds with optimal f1-score for the 10 best per-
forming TF ChIP-seq datasets.

Prediction performance of sequence features and 7C with
single and multiple TF ChIP-seq data sets
First, we evaluated how the sequence-encoded features
can predict chromatin interactions. For this, we built lo-
gistic regression models that use only these features. Each
of these features alone, CTCF motif hit significance, motif
orientation or distance, were very poor predictors, and re-
sulted in auROC between 0.67 and 0.74 (Fig. 3a) and
auPRC scores between 0.08 and 0.09 (Fig. 3c). Using the
three sequence features together improved prediction per-
formance (auROC= 0.85, auPRC = 0.22).
Next, we tested the addition of ChIP-seq data as fea-

ture in the prediction model using ChIP-seq data for
each of six different TFs. Three of them, CTCF, RAD21,
and ZNF143, have known function in chromatin loop
formation [1, 37–39], while STAT1, P300, and POL2,
are to our knowledge not directly involved in chromatin
loop formation. Adding any of these TF ChIP-seq data-
sets to the model increased prediction performance.
STAT1, EP300, and POL2 only moderately increased
prediction performance with auROC values between
0.86 and 0.87 (Fig. 3a) and auPRC between 0.24 and 0.26
(Fig. 3b, c). However, ChIP-seq of the known architec-
tural proteins CTCF, RAD21, and ZNF143 resulted in
markedly increased prediction performance with auPRCs
of 0.31, 0.37, and 0.38 for CTCF, RAD21, and ZNF143,
respectively (Fig. 3b, c). To test how much the perform-
ance depends on the actual truth set of measured loops,
we trained and validated 7C on each individual Hi-C and
ChIA-PET data set, as well as their intersection, and ob-
served similar performance across data sets (Additional file 7:
Figure S4A). For visual comparison, we show the actual
looping interactions and 7C predictions in an example re-
gion at chromosome 11 (Fig. 3d) and an overlay of 7C pre-
dicted loops with a Hi-C interaction heatmap
(Additional file 6: Figure S3).
Next, we built a full model using the sequence based

features and the ChIP-seq data of all six selected TFs.
This only resulted in a slight increase of prediction per-
formance to auPRC = 0.42 (Fig. 3b, c), indicating that a
single ChIP-seq experiment might be sufficient for ac-
curate prediction of chromatin loops. We also tested if a
single value of correlation of ChIP-seq signal at both
loop anchors across the six different TFs is predictive.
Indeed, we find high prediction performance of auPRC =
0.34 for this approach. However, this was lower than
using the correlation from single TF ChIP-seq experi-
ments for RAD21 or ZNF143 and has the disadvantage
of relying on ChIP-seq data from multiple experiments.
Next, we tested whether the predictive performance of

7C comes simply from increased ChIP-seq signals at the
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Fig. 3 Prediction performance using cross-validation. a ROC plot for different models to predict chromatin looping interactions. The sensitivity (y-
axis) is shown against the false discovery rate (1 – specificity, x-axis) for thresholds of the prediction score. Curves show averages of 10-fold cross-
validation experiments. The models “Dist”, “Orientation”, and “Motif” contain only a single feature as indicated and all three genomic features are
combined in the model “Dist+Orientation+Motif”. The models “RAD21”, CTCF”, “ZNF143”, “STAT1”, “EP300”, and “POLR2A”, contain the genomic
features and the ChIP-seq correlation of the indicated factor. The model “all_TF” contains the genomic features and correlation of all indicated
TFs. The model “across_TFs” contains the genomic features and a single correlation feature across the six ChIP-seq datasets as described in the
main text. b PRC plot of precision against the recall for different prediction models. Color code as in (a). c Values of the area under the ROC (top)
and PRC curves (bottom) as prediction performance. Error bars indicate standard deviation in 10-fold cross-validation experiments. d Example
region on chromosome 11 in the genome browser showing: human genes, RAD21 ChIP-seq data in GM12878, CTCF motifs, CTCF motif pairs
with that interact according to Hi-C or ChIA-PET data (green arcs) and predicted chromatin loops from RAD21 ChIPseq data using 7C (blue arcs).
e Prediction performance of 7C as auPRC values for models with 124 TF ChIP-seq data sets from ENCODE. Error bars as in (c). The dotted
horizontal line shows prediction performance of only the combined genomic features
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loop anchor region or if indeed the ChIP-seq signal
similarity at both anchors is important. Therefore, we re-
placed the ChIP-seq correlation value as input and used
instead the total signal at both anchors separately as in-
put. Only for STAT1 we found higher prediction per-
formance with the pure ChIP-seq signal approach and
for all other selected TF we find 7C with ChIP-seq pro-
file similarity by correlation as input more predictive
than the pure signal strength at the anchors (Additional
file 7: Figure S4B). This supports the hypothesis that in-
deed co-immunoprecipitation of DNA from both loop
anchors is captured by 7C to predict interactions.
Another recently published method uses CTCF ChIP-

seq peak heights together with motif orientation and dis-
tance in an iterative algorithm to predict chromatin in-
teractions [40]. However, independent of the TF used,
7C yields higher specificity, precision and overall accur-
acy than this previously published method (Additional
file 7: Figure S4C).
Together, these results show that sequenced based fea-

tures alone have only a limited loop prediction performance,
but integrating them with a single ChIP-seq experiment, 7C
can predict chromatin loops with higher accuracy.

Comparison of transcription factors by prediction
performance
Our results can be used to better understand the mo-
lecular mechanisms of chromatin loop formation. We
hypothesize that TFs whose ChIP-seq provides high pre-
diction performance are likely to be functionally in-
volved in chromatin looping. These TFs would be
therefore interesting targets for further investigation of
their potential function in chromatin looping.
To investigate this for as many TFs as possible, we

used all available 124 TF ChIP-seq datasets from EN-
CODE for the human cell line GM12878 and compared
transcription factors by their prediction performance.
Notably, nearly all TF ChIP-seq data sets could increase
the prediction performance of sequence-based features
alone (Fig. 3e). However, there was a large variance in per-
formance between TFs and a subset of TFs with high pre-
dictive power could be identified. These include for
example the known architectural proteins mentioned
above, CTCF, cohesin (RAD21 and SMC3), and ZNF143,
but also factors, such as TRIM22, RUNX3, BHLHE40, or
RELA, which might be interesting candidate factors with
functional roles in chromatin loop formation.

Prediction performance in other cell types and for
different TFs
Next, we wanted to test if 7C is general enough to predict
looping interactions in a different cell type than the one
used to train it. To test this, we used the models presented
above (trained with data from human GM12878 cells) to

predict loops using as input ChIP-seq data from human
HeLa cells. The prediction performance was assessed
using as positives 12,480 loops (1.74% of all motif pairs)
identified in HeLa cells [13, 16]. Compared to the cross
validation within GM12878 cells, the prediction perform-
ance is only slightly lower when 7C was trained on
GM12878 cells and applied to the data in HeLa cells as
evaluated with ROC curves (auPRC up to 0.91, Fig. 4a)
and PRC curves (auPRC up to 0.27, Fig. 4b,c). However,
when we use the experimentally measured loops in
GM12878 cells as predictor for loops in HeLa cells, we ob-
serve an even higher performance (sensitivity = 0.77, specifi-
city = 0.97, precision = 0.32). While this indicates that 7C
alone is not sufficient to call cell-type specific interactions
in HeLa more accurately than just taking interactions from
a different cell line, it also indicates that the chromatin
architecture is remarkably similar across these cell types.
Indeed, 77.6% of the 12,480 measured HeLa loops are also
loops in GM12878 cells. (Additional file 7: Figure S4D).
In this analysis, we compared the prediction perform-

ance of models that were trained using a specific TF as
input.. However, in a real use case, one might not be
able to train the model for a specific TF of interest and
the model should idealy predict loops for TFs that were
not used in the training. Therefore, we built default 7C
models by either averaging model parameters from all
124 TF models or by averaging across the model param-
eters of only the 10 best performing TFs. While all three
approaches result in good prediction performance for
the six selected TFs (Fig. 4c), the model averaging pa-
rameters across all TFs performs worse than the ones of
only the best 10 models, which are nearly as good as the
specific TF models. This is consistent with similar re-
sults from cross-validation analysis in GM12878 data
(Additional file 7: Figure S4E). Furthermore, we visually
inspected chromatin loop predictions from RAD21
ChIP-seq data in HeLa at an example loci on chromo-
some 21 (Fig. 4d). In summary, these results show that
7C can predict chromatin looping interactions in differ-
ent cell types that were not used to train it. Similarly,
the 7C default prediction model performs nearly as good
as a TF specific model. This makes 7C applicable for
ChIP-seq data from diverse TFs in many different cell
types and conditions.

The high resolution of ChIP-nexus improves prediction
performance
We wondered if other genomic measurements along the
linear genome could provide similar signals at loop an-
chors potentially indicating looping interactions. There-
fore, we used ChIP-seq for histone modifications and
other genomic assays, such as DNase hypersensitivity
(DNase-seq), ChIP-nexus and only ChIP-seq input con-
trol as input to our prediction methods (Fig. 5).
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Furthermore, we compared different signal types of
ChIP-seq. During computational processing of ChIP-seq
raw data, reads are shifted in 5′ direction by the esti-
mated average fragment size [41, 42]. The coverage of
these shifted reads is then compared to coverage of in-
put control experiment (fold change over control). Fur-
thermore, a recent study quantified read pairs (qfrags) in
a specific distance to each other as estimate for the ac-
tual fragment numbers detected by ChIP-seq [42]. For
most of the TFs tested here, we observed that the ChIP-
seq signal types ‘shifted reads’ and ‘qfrag’ have better
loop prediction performance than the ‘fold change over
control’ (Fig. 5). Interestingly, even the combination of
ChIP-seq control with sequence features improves the
prediction performance over using sequence features
alone, indicating that cross-linking efficiency and
density of chromatin itself is specifically distributed
at chromatin loop anchors (Fig. 5). Also, DNase-seq,
which measures chromatin accessibility, predicts
looping interactions with accuracy similar to ChIP-
seq input control (Fig. 5). This is consistent with
specific open-chromatin profiles at TF binding sites
[43, 44]. We also tested if the ChIP-seq signal for
the histone modifications H3K4me3, H3K4me1,
H3K27me3, and H3K27ac can be used as input for

7C, but did not find a marked improvement over
genomic features alone (Fig. 5). This indicates that
the histone mark signal profile, which is character-
ized by broader enriched domains compared to sharp
peaks for TF ChIP-seq, is in general not suitable for
the correlation-based approach in 7C.
However, using ChIP-nexus data for RAD21 and

SMC3 [16], we could markedly improve chromatin loop
predictions using 7C (Fig. 5). ChIP-nexus and ChIP-exo
are variations of the ChIP-seq protocol, in which add-
itionally, an exonuclease digestion step is applied to trim
the DNA from the 5′ end until the actual bound protein
[45, 46]. These signals result in high-resolution binding
footprints that can be used to identify different TF
binding modes and cooperation with co-factors [34].
Therefore, we conclude, that the high-resolution bind-
ing profiles from ChIP-nexus allow to compute a
more predictive binding signal similarity at chromatin
loop anchors.
In summary, the comparison of different genomic sig-

nal types shows that (i) cross-linking effect and chroma-
tin density at chromatin anchors are predictive signals
for long-range chromatin interactions and that (ii) higher
resolution TF binding assays, such as ChIP-nexus, result
in improved prediction performance.

Fig. 4 Prediction performance in HeLa cells using 7C trained in GM12878 cells. a ROC curve of prediction performance of six selected TF ChIP-seq
data sets. The 7C model was trained using ChIP-seq and true loop data in human GM1287 but loops were predicted using ChIP-seq data of the
same TFs in HeLa cells and true loop data in HeLa cells. b Precision-Recall curves for the same analysis as in (a). c Prediction performance as
auPRC (top) and auROC (bottom) in HeLa for the six TF ChIP-seq data sets (x-axis) and 7C models trained for the specific TF (left), 7C with
parameters averaged across all 124 TF models (center), and 7C with parameters as average of the 10 best performing TF ChIP-seq data sets
(right). d Example region on human chromosome 21 with genes, RAD21 ChIP-seq data in HeLa, CTCF motifs, true loops in HeLa cells according
to Hi-C and ChIA-PET (green arcs) and predicted chromatin loops from RAD21 ChIP-seq data in HeLa (blue arcs)
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Discussion
We have developed 7C to reuse ChIP-seq data, profiling
the interactions of proteins with genomes, for the pre-
diction of chromatin looping interactions between CTCF
motif pairs within 1Mb. We present this method as a
complementary approach to dedicated techniques like
Hi-C that directly measure genomic contacts. Since the
results of ChIP-seq experiments are increasingly avail-
able for a large number of proteins, species, tissues, cell
types, and conditions, our method offers an alternative
when Hi-C data is not available, or cannot be produced
due to cost or material limitations. Another major ad-
vantage of 7C over Hi-C is that the predictions are at a
base pair resolution due to the use of paired CTCF mo-
tifs, while Hi-C only reaches resolutions of at best kilo
base pairs at a high cost. Of course, the method is re-
stricted to species where CTCF is present and forms
loops (e.g. not in Drosophila).
7C can use ChIP-seq data from any TF. It does not

make any assumptions about the mode of binding or
function of the TF and the TF does not need to be in-
volved in the loop formation. It is enough if the binding
of the TF close to a CTCF-based loop results in symmet-
rical ChIP-seq traces. Regardless, it is possible that TFs

binding very close and very often to the anchors of loops
will be better predictors, and TFs with functions in loops
might as well have stronger and more reproducible bind-
ing there. For example, it is interesting to note that
ZNF143 has been known for a while to bind close to
CTCF-cohesin in the anchors of chromatin loops (e.g.
[7]), and very recently it has been reported as a regulator
of loop formation [47]. Using the HIPPIE database [48],
we found that while there is no experimental evidence of
direct interaction between CTCF and ZNF143, there is
one single protein that is reported to interact with both
CTCF and ZNF143, the chromodomain helicase DNA
binding protein 8 (CHD8; see [49, 50], respectively). So
while no direct interaction between ZNF143 and CTCH
is known, they could form a complex via CHD8. Differ-
ently, for another very good predicting factor such as
TRIM22 no connection to loop architecture has been
yet established; they might be none, or it could occur in
an unexplored condition. TRIM22 is an antiviral protein
whose expression is triggered by interferon, with cyto-
plasmic and nuclear localizations, and a variety of func-
tions (see e.g. [51]); we would be careful to suggest that
this protein might have yet another function controlling
genomic structure.

Fig. 5 Higher resolution of ChIP-nexus experiments improves prediction performance. Prediction performance as area under the precision recall
curve (auPRC, x-axis) for 7C models with sequence features and different input data sets to predict chromatin looping (y-axis). Input data sets are
grouped by signal-type (middle panel) and assay-type (right panel) and colored according to the TF or histone mark (if any) used as target in
the experiment

Ibn-Salem and Andrade-Navarro BMC Genomics          (2019) 20:777 Page 9 of 15



Other computational approaches were developed to
predict genomic contacts or assign regulatory regions to
target genes. A commonly used approach is to compare
activity signals at enhancers and promoters across many
different conditions or tissues [52–56]: high correlation
indicates association and potential physical interactions
between enhancers and genes. However, these ap-
proaches lose the tissue specificity of the interactions.
Other approaches integrate many diverse chromatin sig-
nals such as post-translational histone modifications,
chromatin accessibility, or transcriptional activity [57–62],
and combine them with sequence features [63], or evolu-
tionary constrains [64]. While these methods predict
enhancer-gene association with good performance, they
require for each specific condition of interest a multiplicity
of input datasets, which are often not available.
Further computational approaches try to directly pre-

dict chromatin interactions by using diverse sequence
features [65] or multiple chromatin features such as his-
tone modifications [66–68] or transcription [69]. One
study makes use of the more recently discovered CTCF
motif directionality to predict loop interactions from
CTCF ChIP-seq peak locations [40], but has lower pre-
diction performance than 7C (Additional file 7: Figure
S4C). Another study combines CTCF binding locations
and motif orientation with polymer modeling to predict
Hi-C interaction maps [29]. However, none of these
studies predicts chromatin loops from ChIP-seq signals
of TFs different from CTCF by taking the CTCF motif
orientation into account. Furthermore, CTCF binding
sites are often only considered when the signal is strong
enough for peak calling algorithms to identify binding
sites. In contrast, 7C takes the distribution of ChIP-seq
signals from all TFs into account without a peak-calling
step. Furthermore, the other studies, except one [40], do
not provide a tool for the direct prediction of pairwise in-
teractions from single ChIP-seq experiments. Interest-
ingly, shadow peaks in ChIP-seq data of insulator proteins
in Drosophila were previously associated to long-range in-
teractions [70] and used to study the contribution of se-
quence motifs and co-factors in loop formation [71], but
not to directly predict chromatin loop interactions.
Compared to other predictive methods mentioned

above, our approach has the advantage of directly pre-
dict chromatin looping interactions, and not enhancer-
promoter associations, by making use of ChIP-seq sig-
nals from a single experiment with respect to CTCF mo-
tifs. However, many enhancer-promoter interactions
occur in the span of interacting CTCF binding sites,
which were described to form insulated neighborhoods
[72, 73]. Therefore, 7C predictions can help to associate
enhancers to genes when they are located between pre-
dicted loop anchors. The motifs give the prediction a
base pair resolution. In fact, given several CTCF motifs

within a 1 kb genomic bin, our looping prediction ap-
proach can be used to decide which of the CTCF sites is
actually involved in the measured interactions and thus
increase resolution even when Hi-C data is available. We
showed that our approach, 7C, can work with just a sin-
gle ChIP-seq experiment for many different TFs, making
it usable for many diverse conditions of interest. There-
fore, 7C can be used as a complement to existing
enhancer-promoter association tools or can be inte-
grated in such predictive models to improve them.
Currently, our method, by using CTCF motifs, focuses

on CTCF mediated chromatin loops. It is very likely that
other DNA binding proteins mediate loops: for example,
recent studies suggest that other TFs are involved in en-
hancer promoter interactions during differentiation [74]
and knockout of transcriptional repressor YY1 and other
candidate factors result in loss of chromatin loops [75].
Using motifs predicted for these different transcription
factors, or combinations thereof, are open avenues for
the future extension of our method.

Conclusion
We demonstrated that TF binding signals of ChIP-seq ex-
periments at CTCF motifs are predictive for chromatin
looping. We provided a method, 7C, that is simple to use
and integrates these signals with genomic sequence features
to predict long-range chromatin contacts from single ChIP-
seq experiments. 7C is freely available as R/Bioconductor
package (http://bioconductor.org/packages/sevenC). The
analysis of ChIP-seq experiments for 124 different TFs
highlighted the role of cohesin, ZNF143 and CTCF in chro-
matin loop formation, but also suggested many other TFs,
such as TRIM22, RUNX3, and BHLHE40, to be function-
ally involved in chromatin looping, likely in cooperation
and protein interaction (direct or indirect) with CTCF at
loop anchors.
Since our method needs only a single ChIP-seq experi-

ment as input, it can support the analysis of chromatin
interactions in diverse cell types and conditions, where
Hi-C like data is not available. Therefore, 7C can be
used together with other computational methods to en-
able condition specific associations of distal TF binding
sites and enhancers to promoters of target genes. These
might allow the interpretation of non-coding genetic
variants by genes in physical contact with the variant
loci in a specific cell type or condition of interest. Fur-
thermore, 7C might improve the resolution of Hi-C
interaction maps by facilitating base-pair specific pairing
of CTCF motifs located in bins of several kb. With these
applications, 7C increases the value of ChIP-seq datasets,
which now can be used to improve the analysis of 3D
genome folding and its dynamic changes between di-
verse cell types and conditions.
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Methods
CTCF motifs in the human genome
The recognition motif of CTCF is well defined and available
from the JASPAR database (MA0139.1) [76]. We down-
loaded TF binding site predictions with the CTCF motif
(MA0139.1) in the human genome hg19 from the JASPAR
database (http://expdata.cmmt.ubc.ca/JASPAR/downloads/
UCSC_tracks/2018/hg19/tsv/MA0139.1.tsv.gz). Motif hits
were filtered for p-value ≤2.5 × 10− 6, resulting in 38,316
highly significant CTCF motif hits genome-wide and 717,
137 motif pairs within 1Mb genomic distance that are con-
sidered as potential loop interaction anchors in this study.

Loop interaction data for training and validation
For training and validating the prediction model we used
9448 published loops derived from high-resolution in-
situ Hi-C experiments [13] and 206,399 CTCF and Pol2
ChIA-PET interactions [16] in human GM12878 cells.
We considered each CTCF motif pair as positive (true
looping interaction) if there was at least one measured
looping interaction for which each loop anchor over-
lapped one of the CTCF motifs. Overlaps were calcu-
lated using the R package InteractionSet [77]. This
resulted in 30,025 (4.2%) of 717,137 candidate motif
pairs that were labeled as true looping interactions in
GM12878. For the prediction validation in HeLa cells we
used the 3094 Hi-C loops and 402,722 ChIA-PET inter-
actions for CTCF and Pol2 in HeLa from the same stud-
ies [13, 16] and labeled 12,480 (1.7%) of motif pairs as
true loops in HeLa cells.

ChIP-seq datasets in GM12878 cells
We downloaded publicly available ChIP-seq data from
the ENCODE data portal [21, 22] by requiring the assay
to be ChIP-seq, the target to be a transcription factor,
the biosample term name to be GM12878, the genome
assembly to be hg19, and the file-type to be bigWig. Fur-
thermore, we filtered the data to have output type ‘fold
change over control’ or ‘signal’ and to be built from two
replicates. Then we selected for each TF only one
unique experiment as bigWig file with either output type
‘fold change over control’ or, if unavailable, output type
‘signal’. This resulted in 124 ChIP-seq experiments for
different TFs (Additional file 1: Table S1). ChIP-seq data
for HeLa were retrieved analogously and filtered for the
selected targets: RAD21, CTCF, ZNF143, STAT1,
EP300, and ZNF143 (Additional file 2: Table S2).

ChIP-seq data types
To analyze the effect of different ChIP-seq signal types
and other genomic assays on loop prediction perform-
ance, we selected five TFs (ZNF143, STAT1, SMC3,
RAD21, and CTCF) and downloaded the mapped reads
of ChIP-seq experiments as BAM files from the

ENCODE data portal [22] and from the UCSC Genome
Browser [78]. Furthermore, we downloaded signal tracks
as bigWig files for ChIP-seq input control experiment,
DNase-seq experiments, and ChIP-seq for the histone
marks H3K4me3, H3K4me1, H3K27me3, and H3K27ac
in GM12878 cells. File accession identifiers and down-
load links are provided in Additional file 3: Table S3.
We used the ChIP-seq peak caller Q [42] with option
‘-w’ for each human chromosome to generate signal
tracks in BED format of shifted reads and qfrags. ‘Shifted
reads’ are counts of mapped reads that are shifted in 5′
direction by half of the estimated fragment size. ‘qfrags’
are pairs of forward and reverse mapped reads within a
given distance [42] and are shown to improve signal to
noise ratio in ChIP-seq peak calling [42]. We then com-
bined resulting BED files from all chromosomes and
converted them to the bedGraph and bigWig formats
using the bedtools [79] and bedGrpahtoBigWig tools
from the UCSC Genome Browser [80].

ChIP-nexus data processing for RAD21 and SCM3
ChIP-nexus data for RAD21 and SMC3 in GM12878
cells were published recently [16]. We downloaded the
corresponding raw reads from the Sequence Read Arch-
ive (SRA) (Run IDs SRR2312570 and SRR2312571).
Reads were processed using felxcut for barcode removal
and adapter trimming as recommended in the user guide
of the Q-nexus tool [81]. Reads were then mapped to hu-
man genome hg19 using Bowtie version 2.3.2 with de-
fault settings. Duplicate reads were removed using
nexcat [81]. Finally, we created shifted-reads and qfraq
profiles using Q-nexus [81] with options ‘--nexus-mode’
and ‘-w’ for each chromosome and combined them to
bigWig files as described above.

Similarity of ChIP-seq profiles as correlation of coverage
around motifs
For each CTCF sequence motif in the human genome,
we quantified the number of reads overlapping each base
within +/− 500 bp around the motif center. This results
in a vector xi = (xi, 1, xi, 2,…, xi, n) where xi, k is the ChIP-
seq signal at position k around CTCF motif i. ChIP-seq
signal vectors for motif hits reported on the minus
strand were reversed because CTCF motif sites are as-
sumed to be symmetrically aligned to each other when
cooperating at loop anchors (Fig. 1a) [13, 16, 27–29].
For all considered pairs of CTCF motifs i and j, we cal-
culated the ChIP-seq profile similarity as Pearson correl-
ation coefficient ri, j of the corresponding coverage
vectors xi and xj.

Genomic sequence features of chromatin loops
Besides the correlation of ChIP-seq profiles, we used
genomic features of motif pairs as features to predict
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interactions. The distance d is the number of bp be-
tween the two motif centers. The categorical variable
orientation o is either, convergent, forward, reverse, or di-
vergent, depending on the orientation of CTCF motifs in
the pair (+−, ++, −−, and − +, respectively). The motif hit
similarity s is the minimum of the two motif hit scores
in each pair; we derived these motif scores from the JAS-
PAR motif hit tracks as -log10 transformed p-values [35].

7C prediction model
We used a logistic regression model to predict the log-
likelihood probability of CTCF motif pairs to perform
chromatin looping interactions. The probability p that
two sites interact is modeled as:

ln
p

1−p

� �
¼ β0 þ β1x1;…βkxk

where β are the unknown model parameters and x1,…xk
the features.
More specifically, for the 7C model with a single

ChIP-seq experiment as input, the logistic regression
model for the interaction probability p is:

ln
p

1−p

� �
¼ β0 þ β1d þ β2oþ β3sþ β4r

Parameters were estimated using the function ‘glm()’
with option ‘family = binomial()’ in R during model
training as described below.

Training and validation of the prediction model
We used the R package rsample for 10-fold cross-
validation. Thereby, we randomly split the dataset of
CTCF motif pairs into ten equal sized subsets. For each
round of cross-validation one subset is held out (test data-
set) and the model parameters are trained on the
remaining 90% of the samples (training dataset). The
model parameters are shown for six selected TFs and
combined models in Additional file 5: Figure S2A. For
each split, the performance of the model is then evaluated
on the test dataset. For prediction performance in HeLa
cells, we trained on all motif pairs using ChIP-seq and true
loops from GM12878 cells and evaluated performance on
all motif pairs using the true loop data in HeLa.

Analysis of prediction performance
We quantified prediction performance using the receiver
operating characteristic (ROC) and precision recall curves
(PRC) as implemented in the R package precrec [82].
Given the number of true positives (TP), true nega-

tives (TN), false positives (FP), and false negatives (FN),
the sensitivity is defined as TP/(TP + FN), specificity as
TN/(TN + FP), precision as TP/(TP + FP), and recall as
TP/(TP + FN). For each cross-validation split, the area

under the curve is computed separately, and the mean
across splits together with the standard deviation re-
ported. To get binary prediction outputs, we computed
the f1-score as harmonic mean of precision and recall
for all prediction scores on all cross-validation folds
using the R package ROCR [83]. Then we computed the
prediction score that maximizes the f1-score as default
cutoff for binary prediction output (Additional file 5:
Figure S2B).

Comparison to a previously published tool
We downloaded the script provided by Oti et al. 2016
[40] from https://doi.org/10.5281/zenodo.29423. We
downloaded peaks from the same CTCF ChIP-seq ex-
periment that was analyzed with 7C from ENCODE
(https://www.encodeproject.org/files/ENCFF710VEH/
@@download/ENCFF710VEH.bed.gz). We filtered the
CTCF motifs described above to overlap a peak region
and assigned to each motif a score between 0 and 1000
according to the overlapping peak height. This data was
then used as input to the script “ctcf_peaks2loops.py” to
predict loops. We computed sensitivity, specificity, preci-
sion, and accuracy by overlap with the true loops de-
scribed above and compared the performance to loop
predictions of 7C.

Implementation of 7C and compatibility to other tools
We implemented 7C as an R package, called sevenC, by
using existing infrastructure for chromatin interaction data
from the interactionSet package [77] and functionality for
reading bigWig files from the rtracklayer package [84] from
the Bioconductor project [85]. Predicted loops can be written
as interaction tracks for visualization in the WashU Epige-
nome Browser [86] or as BEDPE format using the Genomi-
cInteractions package [87] for visualization in the Juicebox
tool [88]. The package is freely available and easy to install
from Bioconductor https://bioconductor.org/packages/
sevenC. All analyses presented in this work were imple-
mented in R and all scripts used have been made available in
a separate GitHub repository: https://github.com/ibn-salem/
sevenC_analysis.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-019-6088-0.

Additional file 1: Table S1. Metadata of ChIP-seq experiments from
ENCODE in human GM12878 cells with accession ID and download link.

Additional file 2: Table S2. Metadata of ChIP-seq experiments from
ENCODE human HeLa cells with accession ID and download link.

Additional file 3: Table S3. Accession numbers and download URLs for
data sets used in data type comparisons.

Additional file 4: Figure S1. Hi-C and ChIA-PET interactions and their
overlap with CTCF motif pairs. (A) Number of genome-wide CTCF motifs
by motif hit significance cutoff. (B) Number of CTCF motif pairs within 1
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Mb distance by motif hit significance. (C) Percent of CTCF motif pairs that
overlap with experimentally measured Hi-C and ChIA-PET loops by the
motif hit significance. (D) Upset plot of true loop data sets (rows) and
their size (horizontal bars) with their intersections (columns, and vertical
bars) based on the number of overlapping CTCF motif pairs. (E) Distribu-
tion of interaction span (distance between anchors) of Hi-C loops and
ChIA-PET loops in GM12878 that are used as gold standard. The dotted
red line indicates the distance cutoff (1 Mb) used in this study. (F) Num-
ber and percent of Hi-C and ChIA-PET loops that overlap with CTCF motif
pairs within a distance of 1 Mb. (G) Number and percent of Hi-C and
ChIA-PET loops that overlap with 1, 2, 3, 4, 5 or more than 5 CTCF motif
pairs. The percent values are relative to all loops that overlap at least one
CTCF motif pair.

Additional file 5: Figure S2. 7C model parameters and optimal cut-offs
for binary prediction. (A) Parameter values of the logistic regression
model in 7C for different features (columns), separated for different
models (rows). Average of model parameters of model training in 10-fold
cross-validation is shown with error bars indicating the standard devia-
tions. While the first six rows represent the models with the indicated TF
ChIP-seq data and the genomic features, “Avg. all TF” is the average
across all 124 TFs analyzed and “Avg. best 10 TF” is the average across
the best ten performing TF models. (B) Prediction performance as f1
score (y-axis) for different cutoffs on the prediction probability p for the
six selected models.

Additional file 6: Figure S3. High resolution Hi-C map with 7C loop pre-
dictions. The red color intensity shows Hi-C interaction frequencies at an ex-
ample locus of chromosome 1. The blue squares indicate 7C loop
predictions using a Rad21 ChIP-seq experiment. The figure was created
using the Juicebox tool by loading the combined Hi-C data set in GM12878
from [13] with mapping quality MAPQ ≥30 at a resolution of 5 kb.

Additional file 7: Figure S4. (A) Prediction performance (auPRC) of 7C
when trained and evaluated on different datasets of experimentally
measured loops as gold standard. Rao_GM12878 refers to Hi-C loops
from [13], Tang2015_GM12878_CTCF, and Tang2015_GM12878_RNAPII to
ChIA-PET loops using CTCF or Polymerase II as the target [16]. In Union,
all datasets were taken together, and in Intersection, only those CTCF
motif pairs that were measured in all datasets were considered positive.
(B) Prediction performance (auPRC) of 7C compared to a logistic regres-
sion model that uses only the the total coverage signal within +/− 500
bp around the motif center at both loop anchor sites separately. In both
models the genomic signal are also included as input features. The per-
formance is shown for six selected TFs in cross-validation on the
GM12878 data set. (C) Prediction performance of 7C with six different TFs
compared to the method by Oti et al. [40]. The figure shows from top to
bottom the accuracy, precision, sensitivity, and specificity of the predic-
tions. (D) Venn-Diagram of CTCF motif pairs overlapping experimentally
determined chromatin interactions in GM12878 cells and HeLa cells by
Hi-C and ChIA-PET. (E) Prediction performance as auPRC (top) and auROC
(bottom) of four different models (colors) on ChIP-seq data for six se-
lected TFs (x-axis). ‘Specific TF’ is the model fitted using the ChIP-seq data
indicated on the x-axis, ‘RAD21’ is the model trained on RAD21 ChIP-seq
data, ‘Avg. all TF’ is a model averaged across all 124 models of analyzed
TFs, and ‘Avg. best 10 TF’ is the averaged model across the 10 best per-
forming models.
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7C: Computational Chromosome Conformation Capture by Correlation of
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