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Abstract

Background: Genomic composition has been found to be species specific and is used to differentiate bacterial
species. To date, almost no published composition-based approaches are able to distinguish between most closely
related organisms, including intra-genus species and intra-species strains. Thus, it is necessary to develop a novel
approach to address this problem.

Results: Here, we initially determine that the “tetranucleotide-derived z-value Pearson correlation coefficient”
(TETRA) approach is representative of other published statistical methods. Then, we devise a novel method called
“Tetranucleotide-derived Z-value Manhattan Distance” (TZMD) and compare it with the TETRA approach. Our results
show that TZMD reflects the maximal genome difference, while TETRA does not in most conditions, demonstrating
in theory that TZMD provides improved resolution. Additionally, our analysis of real data shows that TZMD
improves species differentiation and clearly differentiates similar organisms, including similar species belonging to
the same genospecies, subspecies and intraspecific strains, most of which cannot be distinguished by TETRA.
Furthermore, TZMD is able to determine clonal strains with the TZMD = 0 criterion, which intrinsically encompasses
identical composition, high average nucleotide identity and high percentage of shared genomes.

Conclusions: Our extensive assessment demonstrates that TZMD has high resolution. This study is the first to
propose a composition-based method for differentiating bacteria at the strain level and to demonstrate that
composition is also strain specific. TZMD is a powerful tool and the first easy-to-use approach for differentiating
clonal and non-clonal strains. Therefore, as the first composition-based algorithm for strain typing, TZMD will
facilitate bacterial studies in the future.
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Background
Genomic composition refers to a set of short oligonucleo-
tide frequencies in a genome. It can be profiled as short oli-
gonucleotides from two to nine nucleotides [1], especially
dinucleotides [2], trinucleotides [3, 4] and tetranucleotides
[5]. The GC content and codon bias, which are represented
by dinucleotides and trinucleotides respectively, are two
examples of genomic composition. Genomic composition
has been extensively studied by nearest-neighbor frequency
analysis [6–8], chaos game representation [4, 9, 10], and

statistical methods such as the odds ratio for dinucleotide
bias [11], the Codon Adaptation Index for codon bias [12],
and relative abundance measures for trinucleotides and tet-
ranucleotides [13]. Studies show that intragenomic compo-
sition is fairly constant [5, 14, 15], even in ameliorated
horizontally transferred regions [16]. Additionally, it has
been reported that closely related organisms show more
similar compositions than distantly related organisms,
and thus, composition has been used to infer phyloge-
nies [17, 18]. Furthermore, intragenomic composition is
generally more homogenous than intergenomic compo-
sition [2, 9, 19–21], even between species sharing
environmental pressures and interactions [22], implying
that composition is species specific [14]. Thus, genomic
composition is also coined genomic signature [2, 14].
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The greater homogeneity of intragenomic composition
may possibly result from (but is not limited to) species-
specific properties of replication and repair machineries
[2, 20]. However, whether composition is also strain
specific remains unknown.
As composition is species specific, it has been widely

used for species differentiation [23, 24] and metagenomic
binning (classifying sequences into species-level groups)
[25–31]. Additionally, composition has been used to
detect foreign sequences, including laterally transferred
genes [32–35], phage and viral genomes [36–39], and
plasmids [40, 41]. Although methods based on composi-
tion can distinguish most species [24], they still cannot
distinguish some similar species [23, 24]. In addition, they
cannot differentiate most intraspecific strains [23]. Thus,
it would be very useful to develop a novel method with
the ability to distinguish similar organisms, including simi-
lar species and intraspecific strains.
The ability to distinguish genomic composition increases

with oligonucleotide size [1, 5, 14, 42]. However, the com-
puting cost also correspondingly increases. To balance the
distinguishing ability and computing cost, tetranucleotides
are thus widely used [17, 23, 24, 35, 41, 43, 44]. To our
knowledge, four statistical methods have been published
for tetranucleotide profiling. All of these methods use the
Pearson correlation coefficient to assess composition simi-
larity [5, 42]. Here, we found that the tetranucleotide-
derived z-value Pearson correlation coefficient (TETRA)
method could represent the three other statistical methods
and thus could be used as the reference method for com-
parison when developing powerful methods. Subsequently,
we proposed the tetranucleotide-derived z-value Manhat-
tan distance (TZMD) approach, which uses the Manhattan
distance rather than the Pearson correlation coefficient to
quantify composition differences, and demonstrated that
genomic composition is also strain specific. Our results
clearly showed that TZMD is a high-resolution method
that provides slightly improved results for species differen-
tiation and can distinguish similar organisms, including
closely related species at the species level and subspecies or
intraspecific strains below the species level. Most impor-
tantly, TZMD is the first genomic composition-based
method to differentiate clonal and non-clonal strains.
Thus, we anticipate that TZMD will be used for spe-
cies differentiation or for strain typing to facilitate
bacterial studies.

Results
Comparison of four published statistical methods
To date, four different statistical methods have been
published to measure tetranucleotide usage biases
from their expectations. The zero-order Markov method
removes mononucleotide frequency biases under a random
mononucleotide distribution to measure tetranucleotide

frequency biases [17, 42]. The maximal-order Markov
method removes component biases to calculate tetra-
nucleotide usage biases [17, 42]. The z-value method,
in addition to the maximal-order Markov model, takes
tetranucleotide variances into account to measure tetra-
nucleotide usage biases as z-values [5]. The relative tet-
ranucleotide frequency method factors out all lower-
order biases to determine tetranucleotide usage biases
[20]. Then, tetranucleotide usage biases calculated with
all these methods are subjected to Pearson correlation
coefficient calculations to measure the composition
similarity between two sequences [5, 42].
To compare the four statistical methods, we used 1779

queries (Additional file 1: Table S1) against 264 references
(Additional file 1: Table S2) comprising 1964 intraspecific
and 467,692 interspecific pairs to profile the tetranucleo-
tide usage biases and then calculated the Pearson correla-
tion coefficients. Because the composition is species
specific [2, 9, 14, 19–21], an effective method should
strongly reflect this feature. Therefore, we first determined
the optimal Pearson correlation coefficient cutoffs for spe-
cies differentiation for these methods. The F-score, which
was previously applied to determine the optimal sequence
similarity thresholds for 40 single-copy phylogenetic mar-
ker genes [45] and 16S rRNA genes [46] for species deli-
neation of prokaryotes, was applied to determine the
optimal cutoff with the highest F-score for species differen-
tiation for each method. For the statistical test, we ran-
domly sampled 200 distinct intraspecific pairs and 50,000
distinct interspecific pairs 10 times for each sampling. We
found that the optimal cutoffs for all these methods were
identical at 0.99 or 1.00 (Additional file 2: Figure S1). Our
paired t-test showed that the z-value method generated
significantly higher F-scores than the zero-order Markov
method but similar F-scores as the maximal-order Markov
method and the relative tetranucleotide frequency method
(Additional file 2: Figure S2). These results were further
confirmed using the Rand index (Additional file 2: Figure
S3 and S4). In this context, TETRA, which calculates the
Pearson correlation coefficient for z-values obtained by the
z-value method, can be used as a representative method
for the three other published methods. Therefore, in this
study, we only compared TZMD with TETRA to show the
high resolution of TZMD. In addition, our further analysis
showed that the vast majority of intraspecific pairs with a
Pearson correlation coefficient > 0.99 cutoff had a Pearson
correlation coefficient value of 1.00 for all four methods
(Additional file 2: Figure S5), indicating that they have no
ability to distinguish most intraspecific strains. Accord-
ingly, there is a clear need for more powerful approaches.

Proposal of the TZMD approach
TETRA cannot differentiate closely related species, such
as Campylobacter jejuni and C.coli [23], and most
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intraspecific strains, as shown by our above findings
(Additional file 2: Figure S5). There are two possible rea-
sons: one is that these organisms have almost no differ-
ences in composition and the other is that the resolution
of TETRA is too low to distinguish these organisms,
although they have different compositions. We found
that some of the inability to differentiate closely related
species or intraspecific strains was caused by the low
resolution of TETRA. Taking the intraspecific pair Bur-
kholderia ubonensis MSMB1189WGS and B. ubonensis
RF23-BP41 and the interspecific pair B. ubonensis
MSMB1189WGS and B. vietnamiensis G4 as examples,
the intraspecific pair had almost identical composition
yielding a TETRA value of 1.00, as the two curves almost
completely coincided (Fig. 1a). Nevertheless, we found
that TETRA also yielded an undistinguishable TETRA
value of 0.99 for the interspecific pair with clearly different
compositions (Fig. 1b), according to the above-determined
cutoff of 0.99 (Additional file 2: Figure S1 and S3). This
finding demonstrated that TETRA truly had low resolu-
tion to distinguish closely-related species, which was one
of the limitations of the TETRA approach.
One possible reason for the low resolution of TETRA

is that the Pearson correlation coefficient cannot effi-
ciently measure the individual z-value difference, as
demonstrated by the example shown in Fig. 1b deli-
neated by a dotted oval. From a mathematical perspec-
tive, the Pearson correlation coefficient reflects a general

trend for all 256 z-values, while the Manhattan distance
efficiently reflects the z-value difference for each indivi-
dual tetranucleotide (see Methods), implying that using
the Manhattan distance instead of the Pearson correla-
tion coefficient may improve the resolution to measure
the composition difference. Accordingly, we proposed
TZMD, a novel method using the Manhattan distance,
and anticipated that it would increase the resolution for
tetranucleotide usage biases.
When calculating z-values for 10-100% of the genome,

we found that the tetranucleotide deviation (usage bias
including over- and underrepresentation) increased with
sequence size (Additional file 2: Figure S6A), which was
more clearly demonstrated by using the accumulated
tetranucleotide deviations (Fig. 2a). We showed that the
sequence size greatly affected the TZMD (Additional file
1: Table S1), while it did not affect the TETRA. To elim-
inate the impact of sequence size, we normalized the z-
values by dividing by the square root of the sequence
size. After normalization, differently sized sequences
from the same genome expectedly yielded similar devia-
tions (Fig. 2b and Additional file 2: Figure S6B), although
10% of the genome generated relatively different devia-
tions due to the skewed composition for short sequences
(Fig. 2b). This finding demonstrated that our method for
normalization is correct. Thus, the normalized z-values
can be used for TZMD calculation since they accurately
reflect genomic composition. We calculated the TZMD

Fig. 1 The TETRA approach cannot distinguish closely related species with only slightly different compositions. a For an interspecific pair. b For
an intraspecific pair with different compositions. Boxed, distinct tetranucleotide-derived z-value difference

Zhou et al. BMC Genomics          (2019) 20:754 Page 3 of 15



based on the normalized z-values of the aforementioned
two pairs and found that our TZMD approach generated
two distinguishable values (Fig. 1) according to the
below-determined TZMD cutoff of 0.21 (see below), pre-
liminarily showing that TZMD has a higher resolution
than TETRA.

Reflecting the maximal genomic difference
Although both TETRA and TZMD quantify composition
similarity/difference, our results from the aforemen-
tioned 1779 queries against 264 references showed that
TZMD was only moderately correlated with TETRA in a
power fashion (R2 = 0.7291), indicating that TZMD is
not simply a fine-tuned version of TETRA (Fig. 3a).
Accordingly, we explored whether TZMD or TETRA
was more robust in reflecting genomic differences.
Genomic differences between two genomes encompass
two aspects: the percentage of shared genome (PSG) and
average nucleotide identity (ANI) of the shared genome.
For a given pair, we calculated two PSGs: one for the
smaller PSG (termed PSGsmall) and the other for the lar-
ger PSG (termed PSGlarge). In addition, we calculated a
medium PSG that was an average of the two PSGs
(termed PSGmean). In total, there were seven different
measures including ANI, PSGsmall, PSGmean and PSGlarge

for one aspect of genomic difference and ANI*PSGsmall,
ANI*PSGmean and ANI*PSGlarge for two aspects of geno-
mic difference. Among them, ANI*PSGsmall was the
maximal difference between two genomes. Our correla-
tion analysis showed that TZMD showed the highest R2

values for the maximal genomic differences (ANI*PSGs-

mall), regardless of the TZMD cutoff used (Fig. 4a). In

contrast, TETRA did not give the highest R2 values for
ANI*PSGsmall under almost all TETRA cutoffs except
0.1 (Fig. 4b). Thus, TZMD always reflected the maximal
difference, endowing it with a higher distinguishing
power than TETRA. Additionally, it was noteworthy that
the R2 values for the maximal differences were only
slightly higher than those for the other measures except
the ANI for distantly related organisms, but relatively
much higher for closely related organisms (Fig. 4a). This
result indicates that the resolution difference between
TZMD and TETRA arises primarily with closely related
organisms, although TZMD also exhibits a slight
improvement over TETRA for differentiating distantly
related organisms.
Next, we explored whether TZMD was more robust in

distinguishing similar organisms at or below the species
level. Tracking for the 1779 queries against 264 refer-
ences revealed that almost all intraspecific TETRA
values were > 0.99 with only two exceptions: one for the
Borrelia hermsii strains CC1 and HS1 with an atypical
TETRA of 0.97 and the other for the Borreliella burgdor-
feri strains CA382 and B31 with an atypical TETRA of
0.95. Correspondingly, these exceptions had an atypical
TZMD of 0.31 and 0.42 respectively (Additional file 2:
Figure S7). Excluding these two pairs, all other intraspe-
cific pairs had a maximal TZMD of 0.27, which was used
as the TZMD cutoff to evaluate the distinguishing ability
of TZMD for similar organisms. We found that TZMD
yielded a higher R2 value under its cutoff of 0.27 than
TETRA when its cutoff was set at 0.99, theoretically
demonstrating that TZMD is more robust in distin-
guishing organisms at or below the species level,

Fig. 2 Normalization of tetranucleotide-derived z-values. a Before normalization. b After normalization. Values shown here represent the
accumulated tetranucleotide deviations for Buchnera aphidicola str. APS (Acyrthosiphon pisum) (GCA_000009605.1)
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including species belonging to a single genospecies at
the species level, and subspecies or intraspecific strains
below the species level.
In conclusion, from the theoretical viewpoint, we

demonstrated that TZMD has a higher resolution than
TETRA. As an example, the pairs with a TETRA of 1.00,
which were considered to have completely identical
compositions by the TETRA approach, were found to
show distinguishable TZMD values ranging from 0 to
0.29 (Fig. 3b), supporting that TZMD has a higher reso-
lution than TETRA.

Slight improvement in species differentiation
Genomic composition is species specific, and intraspeci-
fic differences are generally lower than interspecific dif-
ferences [2, 9, 47, 48]. Thus, TETRA has been widely
applied at or above the species level, such as in

metagenomic binning [5, 28] and species differentiation
[24]. However, although TETRA performs very well in
most conditions, it cannot distinguish certain closely related
species, especially intra-genus species [23]. One possible
reason is that TETRA incompletely quantifies genomic dif-
ferences (Fig. 4b). In contrast, TZMD reflects the maximal
difference between genomes. Thus, we investigated whether
TZMD could improve species differentiation.
For species differentiation, we first determined the

optimal species-level cutoff for TZMD. Here, we used
the 1779 queries against 264 references to determine the
optimal species-level cutoff. The optimal cutoff was
determined to be 0.21 with both the highest F-score
(precision = 0.8688, recall = 0.9949) (Fig. 5a) and the
highest Rand index (Additional file 2: Figure S8A). Using
the 0.21 criterion, TZMD correctly differentiated 1954
intraspecific and 467,397 interspecific pairs to achieve a

Fig. 3 Relationship between TZMD and TETRA. a Correlation analysis between TZMD and TETRA. Left, without logarithmic transformation; right,
after logarithmic transformation. All values were generated using 1779 queries and 264 references. b TZMD distribution for pairs with TETRA = 1,
which are boxed by the broken line in Panel A
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high Rand index of ~ 0.9994, while TETRA correctly dif-
ferentiated 1962 intraspecific and 466,776 interspecific
or 1918 intraspecific and 467,371 interspecific pairs to
achieve a relatively low Rand index of ~ 0.9980 or ~
0.9992 (Additional file 2: Figure S8B) when using the
0.99 or 1.00 criterion respectively (Additional file 2: Fig-
ure S1A and S3A). For the statistical test, we randomly
sampled 200 distinct intraspecific pairs and 50,000 dis-
tinct interspecific pairs for each sampling 10 times for
both methods. The results showed that the optimal cutoff
for TZMD could also be determined at 0.21 (Fig. 5b and
Additional file 2: Figure S8C), which was in line with the
above finding (Fig. 5a and Additional file 2: Figure S8A). A
paired t-test showed that TZMD significantly outper-
formed TETRA (Fig. 5c and Additional file 2: Figure S8D).
Therefore, from the perspective of species differentia-
tion, we demonstrated that TZMD had a higher resolu-
tion than TETRA. However, compared with TETRA,

TZMD exhibited only a slight improvement in species
differentiation, possibly because the maximal genomic dif-
ferences (ANI*PSGsmall) reflected by TZMD were only
slightly superior to the PSGlarge or other measures reflected
by TETRA for distantly related organisms (Fig. 4a).

Differentiating similar species belonging to a single
genospecies
Closely related species, such as Escherichia coli–Shigella
[24] and Bacillus anthracis–Bacillus thuringiensis–Bacil-
lus cereus [46], were defined as a single genospecies by
the methods based on overall genotypic similarity, such
as the ANI approach. Generally, TETRA cannot distin-
guish most closely related species. As an alternative, we
considered whether TZMD could differentiate between
these species. Brucella species were taken as an example
for testing, as they were delineated as a single species by
the DNA-DNA hybridization method due to their > 90%

Fig. 4 TZMD reflects the maximal genome difference. a Correlation results for TZMD. b Correlation results for TETRA. A total of 1779 queries against
264 references were used. The correlation results for organisms at or below the species level are indicated by the dotted ovals. TETRA gives the
highest R2 values for measures other than the maximal difference (ANI*PSGsmall) except when TETRA > 0.90 (indicated by a vertical dotted line)

Zhou et al. BMC Genomics          (2019) 20:754 Page 6 of 15



DNA-DNA hybridization values [49, 50] and by the ANI
approach due to their > 96% ANIs [46]. We collected 53
complete genomes from the National Center for Biotech-
nology Information (NCBI) database (Additional file 1:
Table S3) and used them to test whether TZMD could dif-
ferentiate similar species belonging to a single genospecies.
As expected, TETRA could not differentiate any Brucella
species (Additional file 2: Figure S9). However, strikingly,
TZMD clearly differentiated all Brucella species (Fig. 6). In
addition, TZMD further separated B. suis biovars into
three main clades (513UK, biovar 2 and other biovars
including biovars 1, 3 and 4), which was consistent with
the phylogenetic results based on genome-wide single-
nucleotide polymorphisms (SNPs), multilocus sequencing

typing and whole-genome sequence alignment [51]. Addi-
tionally, TZMD showed that B. canis might have evolved
from the clade of “other biovars” of B. suis, in line with the
findings of a previous study [52]. In addition, the highest
TZMD value was 0.19 for the pair B. vulpis F60 and B. suis
bv. 1 str. S2, followed by 0.18 for the pairs of B. vulpis F60
with all other strains and < 0.1 for all other pairs (Fig. 6).
Therefore, according to its optimal cutoff for species differ-
entiation (Fig. 5a), TZMD only delineated all Brucella spe-
cies as a single genospecies, in accordance with previous
studies [46, 49, 50].
Yersinia pseudotuberculosis–Yersinia pestis and Bur-

kholderia mallei–Burkholderia pseudomallei, both of
which were considered as a single genospecies by the

Fig. 5 A comparison based on the F-score showed that TZMD slightly improved species differentiation. a Determining the TZMD cutoff with the
highest F-score. b F-scores for 10 samplings with the TZMD method. c The highest F-scores for both TZMD and TETRA approaches. All 1779
queries against 264 references were used (Panel a). For each sampling, 200 intraspecific and 50,000 interspecific pairs were randomly sampled
(Panels b and c). Because TETRA had two criteria (0.99 or 1.00) (Additional file 2: Figure S1A and S3A), the TETRA method using both criteria was
compared. Dashed line, the TZMD cutoff at 0.21; P-value, one-tailed paired t-test
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ANI approach [46], were used as two other examples. In
total, 45 complete genomes of Y. pseudotuberculosis–Y. pes-
tis (Additional file 1: Table S4) and 67 complete genomes
of B. mallei–B. pseudomallei (Additional file 1 Table S5)
were collected from the NCBI database for analysis.
TETRA could not distinguish between Y. pestis and Y.
pseudotuberculosis (Additional file 2: Figure S10). By con-
trast, TZMD clearly differentiated them (Additional file 2:
Figure S11). Similar results were also obtained for B. mal-
lei–B. pseudomallei (Additional file 2: Figure S13 and S14).
In conclusion, all these findings at the species level demon-
strated that TZMD has a higher resolution than TETRA.

Differentiating subspecies and intraspecific strains
Next, we tested whether TZMD could be used to differ-
entiate subspecies and intraspecific strains. C. jejuni, one
of the major foodborne pathogens in the world, causes
enteritis or Guillain–Barre syndrome in humans [53–55].

C. jejuni has two distinct subspecies: subsp. jejuni and
subsp. doylei [56]. More importantly, both subspecies have
been completely sequenced. In addition, the complete
genomes of numerous strains of C. jejuni have been deter-
mined [23]. Therefore, C. jejuni was selected to explore
this issue. We collected all 39 C. jejuni complete genomes
from the NCBI database (Additional file 1: Table S6), one
for subsp. doylei and the remaining for subsp. jejuni.
Our results showed that the TZMD approach clearly
distinguished the two subspecies as well as intraspeci-
fic strains (Fig. 7), while the TETRA approach could
not differentiate any strain or even subspecies (Addi-
tional file 2: Figure S14).
Francisella tularensis has several subspecies, includ-

ing subsp. novicida, subsp. holarctica and subsp. tular-
ensis, which were selected to further compare the
abilities of TZMD and TETRA to distinguish subspe-
cies. In total, 33 complete genomes were collected

Fig. 6 TZMD differentiates Brucella species. Brucella species are considered a single genospecies. The TZMD value is used as a basis for color
intensity. Different colors for species names indicate different clades. Three main clades for B. suis are also indicated. The figure was drawn by
using the heatmap.2 function (gplots package, ward.D2 linkage)
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(Additional file 1: Table S7). TZMD clearly differen-
tiated all subspecies (Additional file 2: Figure S15),
while TETRA could not differentiate subsp. holarctica
and subsp. novicida (Additional file 2: Figure S16).
Additional cases, including 51 complete genomes of

Streptococcus pyogenes (Additional file 1: Table S8) and 53
complete genomes of Bacillus cereus (Additional file 1:
Table S9), were used to further compare the abilities of
TZMD and TETRA to distinguish intraspecific strains.
TZMD clearly distinguished intraspecific strains of S. pyo-
genes (Additional file 2: Figure S17), while TETRA could
not differentiate any strain of S. pyogenes (Additional file
2: Figure S18). Similar results were also found for B. cereus
(Additional file 2: Figure S19 and S20).

In addition, we found that the TZMD approach
further distinguished clonal and non-clonal strains for
clonal strains with a TZMD value of 0 and non-clonal
strains with TZMD > 0 (Fig. 7 and Additional file 2:
Figure S17 and S19). Summarizing all pairs with a
TZMD value of 0 from the 1779 queries against 264
references showed that this standard included sub-
stantially more information. This standard intrinsically
ensured that clonal strains had considerably high ANIs
(95.85-100%) (Fig. 8a), as well as considerably high
PSGs (almost 100%, regardless of the PSG metric
used) (Fig. 8b, c and d). Therefore, this standard sub-
stantially ensured that at least three aspects (composi-
tion, ANI and PSG) were extremely similar, showing

Fig. 7 TZMD differentiates subspecies and intraspecific strains of Campylobacter jejuni. The TZMD value is used as a basis for color intensity. The boxed,
clonal strains; blue bar, subsp. doylei; light blue bar, subsp. jejuni. The figure was drawn by using the heatmap.2 function (gplots package, ward.D2 linkage)
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that TZMD is powerful for detecting clonal strains
with high confidence. All findings at the subspecies
and strain levels demonstrated that TZMD has a
higher resolution than TETRA.

Discussion
Demonstration of high resolution
In this study, we present TZMD, a high-resolution method
for distinguishing genomic composition. We determined
that TETRA was able to represent all other published sta-
tistical methods to profile tetranucleotide usage biases.
Therefore, we only needed to compare our TZMD method
with TETRA. We demonstrated the high resolution of
TZMD by comparing it with the TETRA method from two
viewpoints. First, from the theoretical point of view, we
principally demonstrated that TZMD reflected the maximal
difference between two genomes, endowing it with high
resolution. Second, from the practical point of view, we
assessed its high resolution for real data from four aspects,
including species differentiation at or above the species
level, differentiation of similar species belonging to a single
genospecies at species level, subspecies below the species
level and intraspecific strains below the species level.

TZMD exhibited a slight improvement in species differen-
tiation, possibly because the maximal genome differences
reflected by TZMD are only slightly superior to the
PSGlarge or other measures reflected by TETRA for dis-
tantly related organisms (Fig. 4a). However, maximal gen-
ome differences reflected by TZMD are considerably
superior to the PSGlarge or other measures reflected by
TETRA for closely-related organisms (Fig. 4a), which is
why TZMD can differentiate species belonging to a single
genospecies, subspecies and intraspecific strains, whereas
TETRA is almost unable to differentiate them. Taken
together, these findings demonstrated that TZMD has a
high resolution.

Strain-specific feature of composition
The studies for genomic composition began in the early
1960s [6]. Since then, almost all related studies have
focused on the development of statistical methods and
extensive demonstration and wide application of the
species-specific nature of composition. In addition to the
species-specific nature of composition [2, 9, 14, 19–21], our
results showed that composition is also strain specific
(Fig. 7). To our knowledge, this is the first study to

Fig. 8 TZMD = 0 additionally includes high ANI and high PSG. a) ANI distribution. b PSGsmall distribution. c PSGmean distribution. d PSGlarge

distribution. All values shown here are summarized from pairs with TZMD = 0 from the 1779 queries against 264 references
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demonstrate that genomic composition is strain specific.
The strain-specific nature of composition is possibly due
to (but not limited to) various factors. First, bacteria are
evolving, which may result in SNPs, insertions or dele-
tions. Second, some genes are acquired through horizontal
gene transfer [57]. For example, genomic islands, which
are horizontally transferred, carry biased composition
from their core genomes [58]. Third, some genes are lost
through genomic reduction [59]. Fourth, some plasmids
are conjugative [60, 61], which may cause varied composi-
tion for their recipient genomes [41].

Strain typing
Almost all previously developed methods can distinguish
only genomic composition at or above the species level,
leaving a long-standing need to develop methods capable of
strain-level differentiation. As far as we know, TZMD is the
first genomic composition-based algorithm with the ability
to differentiate similar species, subspecies and intraspecific
strains and thus can be used for strain typing. Similar spe-
cies, in a sense, are special intraspecific strains belonging to
a single genospecies, as their TZMD values are < 0.21
(Fig. 6). Composition Vector Tree (CVTree) can also distin-
guish intraspecific strains for strain typing [62]. However,
CVTree uses the proteomic composition (oligopeptide)
rather than the genomic composition (oligonucleotide).
Accordingly, TZMD is more convenient than CVTree, as
TZMD directly uses genomes, while CVTree uses pro-
teomes requiring prediction and translation of protein-
coding genes from their genomes. In addition, CVTree
requires 12,500 times the computational burden of TZMD,
as the composition vector of dimension for CVTree is 205

[62], while that for TZMD is only 44. However, our results
from the present study show that TZMD is sufficiently
robust to distinguish closely related species, subspecies or
strains without increasing the computational burden.
Furthermore, TZMD is a powerful standard to distin-

guish clonal and non-clonal strains. Traditional methods
are mainly based on SNPs. For example, multilocus
sequence typing uses SNPs from several housekeeping
genes [63]. Compared with these traditional SNP-based
methods, TZMD has at least four main advantages. First,
SNP-based methods only consider the information of
nucleotide identity, while the TZMD standard considers at
least three aspects, including ANI, PSG and composition.
Second, the TZMD standard is based on genome-wide
information, outperforming traditional methods based only
on single or several housekeeping genes. Third, TZMD is
an easy-to-use method because its standard is set at 0,
while it is difficult to set the exact SNP cutoffs for strain
typing for traditional SNP-based methods. For methods
using genome-wide information, the SNP cutoffs are chal-
lenging to set as the SNP cutoffs are species specific,
requiring large-scale sequencing to determine the cutoffs

for each species; for methods using single or multiple
genes, the SNP cutoffs are also challenging to set even for
the same species, as the thresholds may be different for dif-
ferent genes because they may be under different evolu-
tionary stresses. Fourth, TZMD is an alignment-free
method that may run faster than some traditional methods,
especially genome-wide approaches, and thus reduces
computing cost [24]. Taken together, these factors showed
that TZMD is a powerful tool and the first easy-to-use
approach for differentiating clonal and non-clonal strains.

Impact of genome incompleteness
Incomplete genomes contain only part of their genomes
and thus may carry a skewed composition to yield differ-
ent TZMD and TETRA values related to their full gen-
omes (Additional file 1: Table S1). Even genomes with
90% completeness may yield slightly different TZMD
values (Additional file 1: Table S1), whereas most closely
related organisms, including similar species belonging to
a single genospecies, subspecies and intra-species strains,
have only slightly different compositions (Figs. 6 and 7).
Thus, using incomplete genomes may result in incorrect
conclusions for differentiating these closely related
organisms, which is why we only used complete gen-
omes in this study. Therefore, the differentiation of clo-
sely related organisms requires complete genomes.
In contrast, genomic incompleteness has less of an

impact on species differentiation. Nevertheless, genomic
incompleteness may still affect the results. Although spe-
cies differentiation using the < 0.21 criterion for TZMD
and the > 0.99 or 1.00 criterion for TETRA is tolerant of
some incompleteness, it is still affected by genomic
completeness (Additional file 2: Figure S21). However,
TZMD is more susceptible to genome incompleteness
than TETRA. Thus, TZMD may be inferior to TETRA
when analysing incomplete genomes, although TZMD
slightly improves species differentiation when all tested
genomes are complete (Fig. 5). However, both TZMD
and TETRA are affected by genomic incompleteness,
requiring the development of novel approaches.

Metagenomic binning
Composition has been widely used for metagenomic bin-
ning [25–31], as it was species specific [2, 9, 19–21].
TETRA has been used for binning [5, 28, 64], and the
Euclidean distance has also been used for binning
[26, 65]. As the Manhattan distance has been
reported to outperform the Euclidean distance [66],
we herein only compared TZMD with TETRA. Our
testing showed that TZMD performed worse than
TETRA when fragment size was < 80 kb (Additional
file 2: Figure S22), possibly because TZMD is more
greatly affected by genome incompleteness than
TETRA (Additional file 2: Figure S21), but it
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outperformed TETRA when fragment size was > 80
kb, possibly because TZMD performs slightly better
in species differentiation. However, the difference of
binning performance between them is very slight.
Thus, either approach can be selected for binning.

Conclusions
Here, we develop a novel approach termed TZMD for
genomic composition and extensively demonstrate that
TZMD is a high-resolution method. Although traditional
approaches such as TETRA are effective in distinguishing
most species and thus can be successfully applied for spe-
cies differentiation, TZMD slightly improves these applica-
tions. Most importantly, TZMD exclusively extends the
application of composition from the species level to the
strain level, endowing it with the ability to differentiate spe-
cies belonging to a single species, subspecies and intraspeci-
fic strains. Furthermore, TZMD is a powerful tool and the
first easy-to-use approach for differentiating clonal and
non-clonal strains. Additionally, this study is the first to
show that composition is strain specific. Therefore, we hope
that TZMD will be used alone or in combination with
TETRA to facilitate bacterial studies in the future.

Methods
Calculation of PSG and ANI
Genomes were aligned using the NUCmer tool (version
3.23) [67], with default parameters except for “--max-
match”. Then, we used the “.delta” file to calculate PSG
and ANI. Stretches, such as paralogs and other repeats,
overlapped in the alignment, which would introduce
biases in PSG. Thus, the PSG for either genome of a pair
was calculated as follows:

PSG ¼
P

Aligned positions
L

where the numerator is the summed aligned positions (in
terms of base pairs) and the denominator is the genomic
size (also in terms of base pairs). Thus, we obtained two
PSGs for a given pair: the smaller one termed PSGsmall

and the larger one termed PSGlarge. Additionally, an aver-
age PSG was devised and calculated as follows:

PSGmean ¼ AP1þ AP2
L1þ L2

where AP1 and L1 are the summed aligned positions
and genomic size for the first genome respectively, and
AP2 and L2 are for the second genome.

Genome selection
All prokaryotic genome sequences listed at http://www.
ncbi.nlm.nih.gov/genome/ were downloaded (on 20 Jan-
uary 2017). Then, we selected complete genomes with

only one chromosome. After this step, 5819 genomes
remained. To determine the TZMD cutoff at the species
level, we selected 2043 genomes with unambiguous species
relationships (> 96% ANI [24] and > 70% of the shared gene
content [68]). These genomes were separated into 1779
query genomes (Additional file 1: Table S1) and 264 refer-
ence genomes (Additional file 1: Table S2), comprising
1964 intra- and 467,692 inter-species pairs.

Statistics of observed oligonucleotide frequencies
In all cases, due to strand compositional asymmetry in cer-
tain bacterial genomes [69], all tested genomes were conca-
tenated with their inverted complements and then
processed through discarding ambiguous nucleotides (that
is, not A, T, C, or G). The resulting sequences were com-
piled by moving a single base per step in the 5′ to 3′ direc-
tion with a length of n nucleotides (n is 4, 3, 2 or 1).

Four statistical methods for tetranucleotide usage biases
We denote the observed frequency of an oligonucleotide as
F*(.) (* indicates the oligonucleotide frequency computed
from the genome extended with its reverse complementary
sequence). For example, the observed frequency of the tet-
ranucleotide XYZW and its component mononucleotide X
were denoted as F*(XYZW) and F*(X) respectively. Then,
the tetranucleotide usage biases assessed by the zero-order
Markov method were written as follows [42]:

F� XYZWð Þ
F� Xð ÞF� Yð ÞF� Zð ÞF� Wð Þ

The method of maximal-order Markov model can be
calculated similarly with the following formula [42]:

F� XYZWð ÞF� YZð Þ
F� XYZð ÞF� YZWð Þ

The method of relative tetranucleotide frequency can
be calculated as follows [20]:

F� XYZWð ÞF� XYð ÞF� XNZð ÞF� XN1N2Wð ÞF� YZð ÞF� YNWð ÞF� ZWð Þ
F� XYZð ÞF� XYNWð ÞF� XNZWð ÞF� YZWð ÞF� Xð ÞF� Yð ÞF� Zð ÞF� Wð Þ

where N is any nucleotide.
The tetranucleotide usage biases can also be measured

as z-value Z*(XYZW) by the z-value method and can be
calculated as follows [5]:

Z� XYZWð Þ ¼ F� XYZWð Þ−E� XYZWð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var F� XYZWð Þð Þp

where E*(XYZW) can be calculated using a maximal-
order Markov model as follows [70]:
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E� XYZWð Þ ¼ F� XYZð ÞF� YZWð Þ
F� YZð Þ

var(F*(XYZW) can be calculated as follows [5]:

var F� XYZWð Þð Þ ¼ E� XYZWð Þ F� YZð Þ−F� XYZð Þ½ � F� YZð Þ−F� YZWð Þ½ �
F� YZð Þ2

Then, tetranucleotide usage biases calculated from
each statistical method were subjected to calculation of
the Pearson correlation coefficient to measure the com-
position similarity between two genomes.

TZMD calculation
The resulting sequences were subjected to calcula-
tion of tetranucleotide-derived z-values and TETRA
values according to the method published by Teeling
et al. [5]. If we denote the z-value of the kth tetra-
nucleotide from the sequence s as Zs,k and the corre-
sponding normalized z-value as NZs,k, then the z-
value can be normalized as follows:

NZs;k ¼ Zs;k=
ffiffi
l

p

where l is the total length of the sequence extended with
its reverse complement.
Subsequently, TZMD was calculated to measure the

compositional difference between two sequences s1 and s2
as follows:

TZMD ¼
X256

k¼1

NZs1;k−NZs2;k

�� ��

Determination of the optimal cutoffs for species
differentiation
Precision-recall and F-score were applied successfully to
determine the optimal sequence similarity thresholds for 40
single-copy phylogenetic marker genes [45] and 16S rRNA
genes [46] for species delineation of prokaryotes. Similarly,
we used this strategy to determine the optimal TZMD cutoff
for species differentiation. Briefly, all pairwise TZMD values
were assigned into four categories given a threshold of Y
TZMD (0-0.42 at 0.01 intervals): true positives (TP) for
intraspecific pairs (> 96% ANI [24] and > 70% of the shared
gene content [68]) with TZMD <Y; false negatives (FN) for
intraspecific pairs with TZMD >Y; false positives (FP) for
interspecific pairs with TZMD <Y and true negatives (TN)
for interspecific pairs with TZMD >Y. The optimal thresh-
old was obtained by maximizing the sensitivity (recall) as
well as the precision to achieve the highest F-score, which is
a harmonic mean of precision and recall. The F-score was
calculated as follows:

F‐score ¼ 2 precision � recallð Þ= precision þ recallð Þ

where precision and recall were calculated as follows:

precision ¼ TP= TPþ FPð Þ

recall ¼ TP= TPþ FNð Þ

In addition, the Rand index, which is simply the num-
ber of correct assigned pairs (TP + TN) divided by the
total number of tested pairs (TP + FN + FP + TN), was
used to select the optimal threshold with the highest
Rand index.
The optimal species-level thresholds for the above four

statistical methods were also determined with the high-
est F-scores and Rand indexes.
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