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Abstract

Background: Microsatellite instability (MSI) accounts for about 15% of colorectal cancer and is associated with
prognosis. Today, MSI is usually detected by polymerase chain reaction amplification of specific microsatellite
markers. However, the instability is identified by comparing the length of microsatellite repeats in tumor and
normal samples. In this work, we developed a qualitative transcriptional signature to individually predict MSI
status for right-sided colon cancer (RCC) based on tumor samples.

Results: Using RCC samples, based on the relative expression orderings (REOs) of gene pairs, we extracted a
signature consisting of 10 gene pairs (10-GPS) to predict MSI status for RCC through a feature selection
process. A sample is predicted as MSI when the gene expression orderings of at least 7 gene pairs vote for
MSI; otherwise the microsatellite stability (MSS). The classification performance reached the largest F-score in
the training dataset. This signature was verified in four independent datasets of RCCs with the F-scores of 1,
0.9630, 0.9412 and 0.8798, respectively. Additionally, the hierarchical clustering analyses and molecular features
also supported the correctness of the reclassifications of the MSI status by 10-GPS.

Conclusions: The qualitative transcriptional signature can be used to classify MSI status of RCC samples at
the individualized level.

Keywords: Right-sided colon cancer, Microsatellite instability status, Gene expression profiles, Relative gene
expression orderings, Qualitative transcriptional signature

Background
Microsatellite instability (MSI), the insertion or deletion
mutations in microsatellites [1], is a molecular hallmark
of a deficient mismatch repair (dMMR) system and
accounts for about 15% of colorectal cancer (CRC) [2].
Results from some studies seem that the MSI feature is
associated with good prognosis, and the stage II and III
CRC patients with MSI cannot benefit from 5-
fluorouracil (5-Fu)-based adjutant chemotherapy (ACT)
[3–5], which is regarded as the standard treatment for
stage II and III CRC patients after surgery. So, a precise

classification is needed to aid appropriate decisions on
5-Fu-based ACT treatment of patients.
Today, the most common method to test MSI status is

polymerase chain reaction (PCR) amplification analysis
of specific microsatellite repeats, which is considered as
the ‘golden standard’ method [1, 6]. However, the PCR
technology exists high measurement variations between
different laboratories [7, 8], which are mainly due to the
effects of the tumor cell percentage and DNA degrada-
tion during sample storage and preparation [8–11].
Additionally, the presence of instability is defined by
comparing the length of microsatellite repeats in the
tumor sample and the normal sample [1, 6, 12–14]. MSI
can also be detected by immunohistochemistry (IHC).
But IHC method only provides a semi-quantitative eva-
luation of the expression levels of the four MMR
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proteins (MLH1, MSH2, MSH6 and PMS2) [2], and also
exists high measurement variations between different
laboratories [15–17], which are primarily due to the
effects of sample preprocessing, such as fixation of tis-
sues, detection reagents and selection of antibody [16,
17]. Moreover, since the results of IHC can be greatly
affected by the interpretation of the specificity of stain-
ing, when the levels of the MMR proteins analyzed are
low, good performance of IHC requires highly skilled
personnel and pathologist’s experience in interpretation
[14, 15]. Therefore, the traditional PCR and IHC meth-
ods both have some limitations in determining the MSI
status of CRC.
Recently, many alternative methods based on tumor

genomic data via next-generation sequencing (NGS)
panels have been developed to determine MSI status of
patients [1, 18, 19]. For instance, Vanderwalde et al.
used a NGS panel comprised of 592 genes to determine
MSI status [1]. However, NGS currently has been lim-
ited to some highly specialized laboratories [20].
Besides, there has no consensus about NGS gene panels
to determine MSI status and each laboratory determine
the appropriate mutation load threshold based on its
NGS gene panel and technique [1, 18–20]. What’s
more, the use of the NGS-based methods that require
DNA extraction often leads to false-negative or uncer-
tain results in challenging tumor samples due to the
tumor DNA dilution and the percentage of tumor cells
within a sample [20, 21]. Another method based on
gene expression measurement also has been developed
to identify MSI status of CRCs [6], which, however, is
sensitive to the systematic inter-laboratory biases espe-
cially batch effects of microarray and RNA-sequencing
experiments [22]. In general, quantitative transcrip-
tional signatures based on absolute expression values is
sensitive to the batch effects and thus lack robustness
for clinical applications [23]. In contrast, the type of
qualitative transcriptional signatures based on the
within-sample relative expression orderings (REOs) of
genes have strong robustness against the experimental
batch effects and can be applied to individual samples
directly [24]. Besides, we have demonstrated that they
are rather robust against the proportions of tumor
epithelial cell variations in tumor tissues sampled from
different tumor locations [25], amplification bias for
minimum samples [26], and partial RNA degradation
during sample preparation [27]. For example, we have
reported that more than 90% of the REOs of gene pairs
in the fresh-frozen samples are maintained in their
paired formalin-fixed paraffin-embedded samples and
largely unaffected by the storage time [27], indicating
that the vast majority of the REOs of gene pairs are
rather robust. Thus, the gene pairs of signature were
less vulnerable to degradation. Therefore, it is worthwhile

to apply the within-sample REOs to find robust qualitative
transcriptional signatures.
Colorectal cancers deriving from proximal or distal of

splenic flexure are classified as right-sided or left-sided
colon cancer (RCC or LCC), respectively [28]. Consistent
with the differences in anatomy location, RCC and LCC
have unique gene expression characteristics, different
molecular pathways of carcinogenesis [28, 29] and differ-
ent clinical features [30]. Therefore, it would be necessary
to develop signatures to predict MSI status for RCC and
LCC, respectively. Because of the high incidence of MSI in
the RCC, we developed a REOs-based qualitative signature
for predicting MSI status of RCC patients in this work,
which was validated in independent datasets.

Results
Identification and validation of the signature for MSI
status of RCC
The GSE39582 with the largest samples of RCC, including
57 MSI and 154 MSS was used as the training data for
extracting a REOs-based signature. Firstly, we identified
4769 MSI-related differentially expressed (DE) genes (Stu-
dent’s t-test, FDR < 0.01, Additional file 1: Table S1)
between the 57 MSI RCC samples and the 154 MSS RCC
samples. From all the gene pairs formed by these DE
genes, we identified 1,654,739 gene pairs, whose specific
REO pattern occurred more frequently in the MSI sam-
ples than in the MSS samples (Fisher’s exact test, FDR <
0.01). The larger FD of a REO pattern, the stronger classi-
fied ability of the REO pattern can classify the status of
MSI. We further narrowed down the number of gene
pairs to 1898 through a redundancy removal process by
keeping only one with the largest FD value of those gene
pairs sharing a common gene (see Methods, Fig. 1a). From
these gene pairs, we extracted 10 gene pairs with the FD
at least 0.8. These 10 gene pairs were used as the signature
for predicting MSI status of RCC, denoted as 10-GPS
(Table 1). A RCC sample was predicted as MSI if the
REOs of at least seven gene pairs in the 10-GPS vote for
MSI; otherwise the MSS. According to the classification
rule, the F-score of the signature in the training data was
0.9727, with a sensitivity of 0.9649 and a specificity of
0.9805. The area under the curve (AUC) of the receiver
operating characteristic (ROC) curve was 0.9838 (Fig. 2a).
We tested the 10-GPS in four independent cohorts of

RCC samples (Fig. 1b), the F-scores of the classification
by 10-GPS were 1, 0.9630, 0.9412 and 0.8798, respec-
tively, as shown in the Table 2, and the AUCs were 1,
0.9923, 1 and 0.9244, respectively (Fig. 2b, c, d and e).

Transcriptome assessment of the signature-disconfirmed
RCC samples
In the training data, there were a total of five signature-
disconfirmed samples. We compared the gene expression
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patterns of the five signature-disconfirmed samples with
the 206 signature-confirmed samples through clustering
analysis. Firstly, we identified 5664 DE genes (Student’s t-
test, FDR < 0.01) between the 55 signature-confirmed MSI
and the 151 signature-confirmed MSS samples. Secondly,
using the expression levels of the top 100 significant DE
genes, the samples were divided into two subgroups using
the complete linkage hierarchical clustering based on the
Euclidean distance (Fig. 3a). The results showed that all of
the two MSI samples reclassified as MSS by the 10-GPS
were clustered with the signature-confirmed MSS sam-
ples, and all of the three MSS samples reclassified as MSI
were clustered with the signature-confirmed MSI samples.
Similarly in the two of the four validation datasets of

RCC (GSE18088 and GSE75317), all of these two MSI
samples reclassified as MSS by our signature were clus-
tered with the corresponding signature-confirmed MSS

samples (Fig. 3b and c), respectively. These results pro-
vided transcriptional evidence of the correctness of the
prediction of 10-GPS.

Genome assessment of the signature-disconfirmed RCC
samples
It is known that BRAFV600E mutations and CpG
island methylator phenotype (CIMP)-positive fre-
quently occur in MSI CRCs, whereas KRAS mutations
(in codons 12 or 13) frequently occur in MSS CRCs
[2, 31]. In the training data, for the three MSS sam-
ples which were reclassified as MSI by 10-GPS, two
patients were KRAS wild-type, BRAF mutant and
CIMP-positive and one patient was KRAS wild-type.
For the two MSI samples which were reclassified as
MSS, one was BRAF wild-type and CIMP-negative, as
shown in Table 3.

In the TCGA validation dataset of RCC, there were
seven signature-disconfirmed samples. Because mutation
of MMR genes can result in MSI [32], we observed the
mutation status of the MMR genes in the signature-
disconfirmed samples. There were only five samples with
mutation data. And two of the four MSS samples which
were reclassified as MSI by 10-GPS were MSH6 mutant
(Additional file 2: Table S1). These results supported
that MSI status of these samples reclassified by 10-GPS
might be reliable.

Fig. 1 The flowchart of this study, as exemplified by the development and validation of predicting MSI status signature for patients with RCC
(see Methods)

Table 1 The Composition of 10-GPS

signature gene1 gene2 signature gene1 gene2

pair1 HNRNPL CDC16 pair6 STRN3 TMEM192

pair2 MTA2 VGF pair7 HPSE BCAS3

pair3 CALR SEC22B pair8 PRPF39 ATF6

pair4 RASL11A CAB39L pair9 CCRN4L GRM8

pair5 LYG1 DHRS12 pair10 AMFR DUSP18

Notes: A RCC sample was classified as MSI if the REOs (gene1 > gene2) of at
least 7 of the gene pairs in the 10-GPS vote for MSI; otherwise the MSS
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Prognosis assessment of the signature-disconfirmed RCC
samples
Then, we also evaluated the reliability of the reclassifica-
tions by 10-GPS through survival analyses based on the
knowledge that stage III MSI CRCs treated with surgery
only have better prognoses than MSS CRCs [2] and that
stage III MSS CRC patients treated with 5-Fu-based
ACT after surgery have improved outcomes than
patients treated with surgery only [3–5]. And the survi-
val benefit of ACT was only observed in stage III
patients [3, 4]. In the 32 stage III RCC samples of the
training data for patients treated with surgery only, one

of the 19 MSS sample was reclassified as MSI and one of
13 MSI sample was reclassified as MSS by the 10-GPS.
In the 54 (46 MSS and 8 MSI) stage III RCC samples for
patients receiving 5-Fu-based ACT, the original MSI sta-
tus of all samples were confirmed by the 10-GPS. By
comparison, the MSS patient reclassified as MSI had
longer RFS (130months) than the MSI patient reclassi-
fied as MSS (31 months) by the signature. The survival
difference between patients with predicted MSI status by
10-GPS were more significant than the difference
between patients with the original MSI status due to the
two reclassified samples (Additional file 3).

Fig. 2 The ROC curves for 10-GPS in four datasets. a the training dataset. b the RCCs of GSE39084. c the RCCs of GSE18088. d the RCCs of
GSE75317. e the RCCs of TCGA

Table 2 The performances of the 10-GPS in RCCs of the independent datasets

pre-MSIa (MSI:MSS)b pre-MSSa (MSI:MSS)b sensitivity specificity F-score

GSE39084_R 13 (13:0) 18 (0:18) 1 1 1

GSE18088_R 13 (13:0) 15 (1:14) 0.9286 1 0.9630

GSE75317_R 8 (8:0) 18 (1:17) 0.8889 1 0.9412

TCGA_R 15 (9:6) 38 (1:37) 0.900 0.8605 0.8798

Total_RCCs 49 (43:6) 89 (3:86) 0.9348 0.9348 0.9348

Notes: a represents the predicted MSI status by 10-GPS; b represents the original MSI status; GSE_R represents the RCC samples; Total_RCCs represents all the
samples of RCC
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Identification and validation of the signature for MSI
status of LCC
We applied the 10-GPS to LCC samples and CRC sam-
ples without clear location information (Additional file
2: Table S2). The results showed that the performance
was reduced when applying the 10-GPS to predict MSI
status of LCC. Therefore, we also tried to develop a sig-
nature to identify MSI status of the LCC patients in the
same way as in RCC. Eventually, these six gene pairs
were used as the signature for predicting MSI status of
LCC, denoted as 6-GPS (Additional file 2: Table S3). A
LCC sample was predicted as MSI if the REOs of at least
four gene pairs in the 6-GPS vote for MSI; otherwise the
MSS. According to the classification rule, the F-score of
the signature in the LCC training data was 0.9983, with
a sensitivity of 1 and a specificity of 0.9966. And also,
the 6-GPS was well validated in four independent
cohorts of LCC samples (Additional file 2: Table S4).

Discussion
We developed qualitative transcriptional signatures con-
sisting of 10 and 6 gene pairs to robustly predict MSI sta-
tus of RCC and LCC at individualized level, which were
validated in four independent datasets. Notably, the hier-
archical clustering analyses and molecular characteristics

supported the correctness of the reclassifications of the
MSI status by our signature for some samples whose MSI
statuses were determined by the PCR testing. Besides,
using gene pairs with large FD (see Methods) of a REO
pattern between MSI and MSS samples, we can exclude
gene pairs affected by various factors such as RNA degra-
dation and tumor cell percentage and obtain a classifier
with high predictive performance of MSI status. Thus, it is
possible for our signature to identify the MSI status of
CRC samples, which could not be determined by tradi-
tional standard methods.
In this study, we selected MSI-related gene pairs formed

by the DE genes identified between MSI and MSS RCC
samples. Some DE genes are known to be associated with
microsatellite instability, prognosis and metastasis of CRC.
For example, CAB39L have mononucleotide repeats in the
coding regions that could be targets for frameshift muta-
tion in CRC with microsatellite instability [33]. Another
gene, MTA2, is one of metastasis-associated tumor gene
family members and was an important prognosis biomar-
ker of CRC [34]. Besides, it is reported that overexpression
of AMFR is significantly related to poor survival for CRC
[35]. Additionally, the differential expression of these
genes could cause reversal REOs of the selected gene pairs
between MSI and MSS samples, and thus these gene pairs
could have the ability to classify the MSI status.
In the process of screening MSI-related gene pairs of

RCC, we extracted gene pairs by adjusting different FD
thresholds. Then, it was found that when FD > 0.9, there
were no gene pairs remaining. When FD > 0.7, there
were 65 gene pairs were extracted. The classification
performance reached the largest F-score (0.9630) of sen-
sitivity (0.9649) and specificity (0.9610) in the training
data according to the following decision rule: a sample is
predicted as MSI when the REOs of at least 39 gene
pairs vote for MSI; otherwise the MSS. Compared with

Fig. 3 The complete linkage hierarchical clustering of the RCC samples in the (a), training dataset, (b) GSE18088 and (c) GSE75317 based on the
differentially expressed genes between the signature-confirmed MSI and MSS samples. X- > Y, X represents the original MSI status and Y
represents the reclassified MSI status by 10-GPS

Table 3 The molecular characteristics of the five signature-
disconfirmed RCC samples in the training dataset

original_MSI.
status

predicted_MSI.
status

KRAS.
status

BRAF.
status

CIMP.
status

MSS MSI wild type NA NA

MSS MSI wild type mutation +

MSS MSI wild type mutation +

MSI MSS wild type mutation +

MSI MSS NA wild type –
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the result of FD > 0.8, the performance of classification
was slightly worse and it had more gene pairs. So we
chose 0.8 as the threshold for FD. Similarly, based on
the same considerations, we chose 0.9 as the threshold
for FD in the process of screening MSI-related gene
pairs of LCC.
The REO-based method was first proposed by Donald

Geman et al. in 2004 [36]. The method has been pro-
posed as a simple, accurate and easily interpretable deci-
sion rule for classification of gene expression profiles
[37]. What’s more, it is robust against the experimental
batch effects and avoid the need of inter-sample data
normalization and can be applied at individualized level
[23, 24, 36]. So, there were many studies by others and
us developing several prognostic and predictive biomar-
kers based on this method for different cancers [38–51].
It indicated that the clinical applicability of the signa-
tures based on the robust qualitative REO information
extracted from the quantitative measurements of gene
expression, rather than the “exact” quantitative measure-
ments themselves [52]. Given cost considerations and
the often-limited quantity of tumor material available for
testing in many cancer patients, NGS-based tumor pro-
filing, which provides the basis for the concept of “a
sequence for all” [53]. So, we have been focusing on
developing qualitative transcriptional signatures to form
the “a sequence for all” for CRC. All these signatures
can be assessed in a single NGS assay, facilitating the
optimum treatment of stage II-III CRC patients. In sum-
mary, we developed qualitative signatures for predicting
MSI status of RCC and LCC, as a part of “a sequence for
all” for CRC.

Conclusions
Currently, common methods for detecting MSI status of
CRC such as PCR and IHC-based methods, exist high
measurement variations between different laboratories,
which have limited clinical utility. Herein, we developed
robust qualitative transcriptional signatures to classify
MSI status of RCC and LCC at the individualized level,
as a part of “a sequence for all” for CRC. The simplicity
and robustness of the signature would make it conveni-
ent in clinical settings and worthy to further validate in
a prospective clinical trial.

Methods
Data sources and data preprocessing
The gene expression datasets used in this study were
downloaded from the Gene Expression Omnibus (GEO,
http://www.ncbi.nlm.nih.gov/geo/) database and The
Cancer Genome Atlas data portal (TCGA, http://cancer-
genome.nih.gov/) (Table 4). As MSI-L patients are
usually treated in a way similar to MSS patients in clini-
cal practice, it is reasonable to group MSI-L with MSS

[1]. In this study, we grouped MSI-L with MSS. The
training data for extracting a REOs-based signature of
RCC was GSE39582, including 57 MSI and 154 MSS of
211 RCCs. The GSE39582 dataset recording survival
information of patients were used as the test for survival
analyses.
The Robust Multi-array Average algorithm [54] was

used for preprocessing the raw data measured by the Affy-
metrix platform. Using the corresponding platform files,
probes were mapped to genes. For each sample, the
expression measurements of several probes mapping to a
gene were averaged to obtain a single measurement.
Probes were discarded if they did not match any gene or
matched multiple genes. The RNA-seq expression data
were downloaded from the Broad Firehose webpage
(http://gdac.broadinstitute.org/). For RNA-seq data
derived from Illumina HiSeq 2000 RNA Sequencing
Version 2, we directly downloaded the RSEM-normalized
format and log2-transformed. We also downloaded the
somatic mutation data of CRC from the Broad Firehose
webpage.
Currently, most of the CRC data we collected were

microarray datasets. With the development of the NGS
technology, the RNA-seq data are increasing. In order to
apply our signature to RNA-seq data, we used the
expression data of overlapping Gene IDs of Affymetrix
and Illumina platforms.

Signature development for predicting MSI status of RCC
We identified MSI-related gene pairs from the DE genes
between MSI and MSS samples. For a gene pair, i and j,
with expression values of Ei and Ej, whether the fre-
quency of a specific REO pattern (Ei > Ej or Ei < Ej) was
significantly higher in the MSI samples than the fre-
quency in the MSS samples was evaluated by Fisher’s
exact test [55]. The MSI-related gene pairs detected with
FDR < 0.01. Then, the frequency difference (FD) was cal-
culated for each MSI-related gene pair between the two
groups (Formula 1). The larger FD of a REO pattern, the
stronger classified ability of the REO pattern can classify
the status of MSI and avoid the effect of degradation. It
is more likely to be applied to multiple data sources pro-
duced by different laboratories. So, considering that
some genes are influenced by RNA degradation, for a
gene which appeared in multiple gene pairs, we kept
only the gene pair with the largest FD value and dis-
carded others.
pij (c) = P (Ei > Ej | c), c = 1,2, the probabilities of obser-

ving Ei > Ej in each class.
FDij = pij (1) − pij (2), the FD value of gene pair (i, j)

[Formula 1].
After that, the gene pairs with the FD value at least 0.8

were identified as the signature to predict MSI status of
RCC. A sample was labeled as MSI if the REOs of at
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least k gene pairs in the signature are consistent with the
specific patterns (Ei > Ej) of the training samples, and
vice versa. For each k ranging from one to the number
of gene pairs in the signature, we could compute a F-
score. Finally, we selected the k which could reach the
largest F-score.

F−score ¼ 2� sensitivity � specificity
� sensitivityþ specificityð Þ ð2Þ

Sample clustering
Student’s t-test was performed to identify DE genes
between the MSI and MSS patients confirmed with the
original MSI status by the signature. Complete linkage
hierarchical clustering was performed to stratify CRC
samples into subgroups. The similarity between samples
was evaluated by the Euclidean distance based on the
expression measurements of DE genes.

Statistical analyses
For microarray data, we selected DE genes between two
classes of samples using Student’s t-test. The MSI rate in
different groups was evaluated by Fisher’s exact test. The
Benjamini-Hochberg procedure for multiple testing was
used to adjust p values in order to control the false dis-
covery rate (FDR) [56]. Log-rank test was used to assess

the difference between the Kaplan-Meier estimates of
the RFS in the two different groups [57]. Hazard ratios
(HRs) and 95% confidence intervals (CIs) were generated
using the univariate Cox proportional hazards model.
All statistical analyses were performed using the R 3.5.1
(http://www.r-project.org/).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-019-6129-8.

Additional file 1: Table S1. The DE genes (FDR<0.01) between the 57
MSI RCC samples and the 154 MSS RCC samples. Table S2. The DE genes
(FDR<0.01) between the 18 MSI LCC samples and the 290 MSS LCC
samples.(XLS 692 kb)

Additional file 2: Table S1. The mutation status of the four MMR genes
of the five signature-disconfirmed RCC in the TCGA dataset. Table S2. The
performances of the 10-GPS in LCCs and CRCs of the independent datasets.
Table S3. The Composition of 6-GPS. Table S4. The performances of the 6-
GPS in LCCs of the independent datasets.(DOCX 18 kb)

Additional file 3. The Kaplan-Meier survival curve for the prediction of
10-GPS and original MSI status, respectively. (TIF 524 kb)

Abbreviations
5-Fu: 5-fluorouracil; ACT: adjutant chemotherapy; AUC: area under the curve;
CIMP: CpG island methylator phenotype; CRC: colorectal cancer;
DE: differentially expressed; dMMR: deficient mismatch repair; FD: frequency
difference; FDR: false discovery rate; GPS: gene pairs;
IHC: immunohistochemical; LCC: left-sided colon cancer; MSI: microsatellite
instability; MSS: microsatellite stability; NGS: next-generation sequencing;

Table 4 The datasets analyzed in this study from GEO and TCGA

GSE39582
(n = 566)

GSE39084
(n = 70)

GSE18088
(n = 53)

GSE75317
(n = 59)

GSE13067
(n = 74)

GSE13294
(n = 155)

TCGA
(n = 457)

Stage

I 33 8 – 6 – – 75

II 264 23 53 24 – – 178

III 205 16 – 17 – – 130

IV 60 22 – 12 – – 64

Microsatellite status

MSI 75 16 19 11 11 78 11

MSS 444 54 34 48 63 77 81

Location

Right 224 31 28 26 – – 261

Left 342 30 25 33 – – 177

MSI_proportion

Right 57:154a (27.0%)b 13:18 (41.9%) 14:14 (50.0%) 9:17 (34.6%) – – 10:43 (18.9%)

Left 18:290c (5.8%)d 3:27 (10.0%) 5:20 (20.0%) 2:31 (6.1%) – – 1:33 (2.9%)

MSI detection PCR PCR or IHC PCR PCR PCR PCR PCR

Adjuvant chemotherapy

Yes 233 – – – – – –

No 316 – 53 – – – –

Notes: The data from GEO were produced by the same gene expression profiling platform (GPL570, Affy-HG-U133_Plus_2). a represents the number of MSI and
MSS of RCCs, respectively; b represents the proportion of MSI in RCCs; c represents the number of MSI and MSS of LCCs, respectively; d represents the proportion
of MSI in LCCs
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PCR: polymerase chain reaction; RCC: right-sided colon cancer; REOs: relative
expression orderings; ROC: receiver operating characteristic

Acknowledgements
Not applicable.

Authors’ contributions
WZ and ZG conceived the idea, YF conceived and designed the
experiments, wrote the manuscript, LQ designed the experiments, WG and
LJ analyzed the data, KS and TY performed the experiments, SZ and YG
helped in writing the manuscript. All authors approved the final version.

Funding
This work was supported by the National Natural Science Foundation of
China [grant numbers: 61601151, 61701143, 61673143, 81872396 and
81572935], the Natural Science Foundation of Heilongjiang Province [grant
number: C2016037] and the Joint Scientific and Technology Innovation Fund
of Fujian Province [grant number: 2016Y9044].

Availability of data and materials
All data analyzed in this study were downloaded from the public database:
GEO and TCGA.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Systems Biology, College of Bioinformatics Science and
Technology, Harbin Medical University, Harbin 150086, China. 2Department
of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal
Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou
350122, China. 3Key Laboratory of Medical Bioinformatics, Fujian Province,
Fuzhou 350122, China.

Received: 17 June 2019 Accepted: 23 September 2019

References
1. Vanderwalde A, Spetzler D, Xiao N, Gatalica Z, Marshall J. Microsatellite

instability status determined by next-generation sequencing and compared
with PD-L1 and tumor mutational burden in 11,348 patients. Cancer
medicine. 2018;7(3):746–56.

2. Gelsomino F, Barbolini M, Spallanzani A, Pugliese G, Cascinu S. The evolving
role of microsatellite instability in colorectal cancer: a review. Cancer Treat
Rev. 2016;51:19–26.

3. Cao B, Luo L, Feng L, Ma S, Chen T, Ren Y, Zha X, Cheng S, Zhang K, Chen C. A
network-based predictive gene-expression signature for adjuvant
chemotherapy benefit in stage II colorectal cancer. BMC Cancer. 2017;17(1):844.

4. Sargent DJ, Marsoni S, Monges G, Thibodeau SN, Labianca R, Hamilton SR,
French AJ, Kabat B, Foster NR, Torri V, et al. Defective mismatch repair as a
predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy
in colon cancer. J Clin Oncol. 2010;28(20):3219–26.

5. Ribic CM, Sargent DJ, Moore MJ, Thibodeau SN, French AJ, Goldberg
RM, Hamilton SR, Laurent-Puig P, Gryfe R, Shepherd LE, et al. Tumor
microsatellite-instability status as a predictor of benefit from
fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J
Med. 2003;349(3):247–57.

6. Tian S, Roepman P, Popovici V, Michaut M, Majewski I, Salazar R, Santos C,
Rosenberg R, Nitsche U, Mesker WE, et al. A robust genomic signature for
the detection of colorectal cancer patients with microsatellite instability
phenotype and high mutation frequency. J Pathol. 2012;228(4):586–95.

7. Hempelmann JA, Lockwood CM, Konnick EQ, Schweizer MT, Antonarakis ES,
Lotan TL, Montgomery B, Nelson PS, Klemfuss N, Salipante SJ, et al.
Microsatellite instability in prostate cancer by PCR or next-generation
sequencing. J Immunother Cancer. 2018;6(1):29.

8. Boyle TA, Bridge JA, Sabatini LM, Nowak JA, Vasalos P, Jennings LJ, Halling
KC, College of American Pathologists Molecular Oncology Comiittee.
Summary of microsatellite instability test results from laboratories
participating in proficiency surveys: proficiency survey results from 2005 to
2012. Arch Path Lab Med. 2014;138(3):363–70.

9. Waalkes A, Smith N, Penewit K, Hempelmann J, Konnick EQ, Hause RJ,
Pritchard CC, Salipante SJ. Accurate Pan-Cancer molecular diagnosis of
microsatellite instability by single-molecule molecular inversion probe
capture and high-throughput sequencing. Clin Chem. 2018;64(6):950–8.

10. Chen G, Yang Z, Eshleman JR, Netto GJ, Lin MT. Molecular diagnostics for
precision medicine in colorectal Cancer: current status and future
perspective. Biomed Res Int. 2016;2016:9850690.

11. Trusky CL, Sepulveda AR, Hunt JL. Assessment of microsatellite instability in
very small microdissected samples and in tumor samples that are
contaminated with normal DNA. Diagn Mol Pathol. 2006;15(2):63–9.

12. Ryan E, Sheahan K, Creavin B, Mohan HM, Winter DC. The current value of
determining the mismatch repair status of colorectal cancer: a rationale for
routine testing. Crit Rev Oncol Hematol. 2017;116:38–57.

13. Zeinalian M, Hashemzadeh-Chaleshtori M, Salehi R, Emami MH. Clinical
aspects of microsatellite instability testing in colorectal Cancer. Adv Biomed
Res. 2018;7:28.

14. Pena-Diaz J, Rasmussen LJ. Approaches to diagnose DNA mismatch repair
gene defects in cancer. DNA repair. 2016;38:147–54.

15. Shia J, Holck S, Depetris G, Greenson JK, Klimstra DS. Lynch syndrome-
associated neoplasms: a discussion on histopathology and
immunohistochemistry. Familial Cancer. 2013;12(2):241–60.

16. Kirkegaard T, Edwards J, Tovey S, McGlynn LM, Krishna SN, Mukherjee R,
Tam L, Munro AF, Dunne B, Bartlett JM. Observer variation in
immunohistochemical analysis of protein expression, time for a change?
Histopathology. 2006;48(7):787–94.

17. Fitzgibbons PL, Murphy DA, Hammond ME, Allred DC, Valenstein PN.
Recommendations for validating estrogen and progesterone receptor
immunohistochemistry assays. Arch Pathol Lab Med. 2010;134(6):930–5.

18. Stadler ZK, Battaglin F, Middha S, Hechtman JF, Tran C, Cercek A, Yaeger R,
Segal NH, Varghese AM, Reidy-Lagunes DL, et al. Reliable detection of
mismatch repair deficiency in colorectal cancers using mutational load in
next-generation sequencing panels. J Clin Oncol. 2016;34(18):2141–7.

19. Salem ME, Puccini A, Grothey A, Raghavan D, Goldberg RM, Xiu J, Korn WM,
Weinberg BA, Hwang JJ, Shields AF, et al. Landscape of tumor mutation
load, mismatch repair deficiency, and PD-L1 expression in a large patient
cohort of gastrointestinal cancers. Mol Cancer Res. 2018;16(5):805–12.

20. Le Flahec G, Uguen M, Uguen A. Detection of mismatch repair deficiency in
colorectal cancers: is it really time to eliminate immunohistochemistry? J
Clin Oncol. 2017;35(3):376–7.

21. Uguen A, Gueguen P, Legoupil D, Bouvier S, Costa S, Duigou S, Lemasson
G, Lede F, Sassolas B, Talagas M, et al. Dual NRASQ61R and BRAFV600E
mutation-specific immunohistochemistry completes molecular screening in
melanoma samples in a routine practice. Hum Pathol. 2015;46(11):1582–91.

22. Guan Q, Yan H, Chen Y, Zheng B, Cai H, He J, Song K, Guo Y, Ao L, Liu H,
et al. Quantitative or qualitative transcriptional diagnostic signatures? A case
study for colorectal cancer. BMC Genomics. 2018;19(1):99.

23. Guan Q, Chen R, Yan H, Cai H, Guo Y, Li M, Li X, Tong M, Ao L, Li H, et al.
Differential expression analysis for individual cancer samples based on
robust within-sample relative gene expression orderings across multiple
profiling platforms. Oncotarget. 2016;7(42):68909–20.

24. Ao L, Zhang Z, Guan Q, Guo Y, Guo Y, Zhang J, Lv X, Huang H, Zhang
H, Wang X, et al. A qualitative signature for early diagnosis of
hepatocellular carcinoma based on relative expression orderings. Liver
Int. 2018;38(10):1812–9.

25. Cheng J, Guo Y, Gao Q, Li H, Yan H, Li M, Cai H, Zheng W, Li X, Jiang W,
et al. Circumvent the uncertainty in the applications of transcriptional
signatures to tumor tissues sampled from different tumor sites. Oncotarget.
2017;8(18):30265–75.

26. Liu H, Li Y, He J, Guan Q, Chen R, Yan H, Zheng W, Song K, Cai H, Guo Y,
et al. Robust transcriptional signatures for low-input RNA samples based on
relative expression orderings. BMC Genomics. 2017;18(1):913.

27. Chen R, Guan Q, Cheng J, He J, Liu H, Cai H, Hong G, Zhang J, Li N, Ao L, et al.
Robust transcriptional tumor signatures applicable to both formalin-fixed
paraffin-embedded and fresh-frozen samples. Oncotarget. 2017;8(4):6652–62.

28. Tejpar S, Stintzing S, Ciardiello F, Tabernero J, Van Cutsem E, Beier F, Esser R,
Lenz HJ, Heinemann V. Prognostic and predictive relevance of primary tumor

Fu et al. BMC Genomics          (2019) 20:769 Page 8 of 9



location in patients with RAS wild-type metastatic colorectal Cancer:
retrospective analyses of the CRYSTAL and FIRE-3 trials. JAMA oncology. 2016.

29. Loupakis F, Yang D, Yau L, Feng S, Cremolini C, Zhang W, Maus MK, Antoniotti
C, Langer C, Scherer SJ et al: Primary tumor location as a prognostic factor in
metastatic colorectal cancer. J Natl Cancer Inst 2015, 107(3).

30. Salem ME, Weinberg BA, Xiu J, El-Deiry WS, Hwang JJ, Gatalica Z, Philip
PA, Shields AF, Lenz HJ, Marshall JL. Comparative molecular analyses of
left-sided colon, right-sided colon, and rectal cancers. Oncotarget. 2017;
8(49):86356–68.

31. Cha Y, Kim KJ, Han SW, Rhee YY, Bae JM, Wen X, Cho NY, Lee DW, Lee KH,
Kim TY, et al. Adverse prognostic impact of the CpG island methylator
phenotype in metastatic colorectal cancer. Br J Cancer. 2016;115(2):164–71.

32. Mensenkamp AR, Vogelaar IP, van Zelst-Stams WA, Goossens M, Ouchene H,
Hendriks-Cornelissen SJ, Kwint MP, Hoogerbrugge N, Nagtegaal ID,
Ligtenberg MJ. Somatic mutations in MLH1 and MSH2 are a frequent cause
of mismatch-repair deficiency in lynch syndrome-like tumors.
Gastroenterology. 2014;146(3):643–6 e648.

33. Choi MR, An CH, Yoo NJ, Lee SH. Frameshift mutations of CAB39L, an
activator of LKB1 tumor suppressor, in gastric and colorectal cancers. Pathol
Oncol Res. 2016;22(1):225–6.

34. Ding W, Hu W, Yang H, Ying T, Tian Y. Prognostic correlation between MTA2
expression level and colorectal cancer. Int J Clin Exp Pathol. 2015;8(6):7173–80.

35. Chiu CG, St-Pierre P, Nabi IR, Wiseman SM. Autocrine motility factor
receptor: a clinical review. Expert Rev Anticancer Ther.
2008;8(2):207–17.

36. Geman D, d'Avignon C, Naiman DQ, Winslow RL: Classifying gene
expression profiles from pairwise mRNA comparisons. Statistical applications
in genetics and molecular biology 2004, 3:Article19.

37. Kagaris D, Khamesipour A, Yiannoutsos CT. AUCTSP: an improved biomarker
gene pair class predictor. BMC bioinformatics. 2018;19(1):244.

38. Tan AC, Naiman DQ, Xu L, Winslow RL, Geman D. Simple decision rules for
classifying human cancers from gene expression profiles. Bioinformatics.
2005;21(20):3896–904.

39. Wu J, Zhao Y, Zhang J, Wu Q, Wang W. Development and validation of an
immune-related gene pairs signature in colorectal cancer.
Oncoimmunology. 2019;8(7):1596715.

40. Shu P, Wu J, Tong Y, Xu C, Zhang X. Gene pair based prognostic signature
for colorectal colon cancer. Medicine. 2018;97(42):e12788.

41. Yang Y, Zhang T, Xiao R, Hao X, Zhang H, Qu H, Xie B, Wang T, Fang X.
Platform-independent approach for cancer detection from gene expression
profiles of peripheral blood cells. Brief Bioinform. 2019.

42. Paquet ER, Hallett MT. Absolute assignment of breast cancer intrinsic
molecular subtype. J Natl Cancer Inst. 2015;107(1):357.

43. Li B, Cui Y, Diehn M, Li R. Development and validation of an individualized
immune prognostic signature in early-stage nonsquamous non-small cell
lung Cancer. JAMA oncology. 2017;3(11):1529–37.

44. Zhao W, Chen B, Guo X, Wang R, Chang Z, Dong Y, Song K, Wang W, Qi L,
Gu Y, et al. A rank-based transcriptional signature for predicting relapse risk
of stage II colorectal cancer identified with proper data sources. Oncotarget.
2016;7(14):19060–71.

45. Song K, Zhao W, Wang W, Zhang N, Wang K, Chang Z. Individualized
predictive signatures for 5-fluorouracil-based chemotherapy in right- and
left-sided colon cancer. Cancer Sci. 2018;109(6):1939–48.

46. Song K, Guo Y, Wang X, Cai H, Zheng W, Li N, Song X, Ao L, Guo Z, Zhao
W. Transcriptional signatures for coupled predictions of stage II and III
colorectal cancer metastasis and fluorouracil-based adjuvant chemotherapy
benefit. FASEB J. 2019;33(1):151–62.

47. Qi L, Chen L, Li Y, Qin Y, Pan R, Zhao W, Gu Y, Wang H, Wang R, Chen X,
et al. Critical limitations of prognostic signatures based on risk scores
summarized from gene expression levels: a case study for resected stage I
non-small-cell lung cancer. Brief Bioinform. 2016;17(2):233–42.

48. Qi L, Li Y, Qin Y, Shi G, Li T, Wang J, Chen L, Gu Y, Zhao W, Guo Z. An
individualised signature for predicting response with concordant survival
benefit for lung adenocarcinoma patients receiving platinum-based
chemotherapy. Br J Cancer. 2016;115(12):1513–9.

49. Cai H, Li X, Li J, Ao L, Yan H, Tong M, Guan Q, Li M, Guo Z. Tamoxifen
therapy benefit predictive signature coupled with prognostic signature of
post-operative recurrent risk for early stage ER+ breast cancer. Oncotarget.
2015;6(42):44593–608.

50. Li X, Cai H, Zheng W, Tong M, Li H, Ao L, Li J, Hong G, Li M, Guan Q, et al.
An individualized prognostic signature for gastric cancer patients treated

with 5-fluorouracil-based chemotherapy and distinct multi-omics
characteristics of prognostic groups. Oncotarget. 2016;7(8):8743–55.

51. Ao L, Song X, Li X, Tong M, Guo Y, Li J, Li H, Cai H, Li M, Guan Q, et al. An
individualized prognostic signature and multiomics distinction for early
stage hepatocellular carcinoma patients with surgical resection. Oncotarget.
2016;7(17):24097–110.

52. Consortium SM-I. A comprehensive assessment of RNA-seq accuracy,
reproducibility and information content by the sequencing quality control
Consortium. Nat Biotechnol. 2014;32(9):903–14.

53. Cheng ML, Berger MF, Hyman DM, Solit DB. Clinical tumour sequencing
for precision oncology: time for a universal strategy. Nat Rev Cancer.
2018;18(9):527–8.

54. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U,
Speed TP. Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics. 2003;4(2):249–64.

55. Crans GG, Shuster JJ. How conservative is Fisher's exact test? A quantitative
evaluation of the two-sample comparative binomial trial. Stat Med. 2008;
27(18):3598–611.

56. Hochberg Y, Benjamini Y. More powerful procedures for multiple
significance testing. Stat Med. 1990;9(7):811–8.

57. Bland JM, Altman DG. The logrank test. Bmj. 2004;328(7447):1073.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Fu et al. BMC Genomics          (2019) 20:769 Page 9 of 9


	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Identification and validation of the signature for MSI status of RCC
	Transcriptome assessment of the signature-disconfirmed RCC samples
	Genome assessment of the signature-disconfirmed RCC samples
	Prognosis assessment of the signature-disconfirmed RCC samples
	Identification and validation of the signature for MSI status of LCC

	Discussion
	Conclusions
	Methods
	Data sources and data preprocessing
	Signature development for predicting MSI status of RCC
	Sample clustering
	Statistical analyses

	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

