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Abstract

Background: Recent studies have shown that long non-coding RNAs (lncRNAs) play a crucial role in the induction
of cancer through epigenetic regulation, transcriptional regulation, post-transcriptional regulation and other aspects,
thus participating in various biological processes such as cell proliferation, differentiation and apoptosis. As a new
nova of anti-tumor therapy, immunotherapy has been shown to be effective in many tumors of which PD-1/PD-L1
monoclonal antibodies has been proofed to increase overall survival rate in advanced gastric cancer (GC).
Microsatellite instability (MSI) was known as a biomarker of response to PD-1/PD-L1 monoclonal antibodies therapy.
The aim of this study was to identify lncRNAs signatures able to classify MSI status and create a predictive model
associated with MSI for GC patients.

Methods: Using the data of Stomach adenocarcinoma from The Cancer Genome Atlas (TCGA), we developed and
validated a lncRNAs model for automatic MSI classification using a machine learning technology – support vector
machine (SVM). The C-index was adopted to evaluate its accuracy. The prognostic values of overall survival (OS) and
disease-free survival (DFS) were also assessed in this model.

Results: Using the SVM, a lncRNAs model was established consisting of 16 lncRNA features. In the training cohort with
94 GC patients, accuracy was confirmed with AUC 0.976 (95% CI, 0.952 to 0.999). Veracity was also confirmed in the
validation cohort (40 GC patients) with AUC 0.950 (0.889 to 0.999). High predicted score was correlated with better DFS
in the patients with stage I-III and lower OS with stage I-IV.

Conclusion: This study identify 16 LncRNAs signatures able to classify MSI status. The correlation between lncRNAs and
MSI status indicates the potential roles of lncRNAs interacting in immunotherapy for GC patients. The pathway of these
lncRNAs which might be a target in PD-1/PD-L1 immunotherapy are needed to be further study.
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Background
The human genome contains thousands of long non-
coding RNAs (lncRNAs), but only a few of them had been
discovered their specific biological functions and biochem-
ical mechanisms [1]. Recently a famous RNA NKILA, a
NF-κB-interacting lncRNA, was demonstrated to promote
tumor immune evasion by sensitizing T cells to activation-

induced cell death [1, 2]. This indicated lncRNAs had
values to be further studied in malignant tumor. Applica-
tion of the lncRNAs as therapeutic targets and diagnostic
markers is a potential progress [3].
Meanwhile, microsatellite instability (MSI) is character-

ized by high degree of polymorphism in microsatellite
lengths due to deficiency in mismatch repair (MMR) sys-
tem. It is a potential biomarker which can be reflected in
gastric cancer (GC) patients with microsatellite instability-
high (MSI-H) achieve superior responses to PD-1 anti-
body [4]. Significant difference in prognosis can be seen
with different MSI state [5]. LncRNAs data analysis done
by TANRIC showed there might be a correlation existed
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in lncRNAs and MSI [6]. However, numerous lncRNAs
contributing to MSI still remain unclear and the mecha-
nisms associated with MSI are needed to be discovered.
Hence, we established and validated an lncRNAs model
based on a machine learning technology – support vector
machine (SVM) [7] for MSI prediction using the data of
The Cancer Genome Atlas (TCGA). The prognostic value
of this model was also evaluated in this study.

Methods
Search and collection of gastric cancer (GC) lncRNAs
expression series
To ensure RNA transcript profiling data only contained
lncRNAs, the data were download from TANRIC [6],
which is an open-access resource for interactive explor-
ation of lncRNAs in cancer. It characterizes the expression
profiles of lncRNAs in large patient cohorts of 20 cancer
types including TCGA, CCLE and other independent data
cohorts. The data of Stomach adenocarcinoma (STAD)
were collected for analysis in our study.

Collection of clinical data
The clinical data of these series were obtained from TCGA
[8]. Microsatellite instability-Polymerase Chain Reaction
(MSI-PCR) data were obtained from R package “TCGAbio-
links”. Sample without MSI-PCR statistic was excluded
from both training and validation cohorts (Fig. 1).

Random grouping method
The feature data of all samples were normalized by the
linear function normalization method.
The range of each dimension feature was limited to (0,

1). The patients were assigned randomly in accordance

with the ratio 7:3 to training cohort (94 patients) and
validation cohort (40 patients) (Fig. 1).

Search the best combination of support vector machines
(SVM) model parameters
The Principal Component Analysis (PCA) algorithm is
used on the normalized training cohort data. The PCA al-
gorithm was conducted with MATLAB (version 2018a).
Features which can reflect 95% information of the whole
cohort were selected [9]. Support Vector Machines (SVM),
introduced by Vapnik [7], is used for data classification and
function approximation. SVM was conducted with
MATLAB (version 2018a) using “LIBSVM” package. Par-
ameter c was defined as 2; g was defined as 0.0884. To find
out the best SVM model parameters (C and γ) combin-
ation with the highest average accuracy, cross-validation
and grid search method were apply on the training cohort.

Feature selection and model development
Relief forward selection algorithm (RFS) was adopted for
feature selection. RFS combines ReliefF with a forward
selection algorithm to handle the problem of feature
(QC) redundancy [10]. RFS wad conducted with
MATLAB (version 2018a). The original feature set con-
tains a great deal of redundant and irrelevant features,
which leads to model over-fitting. Feature selection is re-
quired to suppress over-fitting. Relief is a filter operator
for feature selection. Relief design related statistics to
measure the importance of features. This statistic is a
vector, each component corresponds to an initial feature,
and the importance of the feature subset depends on the
sum of the relevant statistics reflected by each feature in
the subset. Relief algorithm was used in the training

Fig. 1 Flow chart of data collection and analysis
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cohort to obtain the sorted feature cohort represented
by feature relief (FR). The parameter k, which means the
k nearest neighbor samples, was defined as 10. Executed
after forward selection steps, according to the order of
the FR, starting from the first characteristic, will make
them separately to improve the performance of classi-
fiers features added to the sub cohort, and will be the
candidate feature subset as SVM model [11, 12]. The in-
put to train classification model, and through the AUC
value to evaluate the prediction performance is good or
bad, has the highest AUC value candidate feature subset
will serve as the optimal features for the model develop-
ment (Fig. 1).

Performance assessment of lncRNAs model
The accuracy of MSI prediction in the lncRNAs model
was verified with C-index. We assessed the prognostic ac-
curacy of this model in the whole cohort using time-
dependent receiver operator characteristics (ROC) analysis
at different follow-up times (2, 3, 5 years). The patients
were classified in to high and low risk score groups. The
thresholds of classification were identified by using X-title
[13]. The patients with clinical stage I-III and I-IV were
used for DFS and OS analysis, respectively. We evaluated
the potential association of the lncRNAs model with DFS
and OS by using Kaplan-Meier survival method.

Statistical analysis
Statistical analysis was conducted with R software (ver-
sion 3.5.1; http://www.Rproject.org). Covariates balanced
between MSI positive and negative patients statistic ana-
lysis were conducted with IBM SPSS Statistic software
(version 22.0). Logistic regression was complete with R
studio. C-index was done with “survival” package. Time
dependent ROC analysis was done with “timeROC”
package. ROC was analyzed with “pROC” package. Sur-
vival analysis was completed with “survival” package and
“survminer” package. A two-sided P value < 0·05 was
considered significant.

Signature analysis
The correlated somatic mutation with LncRNAs signa-
tures and the correlating mRNA and miRNA was based
on the analysis results from TANRIC [14].

Result
Training and validation cohort preparation
GC lncRNAs data were downloaded from the publicly
available TANRIC database containing 285 tumor samples
and 33 normal samples. The data included 12,727
lncRNAs in total. The corresponding clinical data were
obtained from TCGA database and MSI-PCR was ob-
tained from R package. Patients without MSI-PCR were
excluded in this study. The 134 patients were randomly

assigned in 7:3 to the training cohort and validation co-
hort. In the training cohort, 94 patients were included,
two of which were without full clinical data. In the valid-
ation cohort, 40 patients were included. Patient character-
istics in the study are given in Additional file 1: Table S1.
The age and sex covariates are balanced between MSI
positive and negative patients (P > 0.05). (Additional file 4:
Table S4).

Development and assessment of lncRNAs model
Ten folds cross-validation was used to search the best
combination of SVM model parameters: C and γ in the
training cohort. The range of C was limited in (2− 4, 28)
and γ was limited in (2− 8, 26).
In the training cohort, Relief algorithm was used to

obtain the sorted lncRNAs represented by FR [15]. The
weight ordering of lncRNAs was shown in Fig. 2. As can
be seen from the figure, when the loop reached the pos-
ition of the blue dotted line, the AUC value of the fea-
ture subset had reached a high level and the AUC value
didn’t not change much when the new feature was
added. Therefore, considering the complexity of the
model, the corresponding feature subset (including 16
features) at the position of the dotted line were selected
as the optimal features. The lncRNAs model was devel-
oped included the 16 optimal features (Table 1).
The AUC for the lncRNAs model’s sensitivity was 0.976

(95% CI, 0.952 to 0.999) for the training cohort, which
was confirmed to be 0.950 (0.889 to 0.999) in the valid-
ation cohort. Both training cohort and validation were via
bootstrapping validation (Fig. 3). The AUC at 2, 3, 5 years
were 0.620 (95% CI, 0.234 to 0.999), 0.800 (0.495 to
0.999), 0.779 (0.463 to 0.999), respectively (Fig. 4). The pa-
tients were assigned to a high- or low- score group using
the cut-off value obtained from the entire cohort (DFS,
0.089; OS, 0.183). The patients of clinical stage I-III with
high- score had a significant higher DFS rate than the pa-
tients with low-score (P = 0.011). However, a higher OS
rate was seen in the patients with low-score in clinical
stage I-IV (P = 0.028) (Fig. 5a and b).

Discussion
The lncRNAs model, a novel tool with satisfactory per-
formance, was aimed at selecting lncRNAs of GC to fur-
ther study MSI (Additional file 3). It can also be used as
a method to predict MSI state with lncRNAs for im-
munotherapy. For the construction of the lncRNA
model, 16 of 12,727 lncRNAs were selected to incorpor-
ate. Among these 16 lncRNAs, 8 of them can be individ-
ual predictors of MSI (all P < 0.05).
Survival analysis indicated the lncRNAs model also has

prognostic value. For the reason that the limited samples
of our cohort, patients were insufficient to assign to two
group to verify the lncRNAs model after excluding the
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patients without complete clinical information, we choose
to verify the prognostic value in the entire cohort. To date,
some studies have demonstrated the association between
MSI state and OS in GC patients [16], however, studies
about the correlation between MSI state and DFS are rare.

Our results demonstrated the lncRNAs model can predict
prognosis of DFS in the clinical stage of I-III. Patients with
high-score of the lncRNAs model, also regard as MSI-H,
have better DFS compared with the patients with low-
score regarded as MSS. But for the clinical stage of I-IV,

Fig. 2 Feature selection using Relief forward selection algorithm (RFS). The left graph is the weight ranking of all the features. The right graph is
the weight ranking of the first 50 features of the weight size

Table 1 LncRNAs significantly associated with the MSI in the training cohort

Gene stable ID
version

Gene stable ID Transcript stable
ID

Gene name Gene description Transcript name P-
value

ENSG00000229175.1 ENSG00000229175 ENST00000427918 LINC00382 long intergenic non-protein coding RNA
382 [Source:HGNC Symbol;Acc:HGNC:
42709]

LINC00382-201 0.0901

ENSG00000231125.2 ENSG00000231125 ENST00000457162 AF129075.1 novel transcript, sense intronic to CCT8 AF129075.1-201 0.091

ENSG00000231394.1 ENSG00000231394 ENST00000449899 AC099681.2 novel transcript AC099681.2-201 0.009

ENSG00000236457.1 ENSG00000236457 ENST00000413674 AC090617.1 novel transcript, sense intronic to SMG6 AC090617.1-201 0.005

ENSG00000237200.1 ENSG00000237200 ENST00000438551 ZBTB40-IT1 ZBTB40 intronic transcript 1 [Source:HGNC
Symbol;Acc:HGNC:41493]

ZBTB40-IT1-201 <
0.001

ENSG00000237923.1 ENSG00000237923 ENST00000442852 LINC02570 long intergenic non-protein coding RNA
2570 [Source:HGNC Symbol;Acc:HGNC:
39766]

LINC02570-206 0.132

ENSG00000253567.1 ENSG00000253567 ENST00000523935 AC025871.1 novel transcript AC025871.1-
201/
AC025871.1-202

0.104

ENSG00000261117.1 ENSG00000261117 ENST00000569860 AC009486.1 novel transcript AC009486.1-201 0.045

ENSG00000261501.1 ENSG00000261501 ENST00000567769 AC079341.1 novel transcript AC079341.1-201 0.219

ENSG00000263904.1 ENSG00000263904 ENST00000581134 AC015563.1 novel transcript, sense intronic to FAM59A AC015563.1-201 0.15

ENSG00000272562.1 ENSG00000272562 ENST00000609423 AL512343.2 novel transcript, antisense to H3F3A AL512343.2-201 0.010

ENSG00000175061.13 ENSG00000175061 ENST00000484836 LRRC75A-AS1 LRRC75A antisense RNA 1 – <
0.001

ENSG00000221571.2 ENSG00000221571 ENST00000609276 RNU6ATAC35P RNA, U6atac small nuclear 35, pseudogene – 0.005

ENSG00000226673.1 ENSG00000226673 ENST00000427276 LINC01108 long intergenic non-protein coding RNA
1108

– 0.253

ENSG00000232732.5 ENSG00000232732 ENST00000601136 AC097717.1 novel transcript – 0.045

ENSG00000251538.1 ENSG00000251538 ENST00000511194 LINC02201 long intergenic non-protein coding RNA
2201

– 0.109

“-” Not reported. P-value: logistic regression of each lncRNA and MSI state
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patients with low-score have a better OS compared with
the patients with high-score.
TNM stage was known as the prognostic criteria in GC.

Compared with TNM stage ROC (AUC at 2, 3, 5 were
0.679, 0.545, 0.722), the LncRNAs model has a better
prognostic performance. (Additional file 5: Figure S1) The
AUC of MSI prognostic ROC at 2, 3, 5 were 0.618, 0.811,
0.811, similar performance with the LncRNAs model.
(Additional file 6: Figure S2) Survival analysis illustrated
MSI has no statistical significance. (Additional file 7:
Figure S3) TNM method have no statistical significance in
survival analysis when predicting stage I-IV patients over-
all survival or disease-free survival. (Additional file 8:
Figure S4 and Additional file 9: Figure S5).

LncRNAs play crucial role in the pathogenesis of cancer
and their dysfunctions are related to cancer development
and progression, as reviewed in multiple reports [17, 18].
Differential analysis revealed that lncRNAs have correl-
ation with somatic mutation (Additional file 3).
Additional file 2: Table S2 showed the correlated somatic
mutation of each lncRNA. LINC00382 is one of the optimal
lncRNAs subset in our model. LINC00382 and TP53 had
statistical significance with P-value< 0.05. TP53 was known
as an anti-oncogene, and its mutation was proofed to be
the most relevant with cancer while lncRNAs have been

Fig. 3 The lncRNAs model measured by receiver–operating
characteristic (ROC) curves in the training cohort and validation cohort

Fig. 4 The lncRNAs model measured by time-dependent receiver–
operating characteristic (ROC) curves at 2, 3, 5 years

Fig. 5 Survival impact of the lncRNAs model. a Kaplan–Meier curves
for disease-free survival (DFS) by the lncRNAs model’s scores with
patients with stage I-III. b Kaplan–Meier curves for overall survival
(OS) by the lncRNAs model’s scores with patients with stage I-IV
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proofed to act as regulatory molecules to regulate P53
genes and cell cycle [19]. Previous study suggested that
TP53 can be used as a biomarker of microsatellite, which
verify the significance of lncRNA model and our lncRNAs
[20]. Furthermore, the correlation between the lncRNAs
and somatic mutation indicated a potential pathway exist-
ing to affect MSI and even the development of cancer.
Moreover, significant somatic mutation could be seen in
ASH1L. ASH1L, reported as an important role in modulat-
ing immune response and inflammation, has a correlation
with lncRNA ZBTB40-IT1 (P-value< 0.05) which was also
included in our model [21]. Correlation can be seen in
ATM and ZBTB40-IT1. ATM plays a crucial role in DNA
double-strain repairing, acting on cell-cycle checkpoint ar-
rest (e.g., Chk1 and Chk2), DNA repair (BRCA1 and
RAD51), and apoptosis (p53; ref. [15]) [22]. The somatic
mutation in ATM was proofed to occur in GC [23]. High
expression of ATM and MSI-H exhibited better prognosis
of DFS and OS [24]. Both of these somatic mutations and
our lncRNAs have correlation with MSI. For MSI is the
most valuable immunomarker in PD-1/PD-L1 immuno-
therapy, emphasis is raised in this potential pathway which
could be new targets in immunotherapy.
Compared with other conventional machine learning

algorithms, the SVM algorithm greatly simplifies the
complexity of computation because it uses the inner
product kernel function instead of the nonlinear map-
ping to the high-dimensional space and better suited
to manage classification based on high-dimensional
data with a limited number of training cohort to select
the most efficient of all available features [25, 26]. Pre-
vious studies have shown that single biomarker has
limited prognostic value for GC [27–29]. At the same
time, compared with the deep learning [30], the
advanced algorithm of artificial intelligence (AI), SVM
has better generalization ability than neural network in
the classification of small samples, and the
phenomenon of over-fitting is not easy after combining
penalty term. Considering the limited samples in the
study, SVM was selected for the model development
instead of deep learning.
Relief-based Forward Selection Algorithm (RFS) has

good performance in feature reduction. In this paper, we
used this method as the result of the posterior experi-
ence to modify the grid search method repeatedly, which
makes the final model have better prediction ability.
Though not all these features had the highest predictive
value, the accuracy of the model was the best.
The limitations should be acknowledged for our study.

First, this study was based on publicly available data sets,
and it was not possible to obtain all information needed
for each patient. Recent studies revealed that patients
with older age, female, Laurén histological type, mid/
lower gastric location and lack of lymph node metastases

have higher possibility of MSI-H [16, 31, 32]. Insufficient
data was unable to verify these indexes in the study. Sec-
ond, as all patients in this study were selected retro-
spectively, the potential bias relating to unbalanced
clinical pathological features with treatment heterogen-
eity cannot be ignored. Further prospective studies are
required to validate the results. Finally, we have no ex-
perimental data and lack information on the mechanism
behind the signature lncRNAs, and experimental studies
on these lncRNAs are greatly needed. Even so, our find-
ing might provide certain reference value for further re-
searches in the functional roles of these lncRNAs.

Conclusions
This study concentrates on the correlation between
lncRNAs and MSI and presents 16 feature lncRNAs with
predictive value of MSI. Moreover, this lncRNAs model
with different MSI states may acted as potential bio-
markers for GC prognostication. Further study may focus
on validation of our finding and functional pathways of
MSI and these lncRNAs.
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