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Abstract

Background: Machine learning can effectively nominate novel genes for various research purposes in the
laboratory. On a genome-wide scale, we implemented multiple databases and algorithms to predict and prioritize
the human aging genes (PPHAGE).

Results: We fused data from 11 databases, and used Naïve Bayes classifier and positive unlabeled learning (PUL)
methods, NB, Spy, and Rocchio-SVM, to rank human genes in respect with their implication in aging. The PUL
methods enabled us to identify a list of negative (non-aging) genes to use alongside the seed (known age-related)
genes in the ranking process. Comparison of the PUL algorithms revealed that none of the methods for identifying
a negative sample were advantageous over other methods, and their simultaneous use in a form of fusion was
critical for obtaining optimal results (PPHAGE is publicly available at https://cbb.ut.ac.ir/pphage).

Conclusion: We predict and prioritize over 3,000 candidate age-related genes in human, based on significant
ranking scores. The identified candidate genes are associated with pathways, ontologies, and diseases that are
linked to aging, such as cancer and diabetes. Our data offer a platform for future experimental research on the
genetic and biological aspects of aging. Additionally, we demonstrate that fusion of PUL methods and data sources
can be successfully used for aging and disease candidate gene prioritization.
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Background
Prior understanding of the genetic basis of a disease is a
crucial step for the better diagnosis and treatment of the
disease [1]. Machine learning methods help specialists
and biologists the use of functional or inherent proper-
ties of genes in the selection of candidate genes [2]. Per-
haps the question that is posed to researchers is why all
research is aimed at identifying pathogenic rather than
non-pathogenic genes. The answer may lie in the fact
that genes introduced as non-pathogens may be docu-
mented as disease genes later on.

Biologists apply computation, mathematics methods,
and algorithms to develop machine learning methods of
identifying novel candidate disease genes [3]. Based on
the principle of “guilt by association”, similar or identical
diseases share genes that are very similar in function or
intrinsic properties, or have direct physical protein-
protein interactions [4]. Most methods of predicting
candidate genes employ various biological data, such as
protein sequence, functional annotation, gene expres-
sion, protein-protein interaction networks, regulatory
data and even orthogonal and conservation data, to
identify similarities with respect to the principle of asso-
ciation based on similarity [5]. These methods are cate-
gorized as unsupervised, supervised, and semi-
supervised [6]. Unsupervised methods cluster the genes
based on their proximity and similarity to the known
disease genes, and rank them by various methods. Su-
pervised methods create a boundary between disease
genes and non-disease genes, and utilize this boundary
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to select candidate genes. Several studies have been per-
formed to address different aspects of the methodology
and have expanded the use of various methods and tools
[3, 7–12].
The tools that are available for candidate gene

prioritization can be classified with respect to efficiency,
computational algorithms, data sources, and availability
[13–15]. Available prioritization tools can be categorized
into specific and general tools [16]. Specific tools are
used to prioritize candidate genes associated with a

specific disease. In these methods, information related to
a specific tissue involved in the disease or other informa-
tion related to the disease is employed. General tools
can be applied for most diseases, and various data
sources are often used in these tools. Gene prioritization
tools can be divided into two types of single-species and
multi-species. Single-species tools are only usable for a
specific species, such as human or mouse. Multi-species
tools have the ability to prioritize candidate genes in sev-
eral different species. For example, the ENDEAVOR

Table 1 Datasets used to evaluate reliable negative sample extraction algorithms

Number of instances Number of attributes Data set names

756 754 Parkinson’s Disease Classification Data Set [19]

345 7 Liver Disorders Data Set [20]

1024 10 Cloud Data Set [21]

351 34 Ionosphere Data Set [22]

19,020 11 MAGIC Gamma Telescope Data Set [23]

961 6 Mammographic Mass Data Set [24]

569 32 Breast Cancer Wisconsin (Diagnostic) Data Set [25]

208 60 Connectionist Bench (Sonar, Mines vs. Rocks) Data Set [26]

Table 2 Performance evaluation of the reliable negative sample extraction algorithms

Data set Algorithm FPR% FNR% Precision % Recall % F_measure %

Parkinson’s Disease NB 37.25 4.57 95.43 89.78 92.52

SPY 8.70 16.11 97.42 83.89 90.15

Roc-SVM 6.52 15.00 98.08 85.00 91.07

Liver Disorders NB 17.65 5.71 73.33 94.29 82.50

SPY 36.14 0 40.00 100 57.14

Roc-SVM 31.33 5.00 42.22 95.00 58.46

Cloud NB 18.88 7.93 84.83 92.07 88.30

SPY 9.52 14.92 92.77 85.08 88.76

Roc-SVM 6.32 16.51 96.72 83.49 89.62

Ionosphere NB 47.62 8.33 88.51 91.67 90.06

SPY 26.32 6.98 94.12 93.02 93.57

Roc-SVM 33.33 8.89 94.25 91.11 92.66

MAGIC Gamma Telescope NB 10.49 44.44 68.18 55.56 61.22

SPY 17.88 36.22 53.88 63.78 58.42

Roc-SVM 6.68 47.18 77.65 52.82 62.87

Mammographic Mass NB 7.25 33.72 85.07 66.28 74.51

SPY 11.96 10.00 62.07 90.00 73.47

Roc-SVM 1.95 28.57 94.34 71.43 81.30

Breast Cancer Wisconsin NB 13.85 12.26 91.18 87.74 89.42

SPY 9.09 10.48 94.00 89.52 91.71

Roc-SVM 22.50 22.14 91.89 77.86 84.30

Connectionist Bench (Sonar, Mines vs. Rocks) NB 13.85 12.26 91.18 87.74 89.42

SPY 16.67 7.69 80.00 92.31 85.71

Roc-SVM 22.50 22.14 91.89 77.86 84.30
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software can prioritize the candidate genes in six differ-
ent species [17]. With respect to computational algo-
rithms, candidate prioritization tools are primarily
divided into two groups of complex network-based
methods and similarity-based methods [5]. The inevit-
able completeness and existence of errors in biological
data sources necessitate fusion of multiple data sources
[18]. Most gene targeting methods, therefore, use mul-
tiple data sources to improve performance.
The purpose of this study was to design a machine to

identify and prioritize novel candidate aging genes in hu-
man. We examined the existing methods of identifying
human non-aging (negative) genes in the machine learn-
ing techniques, and then made a binary classifier for pre-
dicting novel candidate genes, based on the positively
and negatively learned genes. Gene ranking was based
on the principle of the similarity among positive genes
through “guilt by association”. Thus, across the un-
labeled genes, genes that were less similar in respect
with the known genes were employed as negative
sample.

Results
The three positive unlabeled learning (PUL) algorithms,
Naïve Bayes (NB), Spy, and Rocchio-SVM, were used to
evaluate the underlying data, and to compare them to
the eight datasets introduced with respect to perform-
ance. All samples of a class with a higher frequency were

unlabeled. We applied the algorithm to predict the la-
bels. These methods utilize a two-step strategy and are
intended to extract a reliable negative sample from the
main data (Table 1).
We also randomly selected 70% of the positive samples

as the training set, and the remainder as the test set. To
determine the classifier, positive and negative samples
were equally selected to ensure that the classifier did not
have any bias at the training step. Therefore, we com-
pared the three algorithms with eight data sources ex-
tracted from the UCI database (Additional file 1).
Comparison of the parameters of the three algorithms

for all data sets revealed similar results in F_measure.
For example, in data set 1, the precision of the Roc-SVM
method, (approximately 2–3%,) was better than those of
the other two methods. However, the recall of the NB
method (approximately 4–6%,) was better than those of
the other two methods, and Roc-SVM method had a
lower false positive rate than that of the other two
methods (Table 2). In addition, comparison between the
parameters of the three algorithms for data set 2, re-
vealed that the precision of the NB method was better
than that of the other two methods, the recall SPY
method was 5% better than that of the other two
methods, and the NB method had a lower false positive
rate than that of the other two methods. Therefore, none
of the methods had an absolute superiority. Since the re-
sults were very similar, the output of the three methods
was combined.
The three PUL algorithms were applied to extract reli-

able negative samples and to compare them with respect
to performance. In this algorithm, only 303 positive sam-
ples were given as input, which enabled extraction of re-
liable negative samples from the remaining data.
Subsequently, from the positive and negative data, a new

Table 3 Model performance evaluation by Naïve Bayes on the
aging data

Precision % Recall % F measure % Accuracy % AUC %

Train 80.78 76.95 78.81 78.52 83.81

Test 87.09 81.82 84.37 84.13 88.99

Fig. 1 ROC curves. ROC was performed to evaluate the performance of the Naïve Bayes model at the training and test steps, which resulted in
similar values for both curves
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classifier was trained to identify novel candidate genes to
be utilized for prioritization and ranking. A total of 328
negative genes were extracted from each positive and
negative gene, with a threshold of 11 replicates per nega-
tive gene (Additional file 2), and the Naïve Bayes binary
classifiers were trained in a 10-fold cross-validation
(Table 3). Additional file 2 contains results for all thresh-
olds. The ROC chart for training and test data is shown
in Fig. 1.
We trained multiple binary classifiers using all features

in the positive genes and reliable negative data to com-
pare the NB classifier to other classifiers. We investi-
gated the performance of binary SVM [27], NB, and
libD3C [28] classifiers in the dataset with 10-Fold cross
validation, using Weka [29]. All classifiers had similar
performance in the main data set (Table 4).
A major challenge in classification is to reduce the di-

mensionality of the feature space. Some methods, such
as PCA, are linear combinations of the original features.
In this research, we investigated the PCA method in the
final model, which eliminated some of the original input
features and retained a minimum subset of features that
yielded the best classification performance. In addition,
the feature selection technique was used to select the
best subset of features that were satisfying to the model
in respect with the subset of the main features. A fixed
number of top ranked features were selected to design a
classifier. A suitable technique for feature selection is
minimal-redundancy-maximal-relevance (mRMR) [30].
We also used mRMR for feature selection in the main
data, and then compared multiple binary classifiers in
the positive and reliable negative genes. We investigated
the top 500 ranked features that were extracted from the
mRMR tool to compare the classifiers. All of the selected
classifiers yielded acceptable results (Table 5).

Model accuracy assurance is very difficult when the
model applied to a separate test suite includes positive
and unlabeled samples. This challenge is critical in in-
stances which lack negative sample. Thus, we compared
the evaluation metric with the data. We generated data
for all 10 models in the training section to predict the
residual genes, and extracted the genes that were identi-
fied by the 10 models as positive genes, yielding a total
of 3531 final candidate genes.
To compare the output of the method with the known

tools for prioritizing the genes, the output of the model
was compared with two softwares, Endeavor [17] and
ToppGene [31], in the seed genes.
(the list of seed genes in the form of K-Fold with K = 3

was utilized for the mentioned tools). Two metrics for com-
paring the tools with the proposed model were considered.
The first metric calculated the average ranking for the seed
genes, and the second metric determined the number of
seed genes on the lists as 10, 50, 100, 500, and 1000.
A tool that had more seed genes at the top of the list

and a lower average rating compared with the remaining
tools, received a higher ranking. Table 6 shows the out-
put of the tools and the PPHAGE method for determin-
ing the number of test genes on the known lists. Table 7

Table 4 Performance evaluation comparison by multiple binary
classifier in the aging data

TP rate
%

FP
rate%

Precision
%

Recall
%

F measure
%

AUC
%

SVM 80 21.1 82 80 79.6 79.5

libD3C 85.1 15.3 85.3 85.1 85 91.9

NB 81.1 19.7 82.4 81.1 80.9 86

Table 5 Performance evaluation comparison by multiple binary
classifier in the aging data after feature selection

TP rate
%

FP
rate%

Precision
%

Recall
%

F measure
%

AUC
%

SVM 83.5 17.1 84.2 83.5 83.4 83.2

libD3C 84.6 15.7 84.8 84.6 84.6 92.3

NB 81.9 18.5 82.1 81.9 81.9 86.8

Table 6 Number of detected seed genes in comparison to the
output of tools
Tools Rank Fold1 Fold2 Fold3

Endeavour < 10 1 0 1

< 50 2 0 2

< 100 4 1 2

< 500 11 12 17

< 1000 24 25 25

ToppGene < 10 2 0 1

< 50 11 0 2

< 100 16 1 2

< 500 44 12 17

< 1000 62 25 25

PPHAGE < 10 2 2 0

< 50 7 4 5

< 100 12 12 9

< 500 50 35 38

< 1000 66 61 67

Table 7 Average rank of the seed genes in comparison to the
output of tools

Fold1 Fold2 Fold3

Endeavour 1851 1918 1877

ToppGene 926 849 1024

PPHAGE 833 919 930
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shows the output of tools and the PPHAGE method for
the average rank score on different lists.
The top 25 genes that received the highest weight

among all candidate aging genes (Table 8), were vali-
dated in a number of instances, based on experimental
evidence, age-related diseases, and genome-wide associ-
ation studies (GWAS). A list of all candidate positive
aging genes is provided in Additional file 3.

Discussion
On a genome-wide scale, we used three PUL methods to
create a method for the isolation of human aging genes
from other genes. The combined use of several methods
as a fusion of their output was advantageous over using
one single method.
Following are examples of the identified genes and ex-

perimental or GWAS link between these genes and

Table 8 The top 25 human candidate aging genes
Rank Gene symbol Relevance Reference Database reference

1 NAP1L4 Nucleosome Assembly [32, 33]

2 CCNI
(CYC1)

Parkinson Disease [34] BEFREE

3 RPL3 Ribosomal Protein [35]

4 FZD5 Alzheimer’s Disease [36] BEFREE

5 BRD2 Diabetes Mellitus, Non-Insulin-Dependent
Osteoporosis, Postmenopausal
Colorectal Cancer

[37–40] BEFREE

6 ATP8A2 ATPase Phospholipid Transporting [41]

7 SRSF11 Serine And Arginine Rich Splicing Factor [42]

8 BBIP1

9 IL10 Cardiovascular Diseases
Diabetes Mellitus, Non-Insulin-Dependent
Colorectal Cancer
Atherosclerosis
Parkinson Disease
Alzheimer’s Disease
Arthritis
Heart failure

[43, 44]
[45–47]
[48, 49]
[50, 51]
[52–54]
[55–57]
[58–60]
[61–63]

CTD_human
RGD
LHGDN
BEFREE
HPO

10 FYCO1 Cataract, autosomal recessive congenital 2
Cataract

[64, 65] UNIPROT
GENOMICS_ENGLAND
HPO
CTD_human

11 PSMB2

12 NSF Parkinson Disease [66–70] GWASDB
GWASCAT
BEFREE

13 OAZ1

14 ZFP36L1

15 PCLO Diabetes Mellitus, Non-Insulin-Dependent [71] BEFREE

16 GAB2 Alzheimer’s Disease
Colorectal Cancer
Osteopetrosis

[72–75]
[76, 77]
[78]

BEFREE
GWASDB
GWASCAT

17 QKI Coronary heart disease
Colorectal Cancer

[79] BEFREE
UNIPROT

18 ZNF638

19 RGS3

20 XPO6

21 ATP8B1 Colorectal Cancer [80] BEFREE

22 ITM2C

23 RBFOX1 Heart failure
Colorectal Cancer

[81]
[82]

BEFREE

24 DLC1 Colorectal Cancer
Hereditary Diffuse Gastric Cancer
Coronary heart disease
Increased gastric cancer

[83]
[84]
[85]

BEFREE
CTD_human
HPO

25 MVK Arthritis
Cataract

HPO
HPO
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aging. On the list of the 25 top genes, NAP1L4 encodes
a member of the nucleosome assembly protein (NAP)
family, which interacts with both core and linker his-
tones, and shuttles between the cytoplasm and nucleus,
suggesting a role as histone chaperone. Histone protein
levels decline during aging, and dramatically affect chro-
matin structure. Remarkably, the lifespan can be ex-
tended by manipulations that reverse the age-dependent
changes to chromatin structure, indicating the pivotal role
of chromatin structure in aging [32]. In another example,
gene expression of NAP1L4 increases with age in the skin
tissue [33]. Findings of GWAS link a number of the iden-
tified genes to age-related disorders, such as GAB2 and
late onset Alzheimer’s disease [86], and QKI and coronary
heart disease/myocardial infarction [79]. Interestingly,
GWAS reports also link QKI to successful aging [87].
RPL3 encodes a ribosomal protein that is a component

of the 60S subunit. The encoded protein belongs to the
L3P family of ribosomal proteins, and is increased in

gene expression during aging of skeletal muscle [88]. In
another example, FZD5 is involved in prostate cancer,
which is the most common malignancy in older men.
ATP8A2 is another gene subject to deterioration and
loss of function over time. RYR2 (Additional file 3) en-
codes a ryanodine receptor found in cardiac muscle
sarcoplasmic reticulum. Mutations in this gene are asso-
ciated with stress-induced polymorphic ventricular
tachycardia and arrhythmogenic right ventricular dyspla-
sia and methylation analysis of CpG sites in DNA from
blood cells showed a positive correlation between RYR2
and age [89]. In additional examples, differential expres-
sion with age was identified in BCAS3, TUFM and DST
in the skin [33]. Gene expression revealed a significant
increase in the expression of hippocampal TLR3 from
elderly (aged 69–99 years old) compared to cells from
younger individuals (aged 20–52 years old) [90]. Simi-
larly, differential expression with age was identified in
RORA in the adipose tissue [33].

Table 9 Indicative diseases associated with the candidate aging genes

Index Name P-value Adjusted
p-value

Z-score Combined score

1 Colorectal cancer 1.43e-08 0.000001256 −1.94 35.07

2 Leukemia 6.71e-07 0.00002953 −1.64 23.32

3 Breast_cancer 0.000009246 0.0002357 −1.45 16.76

4 Diabetes 0.00002362 0.0002986 −0.92 9.85

5 Anemia 0.00002185 0.0002986 −0.9 9.68

6 Cardiomyopathy 0.00002757 0.0002986 − 0.59 6.23

Fig. 2 Significant biological processes associated with the candidate aging genes
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In order to investigate the implication of the identi-
fied candidate genes in aging, we conducted a com-
prehensive analysis of 330 human pathways in the
KEGG. Each of the pathways was examined in the
seed and candidate genes, and direct association was
detected in a number of instances. For example IL10
activates STAT3 in the FOXO signaling pathway. In
another example, GAB2 has a regulatory role for
PLCG2 in the osteoclast differentiation pathway, as
well as an activating role in the chronic myeloid
leukemia pathway. Likewise, FOS is an expression tar-
get for IL10 in the T cell receptor signaling pathway.
Enrichment analysis was performed using the

Enrichr tool, based on the candidate genes and the
negative genes [91] to examine whether the candi-
date and negative genes were correctly selected in
respect with aging. The analysis of candidate genes
was performed on 3531 genes from the rest of the
test genes (i.e. excluding the positive seed and reli-
able negative genes). Most diseases that were associ-
ated with the candidate genes were diseases that
occur with aging (e.g. colorectal cancer and diabetes)
(Table 9).
Ontology analysis of the candidate genes was per-

formed by FUNRICH [92] (Fig. 2), which revealed en-
richment for the aging process and apoptosis. A list of
all biological processes associated with the candidate
aging gene is provided in Additional file 4.
In the analysis of the enriched biological pathways,

using Enrichr (Table 10), cancer pathways had the

highest score. Interestingly, viral pathways (e.g. EBV and
HSV) were enriched in the positive aging genes com-
partment, which is in line with the previously reported
immunosenescence and activation of such viruses as a
result of aging [93] .A list of all biological pathways of
the candidate genes extracted by FUNRICH is provided
in Additional file 5.
No specific age-related diseases were detected for the

identified negative genes (Table 11), which supports the
validity of the model training used. Ontology analysis of
the reliable negative genes (Fig. 3), which was also per-
formed by FUNRICH, revealed that most of the ex-
tracted processes had a general role in all cells and could
not be related to specific aging processes. Analyzing the
biologic pathways in the negative genes indicated path-
ways that were predominantly unrelated to the aging
processes.
Based on the principle that similar disease genes

are likely to have similar characteristics, some ma-
chine learning methods have been employed to pre-
dict new disease genes from known disease genes.
Previous approaches developed a binary classifica-
tion model that used known disease genes as a posi-
tive training set and unknown genes as a negative
training set. However, the negative sets were often noisy be-
cause unknown genes could include healthy genes and
positive collections. Therefore, the results presented by
these methods may not be reliable. Using computational
machine learning methods and similarity metrics, we iden-
tified reliable negative samples, and then tested the samples

Table 10 Indicative biological pathways associated with the candidate aging genes

Index Name P-value Adjusted p-value Z-score Combined score

1 Pathways in cancer_Homo sapiens_hsa05200 4.07e-41 1.19e-38 −2.11 196.21

2 Proteoglycans in cancer_Homo sapiens_hsa05205 1.91e-31 2.78e-29 −1.99 140.58

3 Epstein-Barr virus infection_Homo sapiens_hsa05169 3.24e-30 3.15e-28 −1.9 128.92

4 Endocytosis_Homo sapiens_hsa04144 1.19e-28 8.70e-27 −1.89 121.38

5 Regulation of actin cytoskeleton_Homo sapiens_hsa04810 4.30e-26 2.51e-24 −1.82 106.42

6 HTLV-I infection_Homo sapiens_hsa05166 1.01e-25 4.21e-24 −1.79 103.2

7 Protein processing in endoplasmic reticulum_Homo sapiens_hsa04141 7.55e-26 3.68e-24 −1.69 98.04

8 Herpes simplex infection_Homo sapiens_hsa05168 1.24e-25 4.54e-24 −1.61 92.36

9 PI3K-Akt signaling pathway_Homo sapiens_hsa04151 1.79e-22 4.96e-21 −1.83 91.82

10 Focal adhesion_Homo sapiens_hsa04510 1.12e-22 3.63e-21 −1.72 86.98

Table 11 Indicative diseases associated with the reliable negative genes

Index Name P-value Adjusted p-value Z-score Combined score

1 Cardiomyopathy,_dilated 0.01658 0.2321 −1.69 6.93

2 Cardiomyopathy 0.03134 0.2416 −1.61 5.57

3 Zellweger_syndrome 0.01588 0.2321 −1.06 4.41

4 Dystonia 0.03451 0.2416 −0.37 1.25
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using a two-class classifier to identify novel positive aging
genes in human.

Conclusion
We implemented 11 databases and several machine
learning methods to rank the entire human genes, and
predicted and prioritized over 3,000 novel candidate
age-related genes based on significant ranking scores.
These genes were supported by biological, ontology, and
disease enrichment analyses. Future experimental re-
search is warranted to verify the significance of the iden-
tified genes in human aging.

Methods
Algorithms
A classification method that is referred to as PUL is a
similarity-based algorithm, in which reliable negative
samples are extracted from unlabeled data. In
addition, a binary classifier can be designed and used
to identify the candidate genes (Fig. 4). Likewise,
some methods identify reliable negative samples from
unlabeled data, which are divided into three general
categories: The first category has a two-stage strategy
that runs a supervised algorithm on the data, by
selecting reliable negative samples from within un-
labeled instances [94]. The second category estimates

Fig. 3 Significant biological processes associated with the reliable negative genes

Fig. 4 The overall learning scheme based on positive and unlabeled samples, and extraction of reliable negative samples (step 1), construction of
the binary Classifier (step 2), and prediction and prioritization of candidate genes (step 3)
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the probability of positive samples by weighting posi-
tive and unlabeled data. The third category considers
unlabeled data as negative samples with noise.
In this paper, a two-stage strategy was used to find a

reliable negative sample and three different algorithms,
Rocchio [95], NB [94], and Spy [96], were selected for
implementation.
Bayesian classifiers that work explicitly on the possibil-

ities of different assumptions, such as the NB classifier,
which is one of the most efficient and most effective

algorithms available for certain learning problems, have
provided useful practical solutions [97].
The NB classifier can compete with other algorithms

and in some cases, it works better than other algorithms
[98]. A NB classifier can be considered as a simple
Bayesian network, which is used for independence as-
sumptions between features and classes. We chose NB
based on the structure and nature of the data, the inde-
pendent nature of each data source, and the high volume
of the data and binary features.

Table 12 Comparison of the evaluation metric across data sources

Data source Recall Specificity Precision Accuracy F_Measure

Literature 0.58098 0.61453 0.5888 0.5981 0.58478

Annotation 0.77685 0.78668 0.76645 0.78165 0.77133

Pathways 0.73268 0.74538 0.7204 0.73893 0.72605

Gene Ontology 0.79303 0.78843 0.76315 0.78958 0.77703

Phenotype 0.7946 0.81968 0.8158 0.80695 0.80488

Intrinsic properties 0.67963 0.77035 0.78945 0.71835 0.72965

Sequence 0.6901 0.72828 0.71713 0.70885 0.70305

Interaction 0.7378 0.7724 0.76645 0.7543 0.75135

Gene expression 0.75635 0.82148 0.82235 0.7864 0.78735

Regulatory 0.77355 0.79203 0.77633 0.78163 0.77393

Table 13 Data sources used in Naïve Bayes classifier for candidate aging genes

Data source
name

Dataset
name

Features detail Web address

Literature OBO
AgeFactDB

The ageing-related information included both by manual and automatic in-
formation extraction from the scientific literature.

https://lov.linkeddata.es/dataset/lov/
vocabs/obo
http://agefactdb.jenage.de/

Functional
annotation

David The list of all functional annotation. https://david.ncifcrf.gov/

Biological
pathways

Reactome
Kegg

The list of biological pathway. https://reactome.org/
https://www.genome.jp/kegg/
pathway.html

Gene Ontology GO The Biological Process, Molecular Function, and Cellular Component
vocabularies.

http://www.geneontology.org/

Phenotype HPO
OMIM

The list of all ageing-related phenotype and associated gene. https://hpo.jax.org/
https://www.omim.org/

Intrinsic
properties

Pfam
PDB

The chromosome number, location, gene segment, gene type, etc. https://pfam.xfam.org/
https://www.rcsb.org/

Sequence RefSeq The list of all known active site, binding site, chain, etc. https://www.ncbi.nlm.nih.gov/refseq/

Protein-Protein
Interaction

HPRD
String

The list of each gene had a physical interaction with each of the positive
genes.

http://www.hprd.org/
https://string-db.org/

Gene
expression

GEO
HAGR

The ageing-related expression included tissue type, overexpressed and under
expressed, etc.

https://www.ncbi.nlm.nih.gov/geo/
http://genomics.senescence.info/
gene_expression/index.php

Regulatory RegNetwork The list of all regulatory relationship, such as miRNA, Transcription factor, etc. http://www.regnetworkweb.org/

Orthologues CDD
HomoloGene
OrthoDB

The catalog of orthologous protein-coding genes across vertebrates and
known conserved domain.

https://www.ncbi.nlm.nih.gov/
Structure/cdd/cdd.shtml
https://www.ncbi.nlm.nih.gov/
homologene
https://www.orthodb.org/
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An NB classifier with 4-fold cross validation was used to
assess the diagnostic value of every data source. In this as-
sessment, we identified how much of each data source
alone was enough to identify the genes of aging (Table 12).
The diagnostic value of all data sources was estimated at
about 70%, except the Literature. We used the data fusion
method to get higher diagnostic value. Because of similar
F Measure values, a fusion Kernel of equal weight was se-
lected for each data source.
Since our main data did not contain any negative sam-

ples, training a model to identify and prioritize new positive
genes was based on the three PUL algorithms. An NB clas-
sifier was designed following the extraction of a reliable
negative sample and positive genes. Genes were assigned
positive labels for the final ranking, using the weighting
method according to the available data [7] .
The same weight was considered for ranking the can-

didate genes based on the selected sources. Similarities
among the features were weighted in the seed genes and
candidate genes, using the following formula, and then
sorted based on their total weight:

W ið Þ ¼
XC

i¼1

XF

j¼1

CandidateGeneFeature i; jð Þ�
XS

p¼1

SeedGenes p; jð Þ

 !
;

where (C) was the number of candidate genes (n =
3531), (F) was the number of features (n = 11, 698), (S)
was the number of seed genes (n = 303) in the problem
case, and (W) was the weight of each candidate gene.

Dataset
Aggregate data from 11 human biology databases
(Table 13), including 11,698 binary gene features, were
collected for 19,462 genes, of which only 303 genes (seed
genes) had positive labels for genes involved in aging,
derived from the GeneAge database [99].
The vector of binary features consisted of 11 main

parts, each part of which was equivalent to one of the
data sources. The information for each data source was
a boolean value, and if any gene contained this value, it
scored 1, and otherwise, it scored 0 (Table 2). For ex-
ample, a part of the biological pathway data contained
330 attributes, which were equivalent to a human

Fig. 5 The Percentage of Variance in Principal Component Analysis
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pathway in KEGG. If the intended gene was located in
this pathway, it scored 1, and otherwise, it scored 0. Also
for interaction network data, if each gene had a physical
interaction with each of the positive genes, it scored 1,
and otherwise, 0. These data were extracted from the
String and HPRD databases.
Due to the large volume of features, we employed the

PCA method to reduce the size of features. Following
PCA implementation, our total data set was reduced to
4689 attributes, and the Percentage of Variance (POV)
equaled 98% (Fig. 5).
In addition, eight valid data sources from the UCI

database (https://archive.ics.uci.edu/ml/index.php) were
used to evaluate the efficiency of the algorithms. In each
data set, one of the data classes with great sample fre-
quency were unlabeled data. Using algorithms, we iden-
tified negative samples and compared them to the
original data (Table 3).
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