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Abstract

Background: Copy Number Variation (CNV) is a common form of genetic variation underlying animal evolution
and phenotypic diversity across a wide range of species. In the mammalian genome, high frequency of CNV
differentiation between breeds may be candidates for population-specific selection. However, CNV differentiation,
selection and its population genetics have been poorly explored in horses.

Results: We investigated the patterns, population variation and gene annotation of CNV using the Axiom® Equine
Genotyping Array (670,796 SNPs) from a large cohort of individuals (N = 1755) belonging to eight European horse
breeds, varying from draught horses to several warmblood populations. After quality control, 152,640 SNP CNVs
(individual markers), 18,800 segment CNVs (consecutive SNP CNVs of same gain/loss state or both) and 939 CNV
regions (CNVRs; overlapping segment CNVs by at least 1 bp) compared to the average signal of the reference
(Belgian draught horse) were identified. Our analyses showed that Fquus caballus chromosome 12 (ECA12) was the
most enriched in segment CNV gains and losses (~ 3% average proportion of the genome covered), but the
highest number of segment CNVs were detected on ECAT and ECA20 (regardless of size). The Friesian horses
showed private SNP CNV gains (> 20% of the samples) on ECAT and Exmoor ponies displayed private SNP CNV
losses on ECA25 (> 20% of the samples). The Warmblood cluster showed private SNP CNV gains located in ECA9
and Draught cluster showed private SNP CNV losses located in ECA7. The length of the CNVRs ranged from 1 kb to
21.3 Mb. A total of 10,612 genes were annotated within the CNVRs. The PANTHER annotation of these genes
showed significantly under- and overrepresented gene ontology biological terms related to cellular processes and
immunity (Bonferroni P-value < 0.05). We identified 80 CNVRs overlapping with known QTL for fertility, coat colour,
conformation and temperament. We also report 67 novel CNVRs.

Conclusions: This work revealed that CNV patterns, in the genome of some European horse breeds, occurred in
specific genomic regions. The results provide support to the hypothesis that high frequency private CNVs residing
in genes may potentially be responsible for the diverse phenotypes seen between horse breeds.
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Background

With the development of genome-wide genotyping arrays,
genetic diversity and the variation of complex phenotypes
are often assessed via single nucleotide polymorphism
(SNP). However, variation in SNPs only explains a fraction
of the genetic component of phenotypic variance. Re-
cently, increased attention has been drawn to copy num-
ber variations (CNVs), as they are widely considered to
impact phenotypes. CNVs are typically defined as vari-
ation due to deletions, insertions, and duplication events
(1 kilobase-pairs (kb) to several megabase-pairs (Mb))
when comparing the genomic sequence of individuals
with a reference genome [1].

The total number of CNVs could explain much of the
heritability unaccounted for by SNPs as CNVs have been
linked to genetic variation of complex traits influencing
phenotypic diversity and disorders across a wide range
of species [2-11]. In horses, it has been shown that
CNVs can cause phenotypic variation and disorders. A
4.6-kb intronic duplication in STXI17 on ECA25 has
been linked to hair greying and melanoma [12], and
large deletions at the SHOX locus in a pseudoautosomal
region are associated with Skeletal Atavism in Shetland
Ponies [13]. Furthermore, studies in dogs have been
shown that between 3 and 24% of unique CNVs poten-
tially contribute to phenotypic diversity [9]. For instance,
the breed characteristic dorsal hair in Rhodesian and
Thai Ridgebacks has been linked to a duplication of a
set of FGF genes, which also predispose to dermoid
sinus disorder [11].

There are also some mammalian gene super-families
commonly known to underpin evolutionary changes driven
by CNVs, where genes associated to CNV gains may be a
likely instrument of adaptation [14]. Consequently, most of
the variation explained by CNVs in the mammalians’ ge-
nomes is known to occur in regions that regulate important
biological processes such as sensory perception, signal
transduction, immunity and pathogen defence or metabol-
ism pathways [2, 5, 7-9, 14]. Therefore, the analysis of
CNVs in domestic and livestock species has become in-
creasingly important for the evaluation of genetic diversity,
phenotypic variation and complex phenotypes.

The current publicly available database of genetic vari-
ants in the equine genome contains 25,756,212 SNP and
3,663,455 insertion/deletions polymorphisms “INDELSs”,
accessed from the Genome Variation Map (http://bigd.
big.ac.cn/gvm/home). Until now, CNVs identified in
nearly 45 different horse breeds occupy about 1-3% of
their genome and there are more CNVs residing in genes
(~80%) than in intergenic regions (~20%) [5, 7, 15-19].
In horses, the average range for CNV size remains be-
tween 1kb to 4.84 Mb with CNV losses generally domin-
ating over gains in comparison with a reference
Thoroughbred genome [7, 15-17]. The majority of the

Page 2 of 12

actual number of identified specific CNVs in horses has been
reported using a limited number of individuals [7, 17, 20].
Although significant associations with specific traits such as
body size or recurrent laryngeal neuropathy have been
detected using large sample datasets [18, 19].

Previous studies in other mammals have hypothesized
that CNVs with high frequency differences among
breeds are involved in population-specific selection and
adaptation to the environment [21-23], and also that
CNVs residing in genes contribute more to population
differentiation and divergence [24]. However, CNV dif-
ferentiation, selection and its population genetics have
been poorly explored in horses. As such, in the present
study we aimed to 1) investigate the distribution pattern
of CNVs, 2) detect breed specific CNVs and 3) identify
biological pathways affected by CNVs in the horse gen-
ome using a large cohort of individuals and high density
(HD)-SNP genotyping array data across eight European
equine breed populations (Ardenner, Belgian draught,
German draught, Exmoor, Vlaams paard, Friesian
horses, Belgian Warmblood and Swedish Warmblood).

Results

Copy number variations in various European horse
populations

Genome-wide CNV analysis was conducted on 1755
horses from 8 different breeds (Table 1) using the Affy-
metrix Axiom™ Equine HD-SNP genotyping array
(MNEC670K) [25]. CNVs were analysed on autosomes
by comparing the ratio of signal intensities of each sam-
ple with the average signal of the reference (Belgian
draught horse; extensive sample size (N =301) and the
lowest variation in signal intensity among the studied
breeds). After quality control, we identified 152,640 SNP
CNVs (signal gains or losses specific to each individual
and state), 18,800 segment CNVs (consecutive SNP
CNVs per individual of same gain/loss state or both),
and 939 CNV regions (CNVRs; overlapping segment
CNVs by at least 1 bp in the whole population per state:
signal gain, loss or both).

To shed light on the diversity between breeds and
their CNVs distribution, we used principal component
analysis (PCA). First, the plot for the SNP B-allele fre-
quency ratios (normalized measure of the allelic inten-
sity ratio of the two alleles) showed a clear separation of
the individuals in three main breed groups on PC2, with
the Friesian horses uniquely distinguished from the
other horse breed populations, that clustered in two
main subpopulations; i) Warmblood horses, and i)
Draught horses including Exmoor ponies (Fig. 1a).

Interestingly, the first principal component repre-
sented variation between individuals, across breeds (PC1
explained 61.9% of the total variance), and the second
principal component represented variation between
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Table 1 Descriptive statistics for Copy Number Variations (segment CNVs)
Breeds N of individuals % total change sd total change % gain sd gain % loss sd loss
Draught
Ardenner 24 0.2 0.05 0.1 0.05 0.1 0.04
Belgian draught® 301 0.2 0.23 0.1 0.07 0.1 0.22
German draught 22 0.2 0.09 0.1 0.08 0.1 0.04
Exmoor ponies 256 0.2 043 0.2 041 0.1 0.10
Vlaams paard 22 0.2 0.08 0.2 0.07 0.1 0.03
Warmblood
Belgian Warmblood | 234 03 0.1 0.2 0.12 0.1 0.04
Belgian Warmblood I 247 04 092 03 0.84 0.1 0.09
Swedish Warmblood 383 03 0.21 0.2 0.19 0.1 0.08
Friesian
Friesian horses 266 09 1.10 0.7 1.10 0.1 0.12

Average and standard deviation (sd) of the proportion of the total genome (without sex chromosomes) with a percent total change of segment CNVs, percentage
gains of segment CNVs, and percent losses of segment CNVs, compared to the average signal of the reference®

breeds (PC2 explained 3.1% of the total variance). In
contrast, PCAs generated from segment CNVs showed
less variation across breeds (Fig. 1b). However, Friesian
horses were the most differentiated with 0.9% of total
segment CNV changes in their genome when compared
to the reference (Table 1).

The distribution of segment CNVs showed several over-
lapping regions in the genome of the studied breeds. The
largest percentage of the genome covered by segment
CNV gains and losses (~2.5-3.0% average percentage of
the genome covered; Fig. 2) was detected in ECA12, but
the highest percentages of number of segment CNVs
(above 10%) were detected on ECA1 and ECA20 (regard-
less of the chromosomal genome size; Fig. 3).

Private CNV comparisons

The number of locations with unique private CNV gains
and losses relative to the reference breed varied between
the populations. In total, the number of genome posi-
tions that displayed SNP CNV gains ranged between
4629 (Ardenner) and 56,033 (Friesian horses) (Table 2).
The average number of SNP CNV gains per individual
ranged between 25.14 (Belgian draught horse) and
332.64 (Ardenner). The number of genome positions ob-
served with SNP CNV losses ranged between 3715
(Vlaams paard) and 7142 (Friesian horses) (Table 2),
whereas the average number of SNP CNV losses per in-
dividual ranged between 13.22 (Swedish Warmblood)
and 168.86 (Vlaams paard). In this sense, percentage of
unique private SNP CNV gains in relation to the total
number of gains within breed ranged between 0.1%
(Belgian warmblood I) and 10.5% (Friesian horses), and
percentage of unique private SNP CNV losses in relation
to the total number of losses ranged between 0.4%
(Ardenner) and 14.0% (Exmoor ponies). The within

population percentage, and positions of the unique pri-
vate SNP CNVs are plotted in Fig. 4. The Friesian horses
showed the largest percentage of unique private SNP
CNV gains (> 20% of the samples) on ECA1 and Exmoor
ponies displayed the largest percentage of unique private
SNP CNV losses on ECA25 (>20% of the samples).

Breed cluster CNV comparisons

To better understand patterns of CNVs between breeds
of common ancestral origin, we grouped the breeds in
three breed clusters according to the previous PCA ana-
lysis (Fig. la; Draught including Exmoor ponies, Warm-
blood and Friesian horses [26]). The total number of
genomic locations presenting SNP CNVs (signal gains
and losses) and the percentage of unique private SNP
CNV gains or losses corresponding to the breed group
clusters are shown in Table 3. The Friesian horses
showed the largest average number of SNP CNV gains
and losses per individual (210.65 and 26.85, respectively).
The percentage of unique private SNP CNV gains in re-
lation to the total number of gains within breed group
was higher in the Friesian horses (10.5%), and the per-
centage of unique private SNP CNV losses in relation to
the total number of losses was similar in the Draughts
and Warmbloods (18.7 and 19.2%, respectively).

The chromosomal percentage distribution of unique
private SNP CNV gains and losses across the entire gen-
ome of the three breed clusters is shown in Fig. 5. Par-
ticularly, the Friesian horses showed a high percentage
of unique private SNP CNVs gains (>20% of the sam-
ples) at the same location shown in previous plot
(ECAL, Fig. 3). The Warmbloods showed genomic re-
gions with high percentage (>20% of the samples) of
unique private SNP CNV gains in ECA9 (Fig. 5) com-
pared to the reference. The Draughts also showed
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Fig. 1 Principal component analysis across the eight European horse breeds. a (left) SNP B-allele frequency ratios of the samples. b (right) CNV of the
segments detected, compared to the average signal of the reference. ARD = Ardenner; BTP = Belgian draught horse (*reference); BWP-l and BWP-IIl = Belgian
Warmblood | and Il; GD = German draught; EXM = Exmoor ponies; FRI = Friesian horses; SWB = Swedish Warmblood; VLP = Vlaams paard

regions with high percentage (>20% of the samples) of = CNV regions, gene annotation and PANTHER classification
unique private SNP CNV losses in ECA7 (Fig. 5) com- In the present study, we identified 18,800 segment CNVs
pared to the reference. representing 13,178 segment CNV gains (average length
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Fig. 2 Chromosomal distribution of the detected segment CNVs. Length of colored bars corresponds to the average proportion of the genome
covered in percentage. Segment CNVs gains (purple), segment CNVs losses (green), compared to the average signal of the reference
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of 414.78 kb), 5298 segment CNV losses (average length of
196.95kb) and 324 segment CNV gains/losses (average
length of 241.84 kb), compared to the reference. Overlap-
ping segment CNVs by at least 1 bp were merged into 939
CNVRs (ranging from 1kb to 21.3Mb length; Add-
itional file 1: Table S1). The majority of CNVRs contained
genes (79.3%). Specifically, 10,612 genes were annotated
within the CNVRs (Additional file 2). The PANTHER ana-
lysis showed significantly underrepresented gene ontology
(GO) terms involved in single-stranded RNA binding,
transposition, cellular response to lipopolysaccharide and
ribonucleoprotein complex functions (Bonferroni P-value
<0.05; Additional file 3: Table S2). Overrepresented GO
terms involved in G-protein coupled receptor activity, im-
mune response, immunoglobulin and membrane-bound
signalling molecule functions (Bonferroni P-value < 0.05;
Additional file 3: Table S2). Additionally, we identified 80
CNVRs (ranging from 129kb to 9.04 Mb length) which

overlapped with known QTLs for conformation, coat
colour, fertility, hair and temperament traits (Additional
file 1: Table S1).

Novel CNVR and validation by RT-qPCR

The majority of the identified CNVRs overlapped with at
least 1bp with the previously identified and published
equine CNVRs, while 67 out of 939 CNVRs were novel
(7.1%, (see Methods and Additional file 1: Table S1). To
further verify the accuracy of CNVR prediction, RT-
qPCR was used to validate four genomic regions
containing common segment CNVs of different sizes
detected in this study (from 12kb to 2 Mb length). The
CNVR located within OIfr4F21 gene on ECAl and
ORS8S1 gene on ECA6 were already detected in previous
studies [15, 20], whereas the remaining two were novel
CNVRs. The CNVRs represented a different state of the
segment CNVs (signal gain and loss in relation to the
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Fig. 3 Chromosomal distribution of the detected segment CNVs, regardless of the chromosomal genome size. Length of colored bars
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Table 2 Breed total number of genome positions that display SNP copy number gains and losses
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Breeds SNP CNV % Unique private CNVP
gains losses gains losses
Draught
Ardenner 4629 (192.88) 4324 (180.17) 3.1 04
Belgian draught horse® 7568 (25.14) 5894 (19.58) 28 2.5
German draught 5777 (262.59) 3894 (177.00) 25 06
Exmoor ponies 18,150 (70.90) 4236 (16.55) 6.5 14.0
Vlaams paard 7318 (332.64) 3715 (168.86) 29 1.2
Warmblood
Belgian Warmblood | 9837 (42.04) 5760 (24.62) 0.1 15
Belgian Warmblood |I 10,852 (43.94) 5473 (22.16) 24 16
Swedish Warmblood 13,994 (36.54) 5064 (13.22) 09 1.1
Friesian
Friesian horses 56,033 (210.65) 7142 (26.85) 105 14

SNP CNVs compared to the average signal of the reference®. The average number of SNP CNVs / individual is given within brackets. The percentage of breed
specific (unique private) SNP CNV gains and losses in the genome are also shown. The sex chromosomes are not included in the total genome size. Every

genome position showed a particular SNP CNV in at least 1% of the samples within breed

average signal of the reference; Additional file 4: Table S3).
From the 80 sample-locus combinations tested, all four
CNVRs were confirmed by RT-qPCR, as different copy
number states were found per each CNVR.

Genotyping concordance rate between the Affymetrix
Axiom array data and the RT-qPCR validation differed
slightly between regions (Additional file 4: Table S4). In
the case of the CNVR within the OIfr4F21 gene, the
concordance rate was equal to 90% with one duplica-
tion in one horse not confirmed by RT-qPCR. Both the
CNVRs located within OR10G2 and OR08SI genes had

a concordance rate of 80%. For the CNVR located
within the OR08S1 gene, two individuals showed homo-
zygous one copy deletion by RT-qPCR which were not
detected by the HD-SNP genotyping array. One dele-
tion was not confirmed by RT-qPCR in the case of
OR10G2 gene and one duplication was found by RT-
qPCR which was not previously detected from the SNP
array. In the case of the CNVR located in the SV2C
gene, two samples showed homozygous one copy dele-
tion in the RT-qPCR which were not detected from the
HD-SNP genotyping array.
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Fig. 4 Chromosomal percentage distribution of private SNP CNV gains and losses. SNP CNV detected in at least 1% of the samples within breed,
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Table 3 Breed group total number of genome positions that display SNP copy number gains and losses

Breeds N of SNP CNV 9% Unique private CNV?
individuals gains losses gains losses
Draught 624 7527 (12.06) 6041 (9.68) 1.99 1866
Warmblood 864 13,133 (15.20) 5591 (647) 8.62 19.19
Friesian 266 56,033 (210.65) 7142 (26.85) 1047 143

SNP CNVs compared to the average signal of the reference (Belgian draught horse). The average number of SNP CNVs / group cluster is given within brackets.
The percentage of group specific (unique private) SNP CNV gains and losses in the genome are also shown. “The sex chromosomes are not included in the total
genome size. Every genome position showed a particular SNP CNV in at least 1% of the samples within breed group

Discussion

Diversity of CNVs between different European horse
breeds

Genetic polymorphisms play an important role in the
phenotypic diversification and speciation in equids [27, 28].
Although diverse genetic variants underlying phenotypic
variation have been successfully mapped (e.g. [12, 13, 29,
30]), a large proportion of the horse genome still remains
poorly understood. Using HD-SNP array data from a large
cohort of individuals across groups of phenotypically and
ancestrally divergent horses, we showed that CNV distribu-
tion across different breeds presented many commonalities
(genomic location, gain or loss), but that some unique pri-
vate CNVs were observed in particular genomic regions.
Moreover, both validation rate of CNVRs and overall geno-
typing concordance rate of 82.5% proved the Axiom Ana-
lysis as a consistent method for CNV calling.

Principal component analysis showed remarkable vari-
ation among populations, and was in accordance with
known breed divergence and history [26, 31]. Compar-
able findings were also pointed out in other domestic
and livestock species [23, 32, 33]. Similar to the current
study, previous studies have indicated clear distinctions
in CNV frequency between breed groups or populations,

possibly reflecting breed patterns of phenotypic diversity
and the population history of different breeds, such as a
change in past effective population size, gene flow, or se-
lection [9, 21, 23]. Our observed differences also support
the hypothesis that genetic variation from CNVs may
contribute to breed phenotypic diversity, but it may also
result from the differential demographic history and ef-
fective population sizes between breeds [9, 23].

With only minor exceptions, the CNV distribution,
showed small differences in SNP and segment CNVs be-
tween breeds. The average percentage of total coverage
by the segment CNVs identified across the genome of
the investigated breeds was small in relation to the refer-
ence breed (< 0.5%). In general, low CNV diversity is ex-
pected [7] as the segment CNVs identified in the present
study covered an even smaller proportion of the genome
in comparison with those previously reported in the
same type of horse breeds [5, 7, 16, 17]. Consequently,
the differences observed may be attributable to the dif-
ferent genetic background of the individuals, sample size
and methodologies applied for CNV discovery. As ob-
served in other studies with the same type of horse
breeds, the largest number of shared CNVRs were found in
ECA12 (e.g. ECA12:9,158,392-17,707,943 [5, 7, 16, 18, 20]).
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ECA12 displays the particular feature of being enriched
with clusters of olfactory receptor genes, which is also ob-
served in other mammalian genomes and it has been hy-
pothesized to influence flight response and temperament
diversity in horses [7]. Similarly, we found overlapping of
CNVRs with previously identified T-cell receptor and
MHC class genes, that exhibited high levels of diversity in
one or more similar type of horse breeds (e.g. on ECAL:
154,857,175-156,876,500; ECA1:158,843,180-160,751,024;
and ECA20:28,731,700-35,604,382) [5, 7, 16, 18]. Interest-
ingly, ECA1 overlapped with established QTLs for con-
formation in British ponies and reproductive traits in
German Warmbloods (e.g. on ECA1:53,917,112-54,139,087
and ECA1:93,506,091-95,186,154 [34, 35]), and CNVRs in
ECA20 overlapped with QTLs for back conformation in
American Saddlebred horses (e.g. on ECA20:41,994,712-43,
192,412 and ECA20:43,299,741-43,568,400 [36]). The lar-
gest amount of shared CNVRs within all horse breeds stud-
ied overlapped with QTLs for white markings detected in
the light draught Franches-Montagnes horses (ECA1:154,
857,175-156,876,500 [37]) and withers at height detected in
British ponies (ECA7:43,0483,386-53,094,544; ECAS8:0-6,
769,072 and ECA12:9,158,392-17,707,943 [34]). Although
no candidate genes have been previously reported in these
regions, our findings suggest that the functionality of CNV-
enriched genes in horses fall into sensory perception, im-
munity, reproduction and exterior traits.

Our results also support the hypothesis that high fre-
quency private SNP CNVs in particular (e.g. on ECA25
in Exmoor ponies) may be responsible for population-
specific selection and adaptation [21, 22]. This provides
further evidence to presume that CNVs in these regions
may represent a substantial source of genetic variation
for diverse phenotypes and biological processes, al-
though further analysis is required to confirm pheno-
typic changes. Additionally, a greater amount of segment
CNV gains compared to losses was observed, potentially
reflecting the large number of losses in the reference na-
tive Belgian draught horse. However, this may also re-
flect the fact that duplications of coding sequences
potentially enhance the organisms’ genetic diversity,
phenotypic variation and adaptation potential [38, 39].

Diversity of CNVs in breed clusters

The large cohort of individuals analysed in this study (~ 195
horse on average per breed), in comparison with other stud-
ies where breeds are represented with one or two horses, is
likely to provide a more accurate overview of single private
CNVs. The PCA analysis of the SNP and segment CNV dis-
tribution according to the three breed clusters confirmed
similar frequency levels within three breed clusters. This
should not be surprising given that the largest number of
shared CNVs was previously reported between closely re-
lated breeds such as Warmbloods [18].
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Our results also showed that the proportion of breed
cluster-specific SNP CNVs differed between groups. For
instance, the Draught and Warmblood clusters displayed
a relatively high proportion of unique private SNP CNVs
(up to 30-50%). However, a smaller proportion of SNP
CNVs may be attributable to breed-specific characteris-
tics (less than 14%). Such differences in unique CNVs in
ancestrally divergent Equidae members have also been
previously reported. As an example, Doan et al. [7] de-
tected higher proportions of certain specific CNVs in
donkeys (35%) and miniature (24%) horses, over the
total breed-specific CNVs across 17 different Equidae
species, which has been attributed to larger divergences
relative to the Thoroughbreds.

Interestingly, we also identified breed group-specific
SNP CNVs located in particular genomic regions which
may be attributable to breed-group features. For in-
stance, specific SNP CNVs gains were detected in ECA1
(163,032,489-163,181,822) in more than 20% of the indi-
viduals belonging to the Friesian horses’ cluster, and
more than 20% of the individuals belonging to the
Draught cluster showed specific SNP CNV losses in
ECA7 (34,601,429-34,608,700). However, all these pri-
vate SNP CNVs identified reside in intergenic regions or
merge into CNVR which partially overlap with previ-
ously identified regions in the Quarter horse [17]. Not-
withstanding, the identified SNP CNVs gains in ECA9
(40,822,784-40,867,675) in more than 20% of the individ-
uals belonging to the Warmblood cluster reside in a re-
gion which contain two genes, RAD54 homolog B
(RAD54B) and Reactive intermediate imine deaminase A
(RIDA). The latest is regarded as a potential candidate
gene for athletic performance since it is involved in
metabolic processes and has been related to blood pro-
tein levels in humans [40]. CNV polymorphisms in these
region may represent a substantial source of genetic
variation of high value for genetic association analyses in
the future.

PANTHER analysis of genes underlying the CNVR and
novel CNVR discovery

The evolutionary process of species formation (speci-
ation) is complex and influenced by fast evolving
changes in specific regions in the genome (i.e. CNVRs
driving novel gene functions), which may affect regulatory
key biological mechanisms and play a fundamental role in
gradual adaptation to different environments [1, 22]. In
the last 10 years, substantial progress has been made in re-
lation to the functional impact of structural variants in
several species with focus on population diversity. Enrich-
ment of CNVRs in genes related to immune response,
brain development, metabolic processes, sensory percep-
tion of smell or chemical stimuli have been reported in
global populations of humans as well as pigs, dogs, cattle
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and horses [2, 4, 8, 18, 23, 41]. In this sense, our results
also indicate that CNVRs are located in specific genomic
regions and are involved in important biological processes
in mammals such as immunity. As horse populations have
gone through strong and diverse selection since horse do-
mestication [28], these findings could be expected and
may indicate favourable selection of structural variants as-
sociated with specific traits (e.g. insect bite hypersensitivity
(IBH) in the Friesian horses [20]). However, the associ-
ation of CNVs with certain private traits in horses needs
further exploration.

Conclusions

Our PCA analysis of SNP and segment CNVs showed
that horse populations tend to group according to breed
ancestral origins. Comparing breed and breed group
clusters, we identified potentially unique private genomic
regions displaying SNP CNVs. We found small percent-
ages (less than 14%) of unique private intra-breed struc-
tural variants that may contribute to the equine breed
diversity. Specifically, ECA9 displayed a high frequency
of specific SNP CNVs gains in the Warmblood cluster in
a region containing RIDA gene, involved in metabolic
processes. Genes located within CNVRs demonstrated
under- and overrepresentation of gene ontology bio-
logical terms related to cellular processes and immunity,
suggesting the potential role of structural variants in
driving phenotypic diversity and disease resistance in
European horse populations. We identified 80 CNVRs
overlapping with established fertility, coat colour, con-
formation and temperament trait QTLs. We also report
67 novel CNVRs, which contribute to the catalogue of
known CNVs in the horse genome. Future research is
needed in order to confirm if the observed CNVs across
breeds are also linked to phenotypical differences.

Methods

Horses, breeds

The studied cohort comprised 1755 horses representing
eight breeds (Table 1). The Friesian horse samples
belonged to a half-sib case-control set-up to study IBH
[20]. The Exmoor ponies had previously been genotyped
for a case-control genome scan to detect genetic risk
factors for IBH [42]. The Swedish Warmblood horses
were selected randomly from four different performance
groups representative of the SWB population in general.
The rest of the horse breeds belonged to case-control
set-ups for different diseases under the EU HORSE-
GENE project. Belgian Warmbloods were treated ini-
tially as 2 cohorts (BWP-I and BWP-II) as they differed
in average birth year by 9years (approx. 1 generation).
Based on clustering results, all Warmbloods were
merged together.
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DNA isolation

Genomic DNA from the Friesian horses and Exmoor po-
nies was isolated as described in Schurink et al. [20] and
Velie et al. [42]. DNA for Swedish Warmbloods was pre-
pared from 20 hair roots, cut into 5% Chelex 100 Resin
(Bio-Rad Laboratories, Hercules, CA, US), and 1.4 mg/ml
Proteinase K (Merck KgaA, Darmstadt, Germany) in a total
volume of 200 pl. The samples were incubated at 56 °C,
1500 rpm for 2 h, followed by heat inactivation of Protein-
ase K at 96 °C for 10 min. DNA concentration was normal-
ized, and the DNA was re-suspended in lowTE (1 mM Tris,
0.1mM EDTA) at a concentration of 10ng/pl. The
QIAamp DNA Blood Midi Kit was used to isolate DNA
from whole blood of the Belgian Warmblood, Belgian
Draught, German Draught, Vlaams paard and Ardenner
horses. Lower limits for genotyping where a concentration
of at least 20 ng/yl, a total amount of 300 ng DNA per sam-
ple and an OD ratio 260/280 between 1.8—2.0 was used.

Microarray analysis

Genotyping was performed according to the standard
protocol Axiom™ 2.0 Assay Manual Workflow User Guide
(P/N 702990, ThermoFisher Scientific, Life Technologies,
Carlsbad, CA 92008 USA). Briefly, 100 ng of total genomic
DNA was denatured and then amplified. The amplified
DNA was fragmented, precipitated and then centrifuged.
The pellets were dried and resuspended in a buffer and
added to a hybridization master mix, followed by
hybridization to the microarray plate (Axiom™ Equine
Genotyping Array), in the GeneTitan™ Multi-Channel In-
strument for 23.5 h. Moreover, the array plate was labelled
with biotin and FAM, washed and further stained with
streptavidin and aFAM antibody. Finally, scanning was
performed in the Gene Titan™ Multi-Channel Instrument.

CNV data analysis and QC

Copy number calling was performed in the Axiom™
Analysis Suite 1.1 according to the Best Practices Ana-
lysis Workflow described in Axiom™ Genotyping Solu-
tion Data Analysis Guide (P/N 702961, ThermoFisher
Scientific, Life Technologies, Carlsbad, CA 92008 USA)
[43]. The threshold for the Dish QC quality metric was
set to 0.82 according to the manufacturer’s instructions.
Following standard protocol, only the samples passing
Call Rate > 96% were retained. The Axiom® CNV sum-
mary software tool was used to generate input files for
CNV prediction analysis, which were further processed
using Nexus Copy Number™ 9.0 (BioDiscovery, Haw-
thorne CA 90250, U.S.A.).

Determination of population structure and group-specific
CNV clusters

Principal component analysis (PCA) of the SNP B-allelic
frequency ratios of the samples and signal intensity of
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the copy number changes of the sample segments was
done using the prcomp function in R v13.1 [44].

For the detection of breed specific SNP CNVs, we de-
fined any SNP CNV identical between two or more
horses across breeds as a shared SNP CNV. Similarly,
for the detection of breed group-specific SNP CNVs, the
eight breeds were grouped into three breed clusters ac-
cording to the PCA analysis: Draught (Ardenner, Belgian
draught, German draught, Exmoor ponies, Vlaams
paard), Warmbloods (Belgian Warmblood and Swedish
Warmblood), and Friesian horses. The Belgian draught
horses showed the least variation in SNP CNVs and had
a large sample size among the breeds studied. Therefore,
the mean signal intensity of these individuals was used
as a reference to discriminate between CNV gain
(increased signal in relation to the average) and CNV
loss (decreased signal in relation to the average).

The analysis of unique private SNP CNVs within breed
groups was done using in house scripts, considering any
SNP CNVs detected only in a single breed group (not
shared with other breed groups) as a “unique private”
breed group-specific SNP CNV.

Determination of CNVR, gene annotation and PANTHER
analysis

First, those segment CNVs that overlapped by at least 1
bp were summarized as a single CNVR using the BED-
Tools software (-merge Bed command) [45]. Second, we
determined the overlap (when at least 1 bp was in com-
mon) between CNVRs identified in our study with the
CNVRs already available online (DGVa, https://www.ebi.
ac.uk/dgva) or published in recent scientific literature
[20] on different population sizes and methods using
BEDTools software (—intersect Bed command). This ap-
proach allowed us to identify CNVRs that had not been
discovered so far (i.e. novel CNVRs) and CNVRs that
are common between a wide range of equine breeds
worldwide. The overlap between the CNVRs identified
in the whole cohort of horses studied and genes anno-
tated within the CNVRs in the horse genome (based on
the EquCab2.0 sequence assembly), was determined
using Variant Effect Predictor (VEP [46];) from the bio-
informatics database Ensembl (http://www.ensembl.org/
). Overrepresentation test was performed using the
PANTHER (Protein ANalysis THrough Evolutionary Re-
lationships, version 11.0; http://www.pantherdb.org/)
classification system for the classification of genes by
their molecular function, biological process, cellular
component and protein class with default Bonferroni
correction and false discovery rate (FDR) [47]. The iden-
tified CNVRs were also compared to previously reported
trait QTLs in the horse (downloaded from the horse
QTL database [48];) using bed file comparisons in BED-
Tools software (-merge Bed command) [45].
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Validation by RT-qPCR

Validation of four genomic regions containing CNVRs
was performed by real-time quantitative PCR (RT-qPCR)
on the StepOne™ Real-Time PCR System (Applied Bio-
systems by Life Technologies, Darmstadt, Germany).
These CNVRs were located within annotated genes.
Primers and probes were designed using the Custom
TaqMan® Assay Design Tool (Additional file 4: Table
S3). Twenty horses were available for validation which
belonged to three breeds: Exmoor ponies, Swedish
Warmblood horses and Friesian horses. Ten out of the
20 horses were used in the CNVRs calling from the
Axiom Analysis, thus allowing direct comparison of the
results. DNA was prepared from 20 hair roots as de-
scribed above (see Swedish Warmblood DNA Isolation
protocol). DNA quality was determined with a Qubit®
Fluorometer. For each CNVR, 4 different concentrations
were used to determine assay efficiency: 50 ng/uL, 25 ng/pL,
12.5 ng/pL. and 6.25 ng/uL of DNA. Reactions were assem-
bled in a final volume of 15.00 pL, containing 1.50 puL
gDNA, 7.55 uL. PCR Master Mix 2X and 0.75 pL of Custom
TagMan® Assay mix 20X and 5.20 pL of nuclease free water.
The RT-qPCR conditions were as follows: initial denatur-
ation at 95 °C for 10 min (min), followed by 40 cycles of de-
naturation at 95°C for 15s and combined annealing and
extension at 60°C for 1 min. Analysis was performed per
each horse in duplicate and the average value was used for
further calculations. The fold changes were determined
using the 2°88C method that normalises the C, values (cycle
threshold) of the target gene with a reference gene (AC,),
and compare the AC, to the AC; of the reference sample
[49]. We used as reference gene the Glyceraldehyde-3-phos-
phate dehydrogenase (GAPDH) gene on ECA6, ac-
cording to previous CNVRs analyses in horses [18].
The reference individual was chosen among the 1755
horses and it displayed neither deletions nor duplica-
tions in the CNV prediction from the array in any of
the four investigated CNVRs.
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