Cui et al. BMC Genomics (2019) 20:750
https://doi.org/10.1186/s12864-019-6144-9

BMC Genomics

RESEARCH ARTICLE Open Access

Genome-wide identification, expression
profiles and regulatory network of MAPK
cascade gene family in barley

Licao Cui'? Guang Yang', Jiali Yan', Yan Pan' and Xiaojun Nie'"

Check for
updates

Abstract

Background: Mitogen-activated protein kinase (MAPK) cascade is a conserved and universal signal transduction
module in organisms. Although it has been well characterized in many plants, no systematic analysis has been
conducted in barley.

Results: Here, we identified 20 MAPKs, 6 MAPKKs and 156 MAPKKKs in barley through a genome-wide search against
the updated reference genome. Then, phylogenetic relationship, gene structure and conserved protein motifs
organization of them were systematically analyzed and results supported the predictions. Gene duplication analysis
revealed that segmental and tandem duplication events contributed to the expansion of barley MAPK cascade genes
and the duplicated gene pairs were found to undergone strong purifying selection. Expression profiles of them were
further investigated in different organs and under diverse abiotic stresses using the available 173 RNA-seq datasets, and
then the tissue-specific and stress-responsive candidates were found. Finally, co-expression regulatory network of MAPK
cascade genes was constructed by WGCNA tool, resulting in a complicated network composed of a total of 72
branches containing 46 HYMAPK cascade genes and 46 miRNAs.

Conclusion: This study provides the targets for further functional study and also contribute to better understand the

MAPK cascade regulatory network in barley and beyond.
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Background

To coordinate the biotic and abiotic stresses during
growth and development, plants have evolved to form
the complex mechanisms to perceive and transmit envir-
onmental stimuli by inducing or repressing a series of
genes to express [1]. The Mitogen-activated protein kin-
ase (MAPK) cascades are characterized as evolutionarily
conserved and fundamentally universal signaling trans-
duction pathways, playing the vital roles as diverse re-
ceptors/sensors from the extracellular environment to
intracellular transcriptional and metabolic centers in eu-
karyotes [2]. The canonical MAPK cascade is composed
of three specific kinases, namely MAPK, MAPK kinase
(MAPKK) as well as MAPKK kinase (MAPKKK), which
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was activated sequentially by phosphorylation at certain
activation sites [3, 4]. In general, MAPKs are phosphory-
lated at their conserved threonine and tyrosine residues
in the activation loop (T-loop) by MAPK kinase, and in
turn, MAPKK are activated by MAPKKKs when devel-
opment or environmental signals incurred as their serine
and serine/threonine residues located in the S/T activa-
tion site are phosphorylated [1, 2].

In plants, extensive studies have revealed that the
MAPK cascades widely involved in regulating many bio-
logical processes, including cell division, plant develop-
ment, growth and hormonal response as well as in
response to diverse biotic and abiotic stresses, such as
drought, salt, heat and pathogen infection [5-7]. In light
of their importance, a large number of MAPK genes have
been functionally identified in several plants, including
Arabidopsis [8], rice [9-11], Brachypdoium [12, 13] and
maize [14, 15]. At the same time, a series of plant MAPK
signaling cascades have also been well constructed and
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studied. The AtMEKKI-MKK4/5-MPK3/6 cascades is the
first identified MAPK signaling module in plants, which
was involved in plant innate immunity of flg22 signal
transmission [16, 17]. The complete MAPK signaling cas-
cade of ANP3-MKK6-MPK4 and YDA-MKK4/5-MPK3/6
is determined to control the stomatal development and
patterning in Arabidopsis [18]. MEKK1-MKK1/2-MPK4
module was found to play the important role in the
defenses against abiotic stresses and contributed to the
freezing tolerance in Arabidopsis [19-21]. The
ABA(abscisic  acid)-activated =~ MEKK17/18-MKK3-
MPK1/2/7/14 module displayed stress signaling to ABA
and regulated the expression of a series of ABA-
dependent genes [22]. In tobacco, the NPK1-MEK1-
Ntf6 cascade was identified to confer the resistance to
tobacco mosaic virus via mediating the resistant protein
N [23]. Additionally, the NPK1-NQK1/NtMEK1-NRK1
module is found to be a positive regulator of tobacco
cytokinesis during meiosis as well as mitosis [24]. Bar-
ley (Hordeum vulgare L.) is one of the earliest domesti-
cated and also one of the most important staple crops,
which holds the significance for agriculture drawn and
human civilization [25, 26]. Furthermore, barley is also
well-studied in terms of cytology, genetics and genom-
ics and thus qualifies as the model for Triticeae re-
search [27]. The survey of MAPK family in barley has
also been conducted and a total of 16 HYMAPKs were
identified based on the full-length ¢cDNA, EST(ex-
pressed sequence tag) and genomic survey database
[28]. However, the incomplete data used by Krenek
et al. [28] might cause the incomplete prediction and
identification of MAPKK and MAPKKK family is not
performed in barley up to now. The recently published
reference-quality barley genome [26] makes it possible
to conduct a comprehensive identification of its MAPK
cascade gene families at whole genome scale and then
construct the MAPK signal transduction pathway.

In this study, we systematically identified the MAPK,
MAPKK and MAPKKK gene family based on a
genome-wide search against barley reference genome.
Then, the gene structures, chromosomal locations, gene
duplication events and evolutionary dynamics were in-
vestigated. Furthermore, the expression patterns at di-
verse development stages and under different abiotic
stresses were also analyzed. Finally, we constructed the
regulatory networks of MAPK-MAPKK-MAPKKK sig-
nal pathway based on the co-expression patterns from a
total of 173 RNA-seq datasets. This study reported the
genomic organization, expression and phylogenetic re-
lationships of the MAPK, MAPKK and MAPKKK gene
families in barley, which could provide the candidates
for further functional analysis and also contribute to il-
luminate the MAPK signal cascade-mediated pathway
of barley and beyond.
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Results and discussion

Genome-wide identification of MAPK cascade genes in
barley

Auvailability of the reference-quality barley genome [26]
made it possible for the first time to systematically identify
all the MAPK cascade genes in this model crop species.
Using the methods as described below, a total of 20
HvMAPK, 6 HYMAPKKs and 156 HvMAPKKKs were
obtained, respectively (Table 1). The conserved domain
analysis showed that all of them have the serine/threo-
nine-protein kinase-like domain (PFAM accession No.
PF00069) (Additional file 7: Table S1). We further vali-
dated the identified genes using the public ESTs to pro-
vide the expression support. Results showed that majority
(19 out of 20 HYMAPKSs, 5 out of 6 HYMAPKKSs and 103
out of 156 HYMAPKKKSs) of the predicted genes had the
existing EST hit supports (Table 1). Given the limit of
available ESTs, the non-supported HYMAPK cascade gene
might not be detected under specific conditions or low
levels of expression that can’t be investigated experimen-
tally. Compared to previous study that only 16 HYMAPKs
were identified by Krenek et al [28], this study found 20
HvMAPKSs, which covered the 16 previous predicted ones,
suggesting the whole genome-search could provide more
comprehensive prediction of barley MAPK family.

Furthermore, the physical and chemical properties of
these genes were investigated and compared. The
length of MAPK cascade related proteins varied from
100 to 1332 amino acids, with an average of 596 in
length. The putative molecular mass ranged from 11.2
kDa to 147.1 kDa, and the isoelectric points varied from
4.22 to 9.73, respectively (Table 1), which is similar to
that of wheat and Brachypodium [29, 30]. The signifi-
cance difference of physical and chemistry properties
between the members of barley MAPK genes suggested
that the subfunctionalization and neofunctionalization
may have occurred among the MAPK cascade genes in
barley [29]. Analysis of subcellular location showed that
52 (30%) HVMAPK cascade genes were predicted to be
located in nuclear, followed by PlasmaMembrane (45)
and Cytoplasmic (43), while the remaining ones were
predicted to be located in chloroplast, mitochondrial
and extra-cellular.

These 182 barley MAPK cascade genes can be classified
into three major clades in coordination to MAPK,
MAPKK and MAPKKK with the specific conserved signa-
ture motifs, respectively (Fig. 1). Among them, 20 genes
harboring the specific conserved signature motifs of T(E/
D)YVXTRWYRAPE(L/V), and 6 genes possessing the
VGTxxYMSPER conserved signature, which were catego-
rized into MAPK and MAPKK subfamilies, respectively [3,
31]. Consistent with the other species [3, 10], these
HvMAPKs could be assigned into the 10 TDY- and 10
TEY-subtype members (Fig. 2a and Additional file 1:
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Figure S1). We also investigated the docking site CD
(Common docking) domain in HYMAPKs. Results showed
that the TDY-subtype HYMAPKs lacked this domain (Fig.
2¢ and Additional file 2: Figure S2), which was the same
as that of Arabidopsis [3]. All of MAPKK members
contained the VGTxxYMSPER motif and the putative
MAPK docking sites [K/R][K/R][K/R]x(1-5)[L/I]x[L/I]
(Additional file 3: Figure S3). The remaining 156 genes

belonged to MAPKKK subfamily. The barley MAPKKK
genes could be further divided into three groups, which
owned the conserved motifs of G(T/S)Px(W/Y/F)MAPEV,
GTxx(W/Y)MAPE and GTPEFMAPE(L/V)Y for MEKK,
Raf-like and ZIK subfamilies, respectively (Additional file 4:
Figure S4). Remarkably, the Raf-like subfamily had 124
members, ranking the largest group of MAPKKK in
barley, whereas the ZIK subfamilies possessed only 4



Cui et al. BMC Genomics (2019) 20:750

Page 10 of 20

(a) o (b)

MAPKKK-ZH——=

MAPKKK-

[

== [PRO03591 Leu
= IPR003609 PAN;

IPR004041 NAI
== IPRO06016 UspA

MAPKKK-MEKK

4

MAPK

MAPKKK-Raf-lik

Sis!
Okb, Skb TOKD TSkb  20kb  25kb  Obp

of MAPK cascade genes in barley

ke fold
 alpha/beta/alpha sandwich fold

02kb 0.4kb 0.6kb O.8kb 1kb) 12Kkb

Fig. 2 The subfamily organizations based on phylogenetic relationships (a), intron-exon structure structures (b) and protein structures (c) analysis

members as the smallest group, which was consistent with
the abundance and composition of MAPKKK genes in
other species, especially in wheat [29, 30] (Table 2).

Phylogenetic relationship, gene structure and motifs
analysis
To further support the subfamily grouping, phylogenetic
analysis were performed using the full-length protein se-
quences of these barley MAPK cascade genes (Fig. 3).
Consistent with specific conserved signature motifs [3],
the MEKK, Raf-like and ZIK subfamilies belonging to
MAPKKK family were also clustered into independent
sub-clade, respectively. For MAPK, it could be further
divided into TDY and TEY two sub-clades, and TEY
sub-clade was further assigned into A to C subgroups.
We further performed phylogenetic analysis of these
HvMAPK and the reported rice and Arabidopsis
MAPKSs. Results found they could clustered into differ-
ent groups and the orthology pairs of them were
obtained depending on phylogenetic relationship (Add-
itional file 5: Figure S5). These results could provide
some clues for candidate selection for further functional
study as some orthologous genes in rice and Arabidopsis
has been extensively functionally characterized [16, 18].
Gene structure played vital roles in the evolution of
gene families and provided extra evidence to estimate

the functional diversifications [32]. Thus, the exon-
intron organization of these barley MAPK cascade genes
was further analyzed (Fig. 2b). Result found that there
were significant intron abundance variations between
these genes. It is reported that C- and D-group of
MAPKKs tend to have no introns in Arabidopsis [3].
The C-group of HYMAPKKs also showed intron-less
while D-group have abundant introns. For instance,
HvMAPKK3 and HVMAPKK4, which assigned into D
subgroup, possessed 7 and 9 introns, respectively. Fur-
thermore, the intron count of HYMAPKKK gene family
ranged from 1 to 24, showing obviously variations even
in the same subgroup. For the MEKK subfamily, more
than half (54.2%) of the genes possessed no or one in-
tron, while the other MEKK members had 6 to 24 in-
trons. The intron number of the ZIK subfamily varied
from 2 to 5, whereas the RAF genes with the intron
number ranged from 1 to 20 and presented the highest
level of variation among them.

Additionally, the conserved protein domains in the bar-
ley MAPK cascade genes were identified and compared. A
total of 32 conserved motifs were detected (Fig. 2c). The
protein kinase domain was found in each member of the
MAPK cascade proteins. A certain degree of conservation
could be observed in the HYMAPK and HYMAPKK genes
that almost all of them harbored the ATP (Adenosine
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Table 2 Comparison of the abundance of MAPK cascade gene family in different plant species
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Hordeum Triticum Oryza Zea Brachypodium Arabidopsis Lycopersicon Glycine Vitis
vulgare aestivum sativa mays distachyon thaliana esculentum max vinifera
MAPK 20 54 17 19 16 20 16 38 14
MAPKK 6 18 8 9 12 10 6 1 5
MAPKKK 156 155 75 74 75 80 89 150 45
RAF 124 115 43 46 45 48 40 92 27
MEKK 28 29 22 22 24 21 33 34 9
ZIK 4 M 10 6 6 1 16 24 9
triphosphate) binding site and serine/threonine-protein  phylogenetically tended to similar  motifs
kinase active site. Similar to the intron/exon structure, the  composition.

composition of conserved motifs was also highly variable
in HYMAPKKK family. Apart from the protein kinase and
its related domains, a series of other functional motifs was
widely distributed, such as Bulb-type lectin domain, S-
locus glycoprotein domain and PAN/Apple domain, sug-
gested they are widely involved in growth and develop-
ment as well as signaling transduction [33]. The PAS
domain, S-locus glycoprotein domain and Concanavalin
A-like lectin/glucanase domain were possessed by 4, 1 and
3 Raf subfamily members. The EF-hand domain pair, EF-
Hand 1, calcium-binding site and EF-hand domain were
uniquely found in MEKK subfamily, whereas no domains
were specific to the ZIK subfamily. On the whole, the
MAPK cascade proteins clustered into the same group

Finally, the 1.5 kb genomic sequences upstream of the
transcriptional start sites of HVMAPK genes were ex-
tracted and used to identify the cis-regulatory elements.
Totally, 27 cis-elements were obtained, of which SARE(sa-
licylic acid responsiveness) domain and the TGA (auxin-
responsive) domain were found to be present only in 3
and 7 genes respectively, whereas the Skn-1 motif was
shared by 159 genes, which ranked the least and most
abundant motifs (Additional file 7: Table S2). Skn-1 motif
is reported to be a cis-acting regulatory element required
for endosperm expression and oxidative stress response in
eukaryotes [34], suggesting the MAPK cascades played the
important role in regulating the barley development and
stress response. In addition, a large amount of plant
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Fig. 3 Phylogenetic analysis of barley MAPK cascade proteins
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growth and development (including circadian, meristem
and endosperm), hormone-related (e.g., abscisic acid,
auxin, MeJA, ethylene, gibberellin) cis-elements were
found in these promoter regions, suggesting that MAPK
cascade genes widely involved in regulating the signal
transduction network of diverse developmental processes.
Meanwhile, the cis-element related to biotic (e.g. fungal
and wound) and abiotic stress response (e.g. salt, extreme
temperature, dehydration) were also identified in the
promoter region of the HVMAPK cascade genes, which
suggested that these MAPK cascade genes might have
potential functions in stress adaptation and signaling path-
ways [33].

Gene duplication and synteny analysis

In order to investigate the mechanism of expansion of
the MAPK cascade genes in barley, we further investi-
gated the segmental and tandem duplication events by
genome synteny analysis. Results showed that 13 para-
logs composed of 26 HYMAPK cascade genes were iden-
tified, of which 5 were segmental duplications and 8
were tandem duplication events (Fig. 4 and Additional
file 7: Table S3). In detail, 3 and 2 segmental events were
found in HYMAPKs and HYMAPKKKSs, as well as 8 tan-
dem repeats events in HvMAPKKKSs, suggesting that

Page 12 of 20

segmental duplication played important roles in the ex-
pansion of MAPKs while tandem repeat duplication was
the driven force for HYMAPKKK gene family expansion.
It is noteworthy that the segmental events mainly oc-
curred at chromosome 1 and chromosome 3, whereas
the tandem duplication blocks distributed throughout
the whole genome, of which 1, 1, 4, 1, 1 paralogous pairs
were mapped to chromosome 1, 2, 3, 4 and 5, respect-
ively (Fig. 4). In order to detect the selection effect dur-
ing gene divergence after duplication, the Ka/Ks
substitution ratio of the duplicated pairs were further
calculated. Result showed that Ka/Ks ratios of MAPK
cascade genes ranged from 0.001 to 0.4727, with an
average of 0.1964, suggesting that they have undergone
purifying selection pressure during the process of evolu-
tion in barley [35].

Furthermore, the comparative analysis between barley
with other six species (Brachypodium, sorghum, maize,
rice, soybean and grape) was performed to determine
the origin and evolutionary relationships of MAPK cas-
cade genes (Fig. 5). Through whole genome-wide syn-
tenic analysis, a total of 84, 80, 77, 67, 5 and 7 barely
MAPK cascade genes were identified to have ortholo-
gous counterpart in Brachypodium, rice, sorghum,
maize, grape and soybean (Additional file 7: Table S4 to
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Fig. 4 Chromosome locations and duplicated genes pairs of MAPK cascade genes in the barley genome. Each barley chromosome is displayed in
different color. Duplicated gene pairs are displayed in corresponding color and linked using lines with the same color
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Maize, Rice, Soybean and Grape
A\

Fig. 5 Comparative physical mapping showing the degree of orthologous relationships of MAPK cascade genes with Brachypodium, Sorghum,

S9). The average Ka/Ks value was maximum between
barley and Brachypodium (0.1641), followed by rice and
sorghum (0.1544) as well as maize (0.43), suggesting the
genes pairs between barley and those species appeared
to have undergone extensive intense purifying selection.
Besides, we found that most of MAPK cascade genes
showed syntenic bias towards particular chromosomes
of sorghum, maize, rice, which indicated that the
chromosomal rearrangement events like duplication and
inversion may predominantly shape the distribution and
organization of MAPK genes in these genomes [35].

Comprehensive analysis of the expression profiles of
barley MAPK cascade genes

To preliminarily predict the biological function of these
barley MAPK cascade genes, gene ontology (GO) ana-
lysis was firstly performed (Additional file 6: Figure S6)
and they could be annotated into 40 GO terms, includ-
ing 9 terms of molecular function, 19 of biological pro-
cesses and 11 of cellular components, respectively. In
the cellular components category, cell and cell part were
main annotation terms, whereas binding, catalytic
nucleoside and transferase were the most presented
function in the molecular function category. In the bio-
logical process category, cellular metabolic, cellular,
metabolic and macromolecule metabolic process occu-
pied most of the proportion. By employing the fisher
statistical test method, a total of 17 terms were signifi-
cant enriched (P<0.05 and Q<0.05) when taking the
whole barley genome as customized backgrounds, in-
cluding 5 biological process categories, 6 molecular
function categories and 6 cellular component categories

(Additional file 7: Table S10). These results revealed that
the MAPK cascade genes played diverse roles in diverse
development and stress response pathways in barley.

Furthermore, the expression profiles of MAPK cascade
genes at 16 developmental stages were investigated using
RNA-Seq data. A total of 75 genes were found to be
expressed in at least one organ or stage (Fig. 6). A high
variance in the expression levels among these MPAK
cascade genes was observed, of which a series of them
showed relatively high expression in all the tested tis-
sues, such as HvMAPK1, HvMAPK4, HvRaf-like63,
HvRaf-like87 and HvZIK2, The ortholog of HvZIK2 in
Arabidopsis is AtZIK4(WNK1), which is found to regu-
lating internal circadian rhythm and flowering time [36].
It highly expressed in different organs, suggesting it also
played the indispensable role in organ formation and
development. Additionally, the tissue- and stage-specific
MAPK cascade genes were also identified. HvRaf-like103
and HvRaf-like4d9 were found to be predominantly
expressed in senescing leaf, whereas HvRaf-like66,
HvRaf-like47, HvRaf-like93 and HYMAPK?7 showed pref-
erential expression in the root, lemma, seedling root and
epidermis, respectively, suggesting that these genes may
mainly involve into organ- or tissue-specific develop-
ment in barley.

To get insight into the roles of MAPK cascade genes
in response to abiotic stresses, the expression profiles of
them under drought, heat, salt were investigated to dis-
cover the abiotic stress-responsive candidates. Results
showed that a total of 123 genes were detected to be
expressed under drought stress (Fig. 7a). Among them,
10 and 24 genes were significantly up-regulated, whereas
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Fig. 6 (See legend on next page.)
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cm shoot stage; SEN: senescing leaf

Fig. 6 Hierarchical clustering of expression profiles of barley MAPKKK cascade genes across different stages. CAR15: bracts removed grains at
15DPA; CARS: bracts removed grains at 5DPA; EMB: embryos dissected from 4d-old germinating grains; EPI: epidermis with 4 weeks old; ETI:
etiolated from 10-day old seedling; INF1: young inflorescences with 5 mm; INF2: young inflorescences with 1-1.5 cm; LEA: shoot with the size of
10 cm from the seedlings; LEM: lemma with 6 weeks after anthesis; LOD: lodicule with 6 weeks after anthesis; NOD: developing tillers at six-leaf
stage; PAL: 6-week old palea; RAC: rachis with 5 weeks after anthesis; ROO2: root from 4-week old seedlings; ROO: Roots from the seedlings at 10

5 and 19 MAPK cascade genes were significantly down-
regulated in flowers and leaves when subjecting to
drought. Meanwhile, 114 MAPK cascade genes were
found to express under heat stress (Fig. 7b). Remarkably,
HvRaf-like124 and HvMAPKKS5 presented about 62 and
21 times higher expression level under heat stress com-
pared to control. Previous study found the MPK20 have
the defense function in cotton, while its ortholog
HvMAPKKS5 involved in regulating heat stress adapta-
tion in barley, suggesting it might have divergent func-
tion in different species [37]. The expression patterns of

MAPK cascades genes under salt stress were also exam-
ined (Fig. 7c). Totally, 5, 7 and 9 genes showed up-
regulated in the root Z1, Z2 and Z3 respectively, of
which the expression level of HvRaf-like28 and Hv-Raf-
like113 were up-regulated with more than 10 fold at the
Z1 zone and HVMAPKKI1 showed 34-fold change at the
72 zone. Besides, a total of 7, 11 and 4 genes were iden-
tified to be down-regulated at root Z1, Z2 and Z3 zone
respectively. HvZIK4 and HvRaf-like56 was 862 and 558
time lower expression at Z1 and Z2 zone of root under
salt stress than that of control.

p
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Finally, the expression profiles of these genes under
zinc metal poisoning and iron were investigated (Fig.
7d). When in response to iron stress, 9 genes showed
up-regulated and 7 showed down-regulated after 6h
treatment. Furthermore, 8 up-regulated and 11 down-
regulated genes were found after 24h treatment.
Among them, HVYMAPK17, HvRaf-like4, HvRaf-like70,
HvRaf-like109 HvZIK3and HvRafZIK4 all presented
up-regulated under iron stress after both 6 h and 24 h
treatment, whereas HvMAPK2 and HvRaf-like41
showed down-regulated. Under zinc stress, a total of 13
and 12 up-regulated genes as well as 14 and 16 down-
regulated genes were found after 6h and 24h treat-
ment, respectively. Among them HvMAPKKS5,
HvMEKK7, HvMEKK26, HvRaf-like28 and HvRaf-
like58 were all down-regulated at all treatment, whereas
HvZIK3, HvRaf-like65, HvRaf-like4, HvRaf-likel08,
HvMEKK14, HYMEKK10 and HvRaf-like108 displayed
up-regulated after both 6 h and 24 h treatment. Obvi-
ously, HvZIK3, HvRaf-like4, HvRaf-108 showed up-
regulated expression under both iron and zinc treat-
ment, which might play the important roles in regulat-
ing signal transduction process for metal poisoning
response and detoxification.

Network construction of HYMAPK cascade genes

To get the network of miRNA targeting on MAPK cas-
cade genes, the putative miRNAs targeted HYMAPK cas-
cade genes were analyzed. Results found that 26 MAPK
cascade genes including 3 MAPKs and 23 MAPKKK
genes were predicted to be targeted by 11 miRNAs,
while no miRNA target was found for HYMAPKK genes,
which might be due to the limited barley miRNA re-
ported at present (Additional file 7: Table S11). Totally,
36 miRNA-MAPK interactions were constructed based
on the target relationship. The barley cascade genes were
mainly inhibited by miRNAs through transcript cleavage
(94.44%), while HvRaf-likel2 and HvRaf-likel2 and
HvRaf-like76 were inhibited to translation by miRNAs.
Additionally, miRNAs mainly targeted on the CDS re-
gion but behind the protein kinase domain of these
MAPK cascade genes to function gene silence.

The co-expression regulatory network was further
constructed to detect the interaction among these bar-
ley MAPK cascade genes based on weighted correlation
of their expressions using a big datasets of 173 RNA-
seq data. Only the relations between MAPKKK and
MAPKK as well as MAPKK and MAPK were presented.
A total of 40 interactions composed of 25 genes were
constructed, including 7 MAPK, 3 MAPKK and 15
MAPKKK genes respectively (Fig. 8). Among them,
some MAPK cascade modules has been verified in
model plants, such as MKK3-MPK6 in Arabidopsis
[38]and MAPK18-MAPKK2-MEKK4 in Brachypodium
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[30]. Furthermore, a total of 18 genes including 2
MAPK, 10 MEKK, 2 HvRaf-like and one ZIK gene were
predicted to be interacted with HvMAPKK3, suggesting
that it may be the hub gene of the co-expression regu-
latory network, playing the key role in barley MAPK
cascade signaling pathway. In Arabidopsis, MAPKK3 is
found to be expressed in all organs, and plays a vital
role in photomorphogenesis to regulate gene expression
under various light conditions, as well as involved in
cell expansion, pathogen signaling and jasmonate sig-
naling pathway, indicating it is critical for development
and signaling transduction [39, 40]. Thus, the barley
ortholog HYMAPKK3 might also play the hub role in
co-expression network in barley response to develop-
ment and stresses. In addition, there was 10 MAPK-
MAPKK, 30 MAPKK-MAPKKK interactions were also
obtained to use to subsequently experimental valid-
ation. Combined with miRNA-target interaction men-
tioned above, the regulatory network containing a total
of 46 HVMAPK cascade genes and 46 miRNAs were
constructed and 72 branches were linked for each
other, which provided the indispensable resource to fa-
cilitate the MAPK pathway and signal transduction
mechanism studies in barley and beyond.

Conclusion

This is the first study to identify the MAPK cascade
genes in barley at genomic level. Totally, 20 HYMAPKSs,
6 HvMAPKKs and 156 HvMAPKKKs were obtained,
which was further supported the existence by EST or
full-length cDNA sequences. The phylogenetic relation-
ships, intron-exon structure as well as conserved motif
analysis all strongly supported the prediction. Further-
more, both segmental and tandem duplication events
contributed to the expansion of the MAPK cascade
genes in barley. The expression profiles of these MAPK
cascade genes during development and under abiotic
stresses were investigated and the tissue-specific or
stress-responsive genes were identified, which could be
considered as the candidates for further functional
studies. Finally, the co-expression regulatory network of
the MAPK cascade genes was constructed using
WGCNA tool based on a total of 174 RNA-seq data. A
total of 30 MAPKKK-MAPKK, 10 MAPKK-MAPK po-
tential interactions were identified, which contributed
to better understanding the MAPK signal transduction
pathway in barely.

Methods

Identification of MAPK cascade genes in barley

The protein sequences of the latest updated barley gen-
ome Morex v2.0 [26] were retrieved from the IPK
website (http://webblast.ipk-gatersleben.de/barley_ibsc/).
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Then, the MAPK cascade proteins of Arabidopsis from
the TAIR database, were used as queries to search
against the barley proteins using BLASTP program with
an e-value of le-5 and identity of 50% as the threshold.
The HMMER 3.0 program was employed to conduct for
Hidden Markov Model (HMM) algorithm search using
the  serine/threonine-protein  kinase-like =~ domain
(PF00069) as the query with the threshold of E < le- 5.
The HMMER hits were further integrated with the
BLASTP results and parsed by manual editing to remove
redundant. Those genes displayed the consensus se-
quences as Jonak et al described were considered as the
potential MAPK cascade genes [3]. The candidates were
subsequently submitted to SMART and PFAM web tool
to verify the kinase domain. Additionally, the putative
MAPK cascade genes were further verified through
searching against the barely ESTs by BLASTN tool. The
theoretical isoelectric point (pI), molecular weight (MW)
and gravy of the identified barley MAPK cascade genes
were evaluated using ProtParam tool (http://web.expasy.
org/protparam/) integrated in ExPASy database. The
cello online server (http://cellolife.nctu.edu.tw/) was
used to detect the subcellular localization and protein
solubility was predicted by PROSOII tool (http://mips.
helmholtz-muenchen.de/prosoll).

Phylogenetic relationship and conserved motif analysis
Multiple sequence alignment were performed using Clus-
talX v2.0 with default parameter [41]. A neighbor—joining

(NJ) phylogenetic tree was constructed based on the full-
length protein sequences using the MEGA software with a
bootstrap of 1000 replications [42]. The gene structures
were obtained from the GTF annotation file of barley gen-
ome and then were displayed by Gene Structure Display
Server (http://gsds.cbi.pku.edu.cn/index.php). Further-
more, the protein domain and conserved motifs of barley
MAPK cascade genes were predicted using InterProScan
tool. Finally, the upstream 1.5 kb genomic DNA sequences
of each gene were extracted from barley genome, and then
submitted to PlantCARE database to detect the putative
cis-regulatory elements [43].

Gene duplication and molecular selection analysis

Gene duplication events were defined based on the fol-
lowing three criteria: 1) the alignment should cover
more than 70% of the longer gene; (b) the identity of the
aligned region should be more than 70%; 3) for tightly
linked genes only one duplication event was counted
[44]. The gene synteny between barley and other species,
including Brachypodium distachyon, Sorghum bicolor,
Zea mays, Oryza sativa, Vitis vinifera and Glycine max
was conducted using the MCScanX toolkit [45]. The
linked genes pairs were displayed using the Circus tool.
The rate of Ka (non-synonymous substitution)/Ks (syn-
onymous substitution) was employed to assess the codon
evolutionary rate between the synteny genes using the
codeml program embedded in the PAML package [46].
The formula T =Ks/2\ was employed to calculate the
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duplication and divergence time, where \ referred to the
mutation rate, was considered as 6.5 x 10 ° synonymous
substitutions per site per year.

Expression profiles and co-expression networks
construction

The MAPK cascade genes were firstly searched against
the NR protein database using the local BLASTx with an
E-value cut off of 10-5. Based on the Nr annotation,
Blast2GO [47] program was used to retrieved the GO
(gene ontology) annotation. AgriGO v2 (http://system-
sbiology.cau.edu.cn/agriGOv2/index.php) was applied to
conduct the singular enrichment analysis. Furthermore,
a total of 172 public available RNA-seqs (Additional file
7. Table S12) including multiple tissues and develop-
mental stages as well as biotic and abiotic stresses were
downloaded from the NCBI Sequence Read Archive
(http://www.ncbi.nlm.nih.gov/sra) database to investigate
the expression profiles of these genes. The FPKM (frag-
ments per kilobase of transcript per million fragments
mapped reads) value were calculated by Hisat2 and
Stringtie software [48]. Then, differentially expressed
genes were identified with the following threshold
values: fold change>2, FDR(false discovery rate) <0.01,
and the absolute ratio of log2 > 1. All FPKM data was fi-
nally reported by log2 counts and the heat map was vi-
sualized using pheatmap package in R. WGCNA was
used to construct the co-expression network based on
all of the downloaded transcriptome data [49]. Besides,
all the identified MAPK cascade transcripts were sub-
mitted to the psRNATarget tool [50] to search the barley
miRNAs targets in the miRBase. The regulatory network
of Hvu-miRNA and HvMAPK cascade genes were visu-
alized using cytoscape tool (http://www.cytoscape.org/).
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Additional file 1: Figure S1. Multiple sequence alignment of the partial
sequences of 20 HYMAPK proteins to identify the TDY and TEY motif. The
red color marked sequence is the TDY or TEY motif.

Additional file 2: Figure S2. Multiple sequence alignment of the full
length sequence of 20 HYMAPK proteins to identify the conserved kinase
motifs. The color marked indicated the conserved motifs found.

Additional file 3: Figure S3. Multiple sequence alignment of the
HVMAPKK to identify the conserved kinase motifs. The red color marked
are the signature motif of MAPKK proteins.

Additional file 4: Figure S4. Multiple sequence alignment of the
HVMAPKKK to identify the conserved kinase motifs. The red color marked
are the signature motif of MEKK, Raf and ZIK three sub family.
Additional file 5: Figure S5. Evolutionary relationships and grouping
among barley, rice and Arabidopsis MAPKs.

Additional file 6: Figure S6. GO annotation of these identified barley
MAPK cascade genes.

Page 18 of 20

Additional file 7: Table S1. Motif identification based on PFAM
database. Table S2. Characteristics of cis-acting regulatory elements in
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