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Abstract

Background: Circular RNA is a type of non-coding RNA, which has a circular structure. Many circular RNAs are stable
and contain exons, but are not translated into proteins. Circular RNA has important functions in gene regulation and
plays an important role in some human diseases. Several biological methods, such as RNase R treatment, have been
developed to identify circular RNA. Multiple bioinformatics tools have also been developed for circular RNA detection
with high-throughput sequence data.

Results: In this paper, we present circDBG, a new method for circular RNA detection with de Bruijn graph. We
conduct various experiments to evaluate the performance of CircDBG based on both simulated and real data. Our
results show that CircDBG finds more reliable circRNA with low bias, has more efficiency in running time, and performs
better in balancing accuracy and sensitivity than existing methods. As a byproduct, we also introduce a new method
to classify circular RNAs based on reads alignment. Finally, we report a potential chimeric circular RNA that is found by
CircDBG based on real sequence data. CircDBG can be downloaded from https://github.com/lxwgcool/CircDBG.

Conclusions: We develop a new method called CircDBG for circular RNA detection, which is based on de Bruijn
graph. We conduct extensive experiments and demonstrate CircDBG outperforms existing tools, especially in saving
running time, reducing bias and improving capability of balancing accuracy and sensitivity. We also introduce a new
method to classify circular RNAs and report a potential case of chimeric circular RNA.
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Background
Circular RNA, the RNA in a circular form through a
usually 5’ to 3’ phosphodiester bond, is a type of non-
coding RNA [1]. Circular RNA (or circRNA) is recently
recognized as a new class of functional molecule [1].
CircRNA consists no 5’ or 3’ free terminus, as illustrated
in Fig. 1, which makes it much more stable in the cells
than linear RNA [1]. CircRNAs were originally thought
as the byproduct from the process of mis-splicing, and
considered to be of low abundance. Recently, however,
the importance of circRNAs in gene regulation and their
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biological functions in some human diseases have started
to be recognized [1–3]. Many of these circRNAs are sta-
ble and contain exons, but they are not translated into
proteins [4].

There are two types of experimental methods currently
that can be used to identify circular RNA [5]. First, since
circRNAs lack a poly(A) tail [6], they can be retained in
rRNA-depleted libraries by using expected depletion pro-
file to assess results. Second, circRNA can be enriched in
libraries treated with RNase R to digest linear RNA and
make it easier to detect lowly expressed circRNA. With
the high-throughput sequencing technologies, multiple
bioinformatics tools have been developed recently for cir-
cRNAs detection from RNA sequence reads. Some of
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Fig. 1 Ei : exons, Li : linear splicing junction (for linear RNA). Ci : circular splicing junction (for circRNA). Two sets of isoforms of linear RNA and circRNA
are shown on left and right sides. 3‘ in circular splicing junction is donor, while 5‘ is acceptor. All linear isoforms are sensitive to RNase R. Circular
isoforms show no significant decrease in abundance after RNase R treatment

them require gene annotation while others do not. Those
methods could be divided into two categories: (a) reads-
mapping-based methods, such as CIRI [7]/CIRI2 [8],
CIRCExplorer [9], Find-circ [10] and CircRNAFinder [11],
and (b) k-mer-based methods, such as CircMarker [12].

Reads-mapping-based methods first map the RNA-seq
reads onto a reference. For this purpose, CIRI uses BWA
[13], while bowtie [14] and Tophat (TopHat-fusion) [15]
are used by Find-circ and CIRCExplorer respectively.
Since BWA and bowtie do not require annotations, all
RNA reads need to be mapped to the entire reference
genome. As CIRCExplorer, CircRNAFinder only performs
reads mapping by using STAR in the range of annotated
genomes as provided by annotation file. Those mapping
methods have two major issues. First, reads-mapping-
based tools are often computationally inefficient because
mapping all reads can be slow, yet we note that many
RNA-seq reads are irrelevant to circRNA detection. Sec-
ond, these tools may miss circRNA in some cases due to
errors in reads mapping [12].

Recently, we developed a k-mer-based tool called
CircMarker [12], which uses an efficient k-mer table
for circular RNA detection. Compared with the reads-
mapping-based method, CircMarker has two major
advantages. First, CircMarker looks for the circRNA-
related reads for detection and does not depend on any
third party mapping tool. Thus CircMarker is much faster
than reads-mapping-based methods, especially for small
data. Second, since the minimum comparison unit for
CircMarker is a k-mer rather than reads, it can tolerate
more errors and find more circular RNAs. However,
CircMarker still has some issues. A key issue for Circ-
Marker is the potential loss of information. CircMarker
considers k-mers individually. That is, CircMarker does
not consider the order of k-mers from either reads or
exons, and this may lead to false positives when there are

repetitive k-mers. Moreover, CircMarker becomes slow
for large data.

In this paper, we present a new method named CircDBG
for circular RNA detection with de Bruijn graph. Different
from the normal de Bruijn graph, CircDBG uses it in a
specialized way designed to call circular RNA, which is
the first algorithm using de Bruijn graph for circular RNA
detection. Through experiments based on simulated and
real data, we demonstrate that this new method finds
more reliable circRNA with low bias, runs faster and has
better performance in balancing accuracy and sensitivity
than existing methods.

Finally, we introduce a new method of classifying circu-
lar RNAs based on reads alignment and report a potential
chimeric circular RNA that is found by CircDBG based on
real sequence data.

Method
High-level approach
The key idea of CircDBG is creating a de Bruijn graph
based on k-mers from the boundary parts of exons in
annotated genome. As shown in Fig. 2, we take advan-
tage of this graph to find the relationship between k-mer
of reads and the potential donor/acceptor exon by track-
ing the path in the graph for circular RNA detection.
Since the path provides a stronger signal for calling the
two exons involved in the back splicing than individual
k-mers, CircDBG can filter out more false positives than
CircMarker. This is especially true when there are dupli-
cate k-mers in exons and/or there are errors in the reads.
To make CircDBG more efficient, we also develop various
techniques.

CircDBG
Our new CircDBG method contains three parts: (a) build-
ing de Bruijn graph, (b) finding potential donor/acceptor
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Fig. 2 Five exons are in the genome (top left). Back splicing occurs from exon 4 to exon 2, which generates a circular RNA (top right). The
bidirectional de Bruijn graph (bottom left) is built from the k-mers from each exon in the genome, where each exon is represented by the path with
the same color in graph. The dotted line represents a RNA reads which supports the presence of circRNA case: the starting part of the read overlaps
with the ending part of exon 4, and the ending part of the read overlaps with the starting part of exon 2

sites, and (c) detecting circular RNA. First, a memory-
efficient de Bruijn graph is created, which records rel-
evant information of annotated genome. Second, we
filter out circRNA-related reads and find the potential
donor/accepter exon. Finally, we compare k-mers from
reads with the graph for circular RNA detection. Some
parameters should be determined before running Cir-
cDBG, such as the length of k-mer. The maximum length
of k-mers in CircDBG is 16, and we set 15 as its default
value for all data analysis reported in this paper.

Build de Bruijn graph
We create de Bruijn graph for each chromosome
separately, and use them in parallel with RNA sequence
reads for circular RNA detection. All the k-mers used to
create de Bruijn graph come from exon, and the k-mers
from reads will be used to track the path in the graph for
circular RNA detection. We use 2 bits to present each base
in k-mer, and integer 32 is used to save the value of k-
mer. Therefore, the maximum length of k-mer presented
by each node in graph is 16 bps. For each chromosome,
only the exons that contain back splicing signal (GT-AG)
are considered. The exons with length shorter than the
chosen k-mer length are ignored. Since the back-splicing
only occurs near the boundary of exon, and one read

cannot cover the whole exon, especially when the exon is
very long, we only use k-mers near the boundaries of an
exon when building the graph. The length of extraction is
identified as:

Lseq = Lreads − k − 5

This means we require that there are at least 6 contin-
uous k-mers should come from the other side of circular
splicing junction. In another word, we require at least the
length of k + 5 in reads to come from the other site of cir-
cular RNA. If the length of an eligible exon is shorter than
2 × Lseq, the whole exon is used to build graph.

For example, if the length of reads and k-mer is 101
and 15 respectively, based on the equation, the length of
extraction is 81, which contains 67 k-mers theoretically.
Given an exon with the length of 1000 bps, two sequences
will be extracted from the beginning part (1 to 81) and
ending part (920 to 1000) respectively.

All k-mers from the boundary parts of sequences are
processed sequentially and converted into integers as the
values of nodes in the graph. The edge of each node repre-
sents its next or previous neighbors. The procedure of cre-
ating de Bruijn graph is illustrated in Fig. 3. Since the node
may be shared by multiple exons or appear multiple times
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Fig. 3 a Three exons with the back-splicing signal (AG-GT/AC-CT) are chosen. b The k-mers from the beginning part and ending part of exon 1 and
exon 3 are collected, while all k-mers from exon 2 are selected since Lenexon2 < 2 × Lseq . c The graph is constructed by these collected k-mers: exon
1/exon 3 are represented by 2 separate green/blue paths in the graph, and exon 2 is represented by one red path

in one exon, multiple groups of exon information are asso-
ciated with each node. Each exon information contains the
node’s position and multiple links. As same as the strategy
of CircMarker, we use 5 values to represent the node posi-
tion: one tag and four indexes (including chromosome,
gene, transcript, and exon). Since the maximum index
value (e.g. the number of exons in one transcript) is not
large, we use light weight data structure to store those
additional messages, such as exon index and transcrip-
tion index, in each node to save the RAM[12]. The tag
contains 4 different values: S/E and H/T, which speci-
fies whether the k-mer comes from the starting or ending
part and whether it is close to head or tail boundary of
exon respectively. Since the closer a k-mer is to the back-
splicing junction point, the higher possibility the k-mer
can be contained by the supported reads, we call the node
with tag H/T as premium node. The data structure dis-
cussed above can help to distinguish repetitive k-mers in
the same exon or multiple exons, because it records all
possible exon positions and the neighbors of each node.
In addition, since we only extract k-mer from the bound-
ary side of each exon, the number of collected k-mers is
not large. With the help of additional messages recorded
in each node, the maximum length of 16 bps is enough to
distinguish the majority part of those k-mers. Here is an
example of how we save the exon info for one node: sup-
pose one k-mer is found in the valid part of exon 1 and
exon 2, and it appears one time in exon 1 and two times in
exon 2. Then, the k-mer is converted into an integer and
set as the key of this node. Two exon information are asso-
ciated with this node: exon 1 info contains node position
and one link, while exon 2 info contains node position and
two links. Each link includes the key of its previous and
next node.

Finally, since the last node doesn’t have the next neigh-
bor and the first node doesn’t have the previous neighbor,
we set the value of this kind of next and previous neighbor
node as 0 with tag “U”. These two special nodes indicate
the ending and beginning of the path.

Find potential donor/acceptor sites
We first obtain the circRNA-related reads by using the
similar strategy of CircMarker: filter out reads that none
of sampled k-mers from the read has matches in the
graph. Both original reads and its reverse complemen-
tary are considered. If the original reads is failed to be
found back in graph, CircDBG will consider its reverse
complementary.

In order to identify the back splicing of circRNAs, we
need to search for the potential donor and acceptor sites.
The donor side comes from the ending part of the exon,
which is contributed by the starting part of the reads,
while the acceptor side comes from the starting part of the
exon, which is contributed by the ending part of the reads.

To find potential donor candidates, we sample four k-
mers from the beginning to the end of the reads, and
search for each k-mer’s hit in the graph. A valid hit means
the k-mer can be found in the graph and its next neighbor
in graph can be found in the reads. The exon supported
by at least two valid hits with tag T/E are collected as the
donor candidate. For the potential acceptor candidates,
we sample four k-mers from the end to the beginning of
the reads, and apply the similar procedure as that of the
donor candidate. There are two differences here: its pre-
vious neighbor is tracked and the valid hit should contain
the tag H/S. We also collect two additional k-mers from
reads for quality control. We try all combinations from the
donor and acceptor candidates. If the donor and acceptor
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come from the same exon, we think this is the poten-
tial self-circle case. Otherwise, it belongs to regular-circle
case if the donor and acceptor come from the same tran-
script in the order of back to front. If there are more than
one candidate for each circle case, we only consider the
candidate supported by the maximum number of quality
control nodes. See Fig. 4 for an illustration. Note that for
the regular-circle candidate, if donor and acceptor nearby
each other with the same sequence value, they may be
from genome repeats and this candidate is ignored.

Circular RNA detection
For each circRNA candidate, we try to find the first k-mer
in the reads from the beginning to the end that can find
hits in the graph with the same donor information iden-
tified in the current candidate. Then, we view this hitting
node as an anchor and iteratively search for its next neigh-
bor in the graph continuously. Once we get the path, we
save a “brief-path-donor” by only keeping the first three
nodes, the nodes with index divisible by 3 and the last
node which contains the terminal signal in its next neigh-
bor, as shown in Fig. 5. This brief path can speed up the
later comparison while keeping the same accuracy. Here,
when we check the full path in the graph, the search is ter-
minated if the path is longer than the length of the reads.
In addition, the candidate is ignored if the length of the full
path is too short. Similar procedure is applied to extract
the “brief-path-acceptor” by tracing the previous neigh-
bor continuously from the anchor node, which is the first
valid hit case with the same acceptor info from the end to
the beginning of the reads. The total length of these two

brief paths should be long enough or contain more than
two premium nodes by each of them.

Once those two brief paths are prepared, we check
if the nodes in “brief-path-donor” can find hits in the
reads from the beginning to end sequentially. We perform
“perfect match” for regular nodes. For the premium nodes,
we perform“loose match”: the node sequence is divided
into three parts and is viewed as a hit if at least two
parts could be matched perfectly. If the number of hits
is larger than our pre-defined threshold, we consider that
the donor side is well supported by current reads. Other-
wise, we apply a weak threshold if the hit nodes contain at
least one premium node to guarantee the donor junction
point to be covered by reads. The procedure of acceptor
verification is similar to that of donor case. The only dif-
ference is that we try to check if the nodes in “brief-path-
acceptor” can find hits in reads from the end to beginning
sequentially. Then, we check the distance between two last
mapping nodes in reads from those two brief paths respec-
tively. The circRNA candidate is kept only if the distance
is < 3 bps. See Fig. 5 for an illustration.

Finally, we merge similar candidates that share similar
boundary of both donor and acceptor site with maximum
8 bps differences by using the candidate with the shortest
summary length of donor and acceptor to represent the
final result.

Results
Comparing different circRNA detection methods is not
straightforward. The field lacks a gold standard for assess-
ing the accuracy of their genome-wide predictions [5].

Fig. 4 a Each node stands for k-mer. Four blue nodes represent the k-mers chosen from the head part of reads which are related to donor, while
four green nodes represent the k-mers from the tail part which correspond to acceptor. Two purple nodes with symbol # represent the quality
control nodes. Two self-circle cases and two regular-circle cases are found by the combination of donor and acceptor candidates. b Check whether
or not quality control nodes support each circular case. c “Regular-Circle Candi 1” and “Self-Circle Candi 2” are kept, since they are supported by
more quality control nodes than others in their case group respectively
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Fig. 5 Back splicing occurs from Exon 2 to Exon 1 which generates a circle. The blue node with symbol # is the anchor node of donor and the blue
path in graph represents the donor (Exon 2) by tracing backward from the anchor node. “Brief-path-donor” contains eight blue nodes in path,
including four premium nodes. Green path in graph represents the acceptor (Exon 1) by tracing forward from anchor node. “Brief-path-acceptor”
contains eight green nodes in path, including four premium nodes. Six nodes from the brief path of donor and acceptor can find hits in reads
respectively. Since there are more than 70% hits and the distance between nodes 6 and 7 is shorter than 3 bps, this reads is considered to support
the back splicing from Exon 2 to Exon 1

In addition, although several circular RNA databases
have been released recently, such as circRNADb [16] and
CircBase [17], the data in these databases come from pub-
lished papers which are obtained from existing circRNA
detection tools and only a few of those data have been ver-
ified through biological experiments. In this paper, we use
four different strategies for evaluation. All of these strate-
gies calculate the accuracy and sensitivity of each tool as
follows, where T is the total called circRNAs by a tool,
Thit is the number of called circRNAs which find matches
in the benchmark. “Benchmark” is prepared in different
ways for each strategy.

{
Accuracy = |Thit ||T | , where Thit = T ∩ Benchmark
Sensitivity = |Thit ||Benchmark|

In the first strategy, we use simulated data for compari-
son where the simulated circRNAs are benchmark.

We choose public database circRNADb in the second
strategy, and all records in database are viewed as reliable
circRNA. There are two goals of this comparison. First,
we want to examine how well the public database is sup-
ported by each tool. The larger coverage in database the
results from a tool has, the better the tool can support
the database. Second, we evaluate the bias of each tool by
checking the overlap between the results of the current

tool and others respectively. The larger overlap means the
lower bias.

In the third one, for real data, if two different datasets
come from the same tissue with different experimental
libraries, the intersection between the results of those two
datasets could be considered as the reliable results for
each tool, and the circRNAs supported by at least two
tools could be viewed as the benchmark.

In the last strategy, we use the intersection between
the results of RNase R treated and untreated data to get
the reliable results for each tool, and the circRNAs sup-
ported by at least 2 tools are viewed as benchmark. See
Additional file 1 (A. Benchmark used for comparison) for
details on benchmark.

Our experiments show that no single tool always has the
highest accuracy and sensitivity. Thus, we focus on com-
paring the balance between those two indicators by using
F1 score.

The F1 score is calculated by 2 × Precision×Recall
Precision+Recall . In our

cases, since there is no true negatives, and all non-true
positives are viewed as false positive, the precision and
recall are equal to accuracy and sensitivity respectively. So
the F1 score is equal to 2 × Accuracy×Sensitivity

Accuracy+Sensitivity .
Since some tools depend on annotation files whereas

some others don’t, and the majority part of back splicing
comes from the exons in genome, we choose circRNAs
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with junction points identified by annotated genome for
comparison.

The results of the second strategy are shown in
Additional file 1 (B. Real data: circRNADb with tissue
H9 hESCs). CircDBG finds more circRNAs recorded in
database than other tools, and it always gets the largest
coverage (20 of 23) in each chromosome respectively.
Moreover, CircDBG is the best tool with the lowest bias
(contain majority results of other tools) and the fastest
running time. The results of other three strategies are
presented below.

Simulated data
We use the latest simulator released by CIRI2 [8] to
simulate circRNAs and RNA-seq reads. The length of sim-
ulated paired-end reads is 101 bps, and the coverages of
circRNA and linear RNA are 10x and 80x respectively.
The error rate is 1%. The major/minor normal distribution
insertion length is 320/550, and the percentage of splicing
for skipping exon is 40%. The reference and annotation file
come from human chromosome 1 (GRCh37, version 18).

The simulated paired-end reads contain 1,115,738
pairs. 295 circular RNAs are simulated as benchmark.
Accuracy, sensitivity and F1 scores are calculated for each
tool.

As shown in Fig. 6, both accuracy and sensitivity of
CircDBG are around 94%, and it gets the highest F1 score
(0.9406). This means that CircDBG is the best tool for
balancing accuracy and sensitivity. CircDBG also has the
fastest running time.

Real data: two different prepared libraries from same tissue
This comparison is based on two different libraries from
the same issue. Intuitively, true circRNAs should be called
for both libraries. We get the reliable results for each

tool by taking the intersection between two differently
prepared libraries from the same tissue. The results that
are supported by both libraries are viewed as reliable.
RNA-seq reads SRR4095542 and SRR5133906 are used
for data analysis. The first library (43,488,788 paired-end
reads) is prepared by 3 glioma and paired normal brain
tissue. For the second library (54,732,199 paired-end reads),
ten human glioblastoma samples are mixed as tumor
group, and their periphery normal tissues are mixed as
control group. Total RNAs in the second library are
extracted and treated with RNase R to remove the linear
RNAs.

The length of reads is 150 bp in both libraries. Recall
that the intersection of the called circRNAs from two
libraries is used as the final result for each tool, and
circRNAs supported by at least 2 tools are viewed as
benchmark.

Our results are shown in Fig. 7. CircDBG has the highest
F1 score (0.9539). In addition, the accuracy of CircDBG is
98.65% with the highest sensitivity and the fastest running
time.

Real data: RNase R treated and untreated samples
This comparison is performed with RNase R treated and
untreated libraries. We collect two sets of treated and
untreated reads from homo sapiens and mus musculus
respectively. A circRNA is viewed as reliable if it can
be found by both RNase R treated and untreated reads
(linear RNAs tend to degrade by RNase R treatment).
SRR1636985 (treated, 13,309,745 paired-end reads) and
SRR1637089 (untreated, 44,933,450 paired-end reads)
from HeLa cells are used for human.

The length of reads in both libraries is 101 bps.
For mouse libraries, SRR2219951 (treated, 22,330,976
paired-end reads) and SRR2185851 (untreated, 32,939,809

Fig. 6 F1 score and running time on human simulated data a F1 score. Dotted line represents a fixed F1 score. The closer to top right, the higher F1
score it is. b Running time (in minutes)
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Fig. 7 F1 score and running time on human glioblastoma samples a F1 score. Dotted line represents a fixed F1 score. The closer to top right, the
higher F1 score it is. b CIRCExplorer takes more than 36 hrs and is not shown here

paired-end reads) are selected, which are prepared by
mouse brain at the age of 8 to 9 weeks.

The length of reads in the two groups varies with the
maximum 100 bps. For each species, we obtain final
results for each tool by taking the intersection between

the results based on treated and untreated reads and build
the benchmark by choosing the circRNAs supported by at
least two tools.

As shown in Fig. 8, CircDBG has the highest F1 score
and the fastest running time in both human (F1 Score:

Fig. 8 F1 score and running time on human and mouse samples a F1 score on human HEK293 real data b Running time on human HEK293 real
data. c F1 score on Mus Musculus real data and d Running time on Mus Musculus real data. CIRCExplorer takes 15 hrs and 21 hrs for human and
mouse respectively, and is not shown in b and d
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0.9589) and mus musculus (F1 Score: 0.9424). The accu-
racy of CircDBG in human and mouse are 98.24% and
99.25% respectively. CircDBG and CircMarker are the top
two tools that get the highest sensitivity in both human
and mouse libraries.

Case study: chimeric circular RNA
We develop a novel evaluation scheme, which analyzes
what reads contribute to the calling of circRNAs. In this
scheme, CircRNA reference is generated by linking the
ending part of donor exon with starting part of acceptor,
and the circRNAs detected by CircDBG are classified into
5 categories based on the alignment result of reads. See
Additional file 1 (C. Classification of circRNA by reads)
for details.

We notice that there is a special case when classify-
ing the detected circRNA with real data: some reads not
only support regular-circle case, but also support the self-
circle case for the exon contained by current regular-circle
case, which is illustrated in Fig. 9. This case may relate
to chimeric phenomenon in circular RNA which can be
comprehended as “circle in circle”.

We collect this type of chimeric circular RNA in real
data and find this phenomenon exists in all real data we
analyze. For example, in H9 hESCs, 102 chimeric cases can
be found among the total 11,931 circular RNA. Although
the percentage seems to be small, the number of the
chimeric cases is significant.

Discussion
CircDBG uses a specialized designed de Bruijn graph
to call circular RNA. First of all, the de Bruijn Graph
designed for regular usage, such as assembly, only con-
tains limited information. Differently, the graph created by
CircDBG contains a bunch of additional messages, such
as genome ID, transcript ID, its neighbors and part tag.
Specifically, multiple groups of those messages will be
recorded if the k-mer appeared in multiple different exons
or multiple different positions in one exon. Secondly, in
order to speed up the whole algorithm, CircDBG does
not use all k-mers from exons to create the graph, and

the unordered map is applied to store the graph, which is
different from other methods. Finally, CircDBG does not
scan the whole graph but only tracks the interesting path
to find potential circular RNA.

The literature of the algorithm on creating de Bruijn
graph is broad [18–21], however, it is hard to compare the
performance of de Bruijn graph created by CircDBG sep-
arately with other state-of-art methods. This is because
the purpose of our de Bruijn graph is to find circular
RNA rather than doing normal assembly. Therefore, the
de Bruijn graph needs to be designed and used in a dif-
ferent way as we mentioned above to make it compatible
with the whole algorithm for circular RNA detection. The
high efficiency data structure introduced by other state-
of-art methods cannot be applied to detect circular RNA
directly. In addition, since CircDBG is the first algorithm
that uses de Bruijn graph for circular RNA detection, we
do not compare the performance of de Bruijn graph sep-
arately with others. Moreover, since our purpose is to
find circular RNA, we only compare the performance of
the whole algorithm with other similar methods for cir-
cular RNA detection. Based on comparison results, the
de Bruijn graph created by CircDBG could let the whole
algorithm perform better than others.

Regarding time consumption, CircDBG belongs to
k-mer-based method. Generally speaking, k-mer-based
tools perform better than reads-mapping-based tools.
This is because reads-mapping-based tools are often com-
putationally inefficient, since mapping all reads can be
slow and many RNA-seq reads are irrelevant to circRNA.
Differently k-mer-based tools only look for the circRNA-
related reads for detection, and they do not depend on
any third-party mapping tool. Compared with the existing
k-mer-based methods, CircDBG also outperforms oth-
ers. This is because the existing tools scan each k-mer
of the reads to extract their affiliated messages from
k-mer table, while circDBG only scan some of k-mers
sequentially from the reads by taking advantage of “brief-
path-donor” and “brief-path-acceptor” to find the qual-
ified paths of circRNA, which is much faster and more
reliable.

Fig. 9 The first and the second part of reads support the regular-circle RNA case from exon 3 back to exon 1, while the first and the third part of
reads support the self-circle RNA case of exon 3
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CircDBG sets 5 and 16 as the number of continuous k-
mers and the length of k-mer (as shown in equation 1)
respectively by default. Theoretically, we can increase or
decrease the number of continuous k-mers. If this value is
increased, some of circular RNA, which are supported by
the short part of reads (imbalance cases), may be missing.
If this value is decreased, we may gain some false positives.
Based on our empirical study, “K+5” (6 k-mers) could give
us the reasonable results. As similar as the number of con-
tinuous k-mers, the length of k-mer can also be changed.
If the length is increased, some reads that do not match
well with the donor/acceptor site of circular RNA may be
discarded because the capability of error tolerance turns
to be weak. If the length is decreased, it may cause a large
number of unexpected repeats, which makes it’s hard for
us to identify the valid path in graph. Based on our testing,
15 bps length of k-mer could give us the reasonable result.

Since all of circular RNAs that contain the exon shorter
than k-mer will be ignored by CircDBG, we calculate two
statistic results, including the number of exon shorter
than k-mer and the number of circular RNA called by
different algorithms that contains the exon shorter than k-
mer. The sample comes from RNase R treated real data of
HeLa cells (SRR1636985). The default length of k-mer is
15 bps. The results show that there are total 612294 exons
contained by annotation file (homo sapiens GRCh37.75),
among which 3652 exons are shorter than 15 bps. 12533
circular RNA are detected in total by the tools that we
used for comparison, and 6 circular RNA contain the exon
shorter than 15 bps.

Most of reads-mapping-based circular RNA detec-
tion methods are pipeline, which require other third-
party tools such as BWA, Bowtie and Tophat-fusion.
As a result, the RAM usage for those methods is scat-
tered. Generally speaking, the k-mer-based methods, such
as CircMarker and CircDBG, consume more memory
than mapping-based approaches. However, since high-
performance computing (HPC) is wildly used to run
the software in the research field of bioinformatics, the
size of RAM that we can use in HPC is much larger
than personal computer. For our testing cases, we run
CircDBG in one computing node of HPC, and the
memory size of each computing node is 128 GB. The
peak RAM costs of CIRC2, Find-circ, CIRCExplorer,
CircRNAFinder, CircDBG and CircMarker are around
10.4%, 2.1%, 12.8%, 34.1%, 13.3% and 12.7% respectively
for the whole-genome analysis based on RNase R treated
sample of HeLa cells (SRR1636985, 13,309,745 paired-end
reads). Since the size of RAM in HPC is much larger
than what we need, sacrificing RAM to gain better perfor-
mance of analysis is reasonable.

Finally, since both CircDBG and CircMarker belong to
k-mer-based method, there is an example to demonstrate
CircDBG could avoid some false positives compare with

CircMarker. Suppose we have an exon and a read as below,
and the length of k-mer is 5. Therefore, the total number
of k-mer in reads is 20, and the k-mer “GTGAT” repeats
three times.⎧⎨
⎩ Exon : GTGATATGTGGGGTTGGTGATTTTCTCTGTGATCAGTGATGGG

Reads : GTGATATGGTGATGGGGTGATTTT

For CircDBG, the maximum length of detected valid
path is 4, which means the maximum number of contin-
uous k-mer in exon detected by CircDBG is 4 (“GTGAT”,
“TGATA”, “GATAT” and “ATATG”). For CircMarker, since
we only consider how many k-mers of reads could be
found back in exon, the number of valid k-mer is 17,
which means there are 17 k-mers in reads could be found
back in exon. Since the matching status calculated by
CircDBG is 4 out of 20, which is too low, this match-
ing case (potential site of circular RNA) will be discarded
by CircDBG. This is correct because this read does not
well match the given exon. However, since the matching
status calculated by CircMarker is 17 out of 20, which
means most of k-mers from reads (without consider their
orders) could be found back in exon, CircMarker views
this read as the strong supporter of this exon, which is
incorrect.

Conclusion
In this paper, we develop a new method called CircDBG
for circular RNA detection, which is based on de Bruijn
graph. The graph represents the relationship between k-
mers in original exon and reads. This contributes to more
accurate results and runs much faster compared with
the existing k-mer-based methods. CircDBG is the stand
alone tool and does not depend on any other third party
tools. CircDBG can be downloaded from: https://github.
com/lxwgcool/CircDBG.
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