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Abstract

Background: Barley is the world’s fourth most cultivated cereal and is an important crop model for genetic studies.
One layer of genomic information that remains poorly explored in barley is presence/absence variation (PAV), which
has been suggested to contribute to phenotypic variation of agronomic importance in various crops.

Results: An mRNA sequencing approach was used to study genomic PAV and transcriptomic variation in 23 spring
barley inbreds. 1502 new genes identified here were physically absent from the Morex reference sequence, and
11,523 previously unannotated genes were not expressed in Morex. The procedure applied to detect expression PAV
revealed that more than 50% of all genes of our data set are not expressed in all inbreds. Interestingly, expression PAV
were not in strong linkage disequilibrium with neighboring sequence variants (SV), and therefore provided an
additional layer of genetic information. Optimal combinations of expression PAV, SV, and gene abundance data could
enhance the prediction accuracy of predicting three different agronomic traits.

Conclusions: Our results highlight the advantage of mRNA sequencing for genomic prediction over other
technologies, as it allows extracting multiple layers of genomic data from a single sequencing experiment. Finally, we
propose low coverage mRNA sequencing based characterization of breeding material harvested as seedlings in petri
dishes as a powerful and cost efficient approach to replace current single nucleotide polymorphism (SNP) based
characterizations.
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Background
A priority of modern agriculture is to increase the produc-
tivity of crops to meet the demands of a growing human
population. The urge of achieving significant yield gains
is amplified by the current context of climate change,
competition for land, and limited natural resources [1].
Plant genetics and breeding are considered among the
disciplines that have the highest potential to tackle this
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challenge. One of the major approaches used in plant
breeding to increment yield gains is to exploit the natural
genetic variation present in the crop species’ gene pool.
Barley was domesticated more than 10,000 years ago in
the fertile crescent [2]. Its cultivation area has progres-
sively expanded to a wide range of latitudes, and it is now
the fourth most important cereal in the world [3]. Bar-
ley has also become an important model cereal species for
research, partly because its tolerance to stress surpasses
that of other major crops including wheat and rice [4].
Moreover, the diploid genome of barley facilitates genetics
studies.
To exploit the natural genetic variation present in

the gene pool of barley, genomic tools such as single
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nucleotide polymorphism (SNP) arrays have been devel-
oped [5]. The availability of a reference genome sequence
facilitates the use of next generation sequencing technolo-
gies for the discovery of novel sequence variants [6]. This
allowed e.g. to characterize most of the barley accessions
of the German ex situ genebank using a genotyping by
sequencing approach [7].
Genome wide quantification of gene expression has

also been accessible in barley since many years through
the development of gene expression arrays [8]. This
technology allowed addressing how the barley transcrip-
tome varied between tissues [9], and how it responded
to pathogens and to environmental cues such as ver-
nalization and heat [10–13]. eQTL studies with these
arrays further revealed a complex pattern of genome-
wide regulation of barley genes [14], and described how
limited pleiotropy acted on gene expression in a tis-
sue dependent manner [15]. With the release of a high
quality reference sequence, resequencing technologies are
successfully providing novel information on the barley
genome and transcriptome that had remained inaccessible
[16–18].
It is now accepted that a significant proportion of the

genes of plant genomes are not expressed (expression
presence/absence variation; ePAV) or are even completely
absent (genomic PAV; gPAV) in subsets of genotypes, and
make up what is known as the dispensable transcrip-
tome or genome [19–21]. The occurrence of PAV in crops
has extensively been reported for maize and rice [19–25].
However, up to now, little information is available con-
cerning the extent and distribution of PAV in the barley
genome [18, 26].
Prediction of phenotypic variation in the context of

genomic selection, which is nowadays an essential com-
ponent of plant breeding programs, is performed based
on SNP genotyping profiles. Previous studies on the use
of metabolome and lipidome variation to predict pheno-
typic traits of maize revealed high but lower prediction
accuracies compared to SNP information [27, 28]. Only
the use of microarray based transcriptome information
for prediction of phenotypic traits in maize resulted for
a subset of the traits in increased prediction accuracies
especially when combined with SNP genotyping informa-
tion [29]. However, the transcriptomic characterization of
genotypes by mRNA sequencing has the advantage that
also SNP information can be extracted from such a data
set. In addition, the cost of characterizing genetic mate-
rial by mRNA sequencing can be influenced by modifying
the sequencing depth. Despite these advantages, no earlier
study examined the prediction accuracies of predictors
extracted frommRNA sequencing data sets. Furthermore,
an evaluation of the prediction accuracy of PAV has to
our knowledge not yet been performed, despite that sin-
gle PAV have been shown to contribute to phenotypic

variation of selected traits in various crops (for review see
Gabur et al. [30]).
In this study, we explored the genomic and transcrip-

tomic landscape of 23 spring barley landraces and cul-
tivars which were selected based on their genetic and
phenotypic diversity as parents of a joint linkage and asso-
ciation mapping population. The objectives of our study
were to (i) characterize genomic and transcriptomic vari-
ation in the barley genome using multi-tissue mRNA
sequencing, (ii) assess the proportion of ePAV that are
due to gPAV, (iii) examine how accurately the different
layers of genomic and transcriptomic variation predict
phenotypic variation of various agronomic traits.

Results
To study genomic diversity in spring barley inbreds, we
first selected 23 inbreds from a panel of 224 repre-
senting a broad range of origins [31] (Additional file 1:
Table S1). mRNA was extracted from seedlings and
leaves of all of these 23 inbreds, and from apex of
a subset of six inbreds (Additional file 1: Table S1).
Gene expression was determined for each individual
sample by sequencing the mRNA. Out of the 73,187
expressed genes across seedlings, leaves, and apex sam-
ples, 11,523 genes mapped to regions of the Morex
reference genome where no gene had previously been
annotated (Additional file 1: Figure S1). We considered
a gene as newly annotated gene if it was detected in
at least two samples. A total of 3,482 genes mapped
to the unknown chromosome of the Morex reference
sequence, where 581 of these were newly annotated genes.
The average length of the newly annotated genes was
5,470 bp.
We additionally identified 1,502 new contigs, with an

average gene length of 494 bp, that did not map to any of
the seven barley chromosomes. These contigs were desig-
nated in the following as newly identified genes, although
a portion of these contigs might not actually be protein
coding genes, if they were expressed in at least two sam-
ples, and if they showed homology to at least one gene of
one out of eight plant species. In total, 96% of the homol-
ogous genes were found in other cereals of the Triticacea
tribe but not in more distantly related species (Fig. 1A),
indicating that they were not conserved across the plant
kingdom but might fulfill functions specific to barley and
closely related species. In addition, only 280 of the newly
identified genes had an unknown gene annotation com-
pared to the eight plant species. Altogether, 67% of the
newly identified genes were expressed in all three tissues
(Fig. 1B), making it unlikely that they are due to techni-
cal artifacts. We next tested if the newly identified genes
were found predominantly in isolated inbreds, or if their
presence was common across our set of spring barley
accessions. This analysis revealed that about 25% of newly
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Fig. 1 Characterization of the contigs established by a de novo transcriptome assembly of unmapped reads across all 23 inbreds. a Number of newly
identified genes which had based on BLASTn searches homology to at least one of eight different plant species. b Expression of 1,502 newly
identified genes in the three different tissues. c Number of inbred lines in which the contigs of the de novo transcriptome assembly were expressed.
Gray bar shows the contigs detected in only one sample. The 1502 genes, which were expressed in at least two samples, were marked in black and
were designated as newly identified genes
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identified genes were expressed in isolated inbreds, and
another 25% in all inbreds (except Morex, Fig. 1C).
The high number of genes absent in Morex inspired

us to systematically explore ePAV among the 23 inbreds.
ePAV were defined as genes whose expression was
detected/not detected in at least two inbreds. A total
of 38,810 barley genes were detected as ePAV, of which
28,340 had previously been annotated in the refer-
ence genome (Additional file 1: Table S2). ePAV were
enriched in genes implicated in very diverse biologi-
cal processes (Additional file 1: Table S3). The aver-
age length of ePAV (4162 bp) was significantly shorter
than that of non-ePAV genes (9458 bp). In contrast,
the average coding sequence length of ePAV (411 bp)

was longer than that of non-ePAV genes (282 bp). Non-
ePAV genes only rarely corresponded to newly identified
genes or newly annotated genes (Fig. 2), and in fact,
80.6% of the newly annotated genes and 78.8% of the
newly identified genes were also detected as ePAV
(Additional file 1: Table S2). ePAV were significantly (P
<0.05) unevenly distributed along the chromosomes, with
the highest frequency of occurrence close to the cen-
tromers (Fig. 3).
The robustness of our ePAV detection procedure

was evaluated using a resampling simulation. In 50
replications, 20% of the gene length of each gene was
used for transcript calling and ePAV detection. Across
the 50 replications, the average number of genes as well

Fig. 2 Gene expression of all inbreds. Presence and absence of the 73,187 genes across all inbreds. Genes were sorted according to their presence
across all inbreds (top to bottom). Presence of a gene is highlighted as colored and absence as white bar. The last column illustrates the three
different gene categories as white (IBSC), blue (newly annotated), and red (newly identified) bars
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Fig. 3 Distribution of expression presence/absence variation (ePAV) across the physical map of the barley chromosomes. Proportion of ePAV among
all genes within sliding windows of 20 Mb is given on the y-axis. The green line shows the average proportion of ePAV among all genes of a
chromosome and the P value indicates, if the distribution deviates significantly from an uniform distribution. The yellow line illustrates the
centromeric region

as the number of detected ePAV was about 67,000 and
35,400, respectively, only slightly lower than the 73,187
and 38,810 detected when considering the entire gene
length (Additional file 1: Table S2).
Information on the proportion of ePAV that are due

to gPAV is generally scarce. In order to estimate it,
we used SNP genotyping profiles of segregating pop-
ulations. The 23 inbreds had previously been crossed
following a double round robin design [32] to gener-
ate a joint linkage and association mapping population.
SNP genotyping profiles obtained with a 50K SNP array
were available for these 45 populations. We searched
for SNP for which missing data were segregating as a
monogenic character, and used this pattern to assign pres-
ence/absence calls to the parental inbreds. Using such
SNP located within genes, which we refer to as gPAV-
SNP, we calculated the proportion of gPAV-SNP that were
also detected by our procedure as ePAV, and consid-
ered this value as an estimation of the power to detect
gPAV by our ePAV detection procedure (Additional file 1:
Figure S2).
Based on the criterion that a gene is considered an

ePAV if it has a present and an absent call in at least
two inbreds, the power of gPAV detection was 34.6%
(Table 1). This means that out of all gPAV, which we
detected based on gPAV-SNP from the SNP array data,

we identified 34.6% of it as ePAV in our mRNA sequenc-
ing data. It could be possible that parts of genes are still
expressed even though a small fragment of their sequence
was deleted. In this case, the genes would have a pres-
ence call though the region around the gPAV-SNP were

Table 1 Detection procedure of presence/absence variation

Expression Expression

of gene of ±5bp genic SNP

Tissue t 1-β∗ α∗ o 1-β∗ α∗ o

Leaf&Seedling&Apex 1 45.0 88.8 88.6 64.2 90.8 85.3

2 34.6 87.5 81.8 53.0 90.1 81.8

3 30.1 86.7 79.5 44.8 90.0 79.5

4 25.1 87.0 77.3 38.4 89.8 77.3

5 21.4 86.5 77.3 32.7 89.7 77.3

Leaf&Seedling 2 35.2 87.5 81.8 52.4 90.3 79.5

Leaf 2 34.0 89.0 73.8 45.9 91.2 72.2

Seedling 2 28.1 86.7 76.7 45.9 90.5 76.2

Statistical power (1 − β∗) and the empirical type I error rate (α∗) to detect
genomic presence/absence variation (gPAV) by expression PAV (ePAV), where t is
the minimum number of inbreds that must have a present and absent call for a
gene, o the percentage of common presence/absence values across all inbreds
between ePAV and the genic PAV-SNP. We considered two scenarios: (i) the
expression across the entire gene or (ii) the expression determined in a 10 bp
window around the genic SNP was used to determine ePAV.
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not covered by reads. For this reason, we also calculated
the power of our procedure when detecting ePAV exclu-
sively based on the 10bp sequence window surrounding
the gPAV-SNP instead of using FPKM-values for the entire
gene sequences. In this case, the power increased to 53%.
The empirical type I error rate, defined as the propor-
tion of ePAV that are not gPAV, was about 90%. Finally,
the similarity between presence/absence patterns in the
23 inbreds of ePAV and gPAV-SNP was very high, ranging
from 70% to 90%.
We were interested in knowing how independent the

detected ePAV are from the local genomic pattern. First,
the mRNA sequencing data was used to call sequence
variants (SV) within exon sequences. A total of 133,566 SV
were detected. We then determined the extent of linkage
disequilibrium (LD) between each ePAV and neighboring
SV located within 100 kb. Only 17.5% of all ePAV have at
least one SV within 100 kb that has an r2 ≥ 0.4 (Table 2).
This figure is even lower than for SV that are located out-
side the 100 kb window. In contrast, more than 85% of
SV that are neighboring an ePAV show an r2 ≥ 0.4 with
another SV within 100 kb. Therefore, ePAV provide an
additional layer of genetic information compared to SV.
This idea was confirmed by comparing principal compo-
nent analyses (PCA) performed based on SV and ePAV.
Both PCA revealed the existence of two clusters of inbreds
defined by the row type of the inbreds (Additional file 1:
Figure S3). Principal components 1 from both PCAs were
significantly correlated with each other (r2 = 0.4928709,
p= 0.0002706), and a similar result was observed for prin-
cipal components 2 (r2 = 0.3980411, p = 0.001643). How-
ever, these analyses also reveal that the relationship of the
inbreds within clusters differs between the two sources of
molecular variation. A similar trend was observed when
comparing the transcriptomic variation (T) with that of
ePAV and SV. Mantel tests of distance matrices calcu-
lated from T, SV, and ePAV data indicated only significant
correlations between the seedling transcriptome and SV
(r = 0.2581, p = 0.03969).

Table 2 Linkage disequilibrium between expression
presence/absence variation (ePAV) and sequence variants (SV)

r2 [1.0,0.8] (0.8,0.6] (0.6,0.4] (0.4,0.2] (0.2,0]

Percentage of r2max between ePAV and SV

linked 0.0 0.0 17.5 49.9 31.1

unlinked 0.0 0.1 23.4 54.0 22.1

Percentage of r2max between closest SV beside ePAV and SV

linked 0.0 34.1 52.9 12.9 0.0

unlinked 0.0 21.1 52.7 25.2 0.0

Percentage of expression presence/absence variant or its closest neighboring
sequence variant that show a maximum linkage disequilibrium estimate r2max to the
SV 100 kb up and downstreams of it (linked) or outside that interval (unlinked) for
five r2 classes.

Therefore, we examined the prediction accuracy that
can be obtained when predicting the traits leaf angle,
heading date, and plant height, for which h2 values
between 0.69 and 0.76 were observed. In order to obtain
unbiased estimates of the prediction accuracy, we ran-
domly subdivided in 1000 cross-validation runs the 23
inbreds in training and validation set. Prediction accura-
cies of SV, T, and ePAV were compared to the prediction
accuracy of the SNParray data set that we used as the
baseline predictor. Themedian prediction accuracy across
1000 cross-validation runs observed for the SNParray data
set ranged from -0.49 for heading date to 0.70 for leaf
angle (Additional file 1: Figure S4).We observed across the
three traits a slightly higher prediction accuracy for the SV
extracted from the mRNA sequencing data set compared
to the SNParray. An even higher prediction accuracy was
observed when using ePAV as predictor. The seedling
transcriptome (Ts) resulted across the three traits in the
highest median of prediction accuracy of all the examined
single predictors.
We also evaluated the pairwise combinations of sin-

gle predictors and observed for all traits an increase of
the prediction accuracy compared to using Ts. There-
fore, a grid search in which the relative weights of the
relationship matrices of two or three predictors varied in
increments of 0.1 prior to summing them up, was used
to identify those combinations of SV, ePAV, and Ts that
resulted in the highest prediction accuracies. For all three
traits, the highest median of the prediction accuracy was
observed when using more than one predictor (Fig. 4).
Furthermore, a common trend was that the optimal
weight of Ts, i.e. the weight that maximizes the prediction
accuracy, was at least 40%, whereas the optimal weight
of ePAV and SV differed among traits. We examined the
prediction accuracy of single predictors as well as opti-
mal combinations of predictors determined from seedling
samples sequenced at different depths. Across all traits,
we observed that the prediction accuracies decreased for
decreasing sequencing depth (Fig. 5). However, the extent
of reduction differed between the different predictors and
was most pronounced for the SV. The prediction accura-
cies observed for the optimal combinations of predictors
reduced for the three traits only slightly with decreas-
ing sequencing depth. Even with a sequencing depth that
corresponds to 0.5% of that of our study, prediction accu-
racies higher than that of the prediction with the SNParray
data set were obtained. However, the variability of the
prediction accuracy across the different runs of the resam-
pling simulations increases with a reduced sequencing
depth.

Discussion
Transcriptomic variation in barley
Across the 23 inbreds of our study, we have identi-
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Fig. 4 Prediction accuracy for three different traits. Prediction accuracy for the barley inbreds for leaf angle, heading date, and plant height, for 66
cases which differ in their weights for the predictors sequence variants (SV), expression presence/absence variation (ePAV), and gene expression in
seedlings (Ts). Their corresponding relationship matrices were joined with weights varying from 0 to 1 in increments of 0.1. Weights for SV and ePAV
are shown at the respective scales; weights for gene expression are = 1 - weight of SV - weight of ePAV. Plotted values represent medians of
prediction accuracy across 1,000 cross-validation runs. Heat color schemes differ for the three traits ranging from white, indicating the respective
highest value, to red for the respective lowest value

fied 11,523 previously unannotated genes that are not
expressed in Morex. Furthermore, we assembled 1,502
newly identified genes that are physically absent from the
Morex genome, and are therefore part of barley’s dispens-
able genome. Both numbers are in the range of what was
previously reported for barley [17, 18] as well as maize
[20, 21]. These genes were added to the standard

International Barley Sequencing Consortium (IBSC) gene
list and the resulting list was the basis for all following
analyses.
Across the three tissues, we observed that about 53%

of the total number of genes were detected as ePAV
(Additional file 1: Table S2). Despite our lower sample
size and the use of three tissues, which both reduce
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Fig. 5 Prediction accuracy for reduced number of mRNA sequencing reads. Prediction accuracy for the barley inbreds for leaf angle, heading date,
and plant height of single predictors as well as the optimal combination identified in a grid search (Opt) using the original number of reads of the
seedling sample as well as using data sets for which the number of reads was randomly reduced to 10, 5, 1, and 0.5% of the original number of reads
per seedling sample. The number of variants gives the mean number of features available for predictions in each scenario or for the combined
predictors the weight of sequence variants (SVs)/expression presence/absence variation (ePAVs)/gene expression (Ts) resulting in the highest
prediction accuracy. The median prediction accuracy is given above each column
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the number of detected ePAV, this figure is consider-
ably higher than the maximum 30% that were observed
for maize [20, 21]. Because the proportion of ePAV
detected here is consistent with other studies in bar-
ley [18], the discrepancy of our results and those from
maize possibly imply that the proportion of ePAV within
a pan-transcriptome is species specific. Due to the unique
domestication histories of every crop, selective pres-
sures may have acted differently on dispensable genomes
and transcriptomes, especially in cases where PAV vari-
ation provided benefits [30]. It is also possible that large
genomes rich in repetitive sequences and transposable
elements such as the genome of barley contain higher
numbers of non-essential genes, whose loss of function
has no major impact on plant physiology and can be
tolerated by the organism.
We observed that ePAV genes were significantly shorter

than an average barley gene. A similar observation was
made by Bush et al. [33] in Arabidopsis thaliana. Tan et al.
[34] described the same trend, although in this case the
authors reported variations in gene size (200 bp) that were
much smaller than the variations between PAV and non-
PAV genes detected by us (5 kb) and by others (1.5 kb)
[33]. Another feature that we observed for ePAV genes
is that the likelihood that a gene is an ePAV is signifi-
cantly (P <0.05) unequally distributed across the genome.
We observed the highest proportion of ePAV among the
present genes in centromeric regions (Fig. 3). This might
be explained thereby that selection is less efficient in
lowly recombining regions of the chromosome compared
to highly recombining pericentromeric regions to purge
presence/absence variation that was created by evolution-
ary processes during plant polyploidization and specia-
tion [30]. gPAV and ePAV were shown to be enriched in
genes implicated in disease resistance and stress responses
[18, 26, 34–36]. However, the gene ontology (GO) term
analysis of the ePAV detected here did not reveal an
enrichment of genes implicated in these processes, nei-
ther in any other process that could be related to crop
performance or adaptation (Additional file 1: Table S3).
Further research is required to understand the reason for
this difference.

Detecting gPAV bymRNA sequencing
The absence of a gene in a genotype, i.e. the gene is an
ePAV, has two possible causes: either the corresponding
gene is transcriptionally inactive or it is physically absent
from the genome, i.e. it is a gPAV. We were interested
in estimating the proportion of ePAV that are due to
gPAV. In order to do so, we detected in analogy to Gabur
et al. [37] gPAV from the segregation of missing data in
biparental populations. This allowed us to estimate that
by characterizing the expression of genes in one tissue,
we are able to detect about 30% of the existing gPAV.

However, a SNP for which a systematic segregation of
missing data was observed and that was designated as a
gPAV does not necessarily mean that the entire gene in
which the SNP is located is missing and therefore not
expressed. Instead, the gPAV can be also caused by partial
insertion/deletions of the corresponding gene. Therefore,
we also examined the power to detect gPAV (1-β∗) for
a scenario in which only the gene expression in a win-
dow of 10 bp around the SNP was considered. In this
case of using a single tissue to detect gPAV, the propor-
tion of gPAV that are detected by our ePAV procedure
increases to about 46% (Table 1). These findings indicated
that our ePAV detection procedure is therefore powerful
in detecting gPAV. Furthermore, we observed that 1-β∗
can be increased even more, if multiple tissues were stud-
ied. However, this increase was not of such a size that it
justifies the additional resources.
In addition to estimating the power of gPAV detection

1-β∗, we were also interested in estimating the proportion
of ePAV that are not due to gPAV α∗. α∗ was approxi-
mately 90% in our data set (Table 1), meaning that 10% of
the ePAV are caused by the physical absence of the gene
and not by impairment of its transcription. This propor-
tion is considerably higher than the 1% reported in maize
[21]. An explanation for this finding might be that dele-
tions of entire genes and perhaps of even larger segments
of DNA are better tolerated in barley than maize. There
is not enough available information on structural varia-
tion in the barley genome to be able to compare deletion
sizes and frequencies between barley and maize, but it is
possible that the presence of long stretches of repetitive
elements in barley may have an influence on this pro-
cess. Another explanation could be the differences in the
methodologies between both studies. Jin et al. [21] had
used resequencing data to detect gPAV, where our pro-
cedure based on patterns of missing data in segregating
populations could be more sensitive.

Number of dispensable genes in the barley genome
We can estimate from the above described estimates of
1-β∗ and α∗ that about 10% of the about 38,000 ePAV,
i.e. 3,800, are gPAV. With a power 1-β∗ of about 50% of
our ePAV procedure to detect gPAV, the total number of
gPAV is expected to be around 7,600 for barley. Therefore,
our results suggest that more than 10% of the barley genes
show PAV on a genomic level. This figure is similar to what
was observed in the analysis of 80 Arabidopsis accessions
(9%) [34], but was higher compared to other cereal
species. Springer et al. [23] estimated that 8.6% of all genes
were gPAV in maize. However, their set of analyzed geno-
types included, in addition to 19 maize inbreds, 14 wild
ancestors, and therefore encompassed a higher genetic
diversity compared to our study. As this increases the
proportion of detected gPAV, it suggests that cultivated
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maize might have a lower gPAV diversity than barley.
Consistently, a study in rice also including cultivars and
wild relatives estimated to 10% the proportion of gPAV
[35], suggesting that rice may also have a lower gPAV
diversity than barley. But beyond the proportion of gPAV
that a species may contain comes the question of what
impact on plant physiology and performance this vari-
ation might have. Despite clear examples of gPAV con-
trolling agronomic traits in different species, it has been
proposed that most gPAV are not essential and are recent
additions to plant genomes [33]. Further data will be
necessary to elucidate why enrichment of functional cat-
egories occur in certain data sets and not in others, and
whether PAV variation has played a more important role
in the evolution of crops compared to non-crop species as
studies so far seem to suggest [30, 33].

Genomic and transcriptomic prediction
Genomic prediction is becoming a standard tool for plant
breeders to increase the gain of selection [38]. The current
implementation of genomic selection is mainly based on
the use of SNP markers assessed by SNP arrays or geno-
typing by sequencing methods (for review see Crossa et al.
[39]). However, we have observed considerable variation
of T as well as ePAV and, very importantly, this variation
was largely independent from the variation explained by
neighboring SNP (Table 2). Therefore, the accuracy of T
and ePAV to predict phenotypic traits was assessed.
We have observed that for all three examined traits both

types of information that were extracted from the mRNA
sequencing data set, the SV as well as the ePAV, resulted in
higher prediction accuracy when using GBLUP compared
to the classically used SNP data generated with a 50K
SNParray (Additional file 1: Figure S4). For SV, that might
be explained by the higher number of features compared
to the SNParray information, which in turn increases the
extent of LD between the SNP and theQTL [40]. However,
for the ePAV this was not the case. Instead, the superior-
ity of the ePAV information compared to the SNParray for
the prediction of phenotypic traits might be due to that
ePAV are only caused to 10% by gPAV but cover also gene
expression differences. The transcriptome T is expected
to incorporate gene expression and physiological epista-
sis [41] and therefore has a considerably higher prediction
accuracy compared to SV or SNParray (Additional file 1:
Figure S4), even when modelling statistical epistasis.
However, we also observed differences in the predic-

tion accuracy of T depending on the tissue that was used
for mRNA extraction. The prediction accuracies were
on average across the three examined traits considerably
higher for Ts compared to Tl data set. This finding might
be explained either by the fact that the number of cell
types that were included for mRNA extraction were more
diverse for the former than the latter and thereby increases

the number of features from 60,888 to 67,844. Another
non mutually exclusive possible explanation is that the
time of heterogenous environmental factors to influ-
ence the genotypes was lower for the seedling samples
compared to the leaf samples. And in the set-up used in
our study of unreplicated plants for sample collection such
heterogenous environmental factors cause together with
genotype*environment interaction a reduction of the pre-
cision of the measurement of the predictor. This in turn is
expected to reduce the prediction accuracy. Our finding
indicated that the transcriptome of seedlings grown on fil-
ter paper is a good proxy of the gene activity for a broad
range of developmental stage of plants grown in a diverse
set of environments.
Schrag et al. [29] derived from a comparison of pairs

of single predictors with their combinations the following
two conclusions. First, combining the best single predictor
for a certain trait with another predictor did not improve
predictions and in some cases rather impaired predictive
ability. Second, combinations that did not comprise the
best single predictor tended to be superior to both com-
ponents individually. Both of them were not in agreement
with our findings. Instead, we have observed a comple-
mentarity between the best single predictor Ts and SV and
even between Ts and ePAV (Additional file 1: Figure S4).
Therefore, a grid search was used to identify those

combinations of SV, ePAV, and Ts that maximize the pre-
diction accuracy. For all three traits, the highest median
of the prediction accuracy was observed when using more
than one predictor (Fig. 4). In contrast to the results of
Schrag et al. [29] and Xu et al. [35], we have observed
rather small differences between the optimal weight of the
three predictors across the three examined traits, despite
that these were assessed at completely different develop-
mental stages. The likely explanation for this difference
is that, in contrast to Schrag et al. [29] and Xu et al.
[35], we focused on genetic and transcriptional predictors
and did not include features derived from metabolome
analyses, which represent a completely different level of
information.

Application in breeding
In the above described grid search, the SV and ePAV
data sets were extracted from the mRNA sequencing data
of multiple tissues. A cost efficient integration of our
approach in practical breeding programs would require
that all data sets are extracted from the sequence exper-
iment of one tissue. Due to the above described quan-
titative genetic advantage of the seedling sample but
also the logistical advantages of using seedling sam-
ples that are generated on filter paper in petri dishes:
they require a much lower amount of space, person-
nel and material resources, allow a season indepen-
dent cultivation, as well as can be generated faster
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as the turn over time is shorter, they were studied
in detail.
The prediction accuracy of the original sequencing

depth was not influenced by predicting the phenotypic
traits from SV and ePAV features extracted from the
seedling sample instead from the three tissues. This can
be explained by the fact that the SVs can be adequately
assessed also with one tissue and differences between
ePAVs and ePAV are compensated for by Ts. The pre-
diction accuracy observed for this scenario is consider-
ably higher compared to using the SNParray information.
However, the cost of genotyping one sample with the bar-
ley 50K SNParray is with about 50 Euro [42] also less
than the mRNA sequencing analysis. When generating it
newly with latest protocols and sequencing chemistry one
could expect that the mRNA sequencing of one sample
would cost about 2 Euro for themRNA library preparation
[43] as well as 60 Euro for 20 million 2x150 bp reads. In
addition, breeding companies use for their routine geno-
typing in many cases smaller SNP arrays than the
one used in our study. This would reduce the costs
even more, but will decrease the prediction accu-
racy, especially, if diverse genetic material is used
[44] as in our study. Therefore, we performed down-
sampling simulations to examine the reduction of
the prediction accuracy if the sequencing depth is
reduced.
The prediction accuracies observed for the optimal

combinations of single predictors reduced for the three
traits only slightly with a decreasing sequencing depth.
The main limitation to reducing the sequencing depth
to values below 1% of that of our study, i.e. about 2x105
2x150 bp reads, is not the reduction of the median of
the prediction accuracy but the increasing standard devi-
ation (Fig. 5). This increase is caused by the increasing
sampling variance of the low depth sequencing. How-
ever, our results indicate that down to 5% of our data
set, i.e. about 1x106 2x150 bp reads, the obtained predic-
tion accuracy was in more than 95% of the resampling
runs higher than that obtained with the SNParray data set.
Such a transcriptomic characterization would cost about
5 Euro and is therefore also less expensive than current
GBS approaches with the advantage of higher prediction
accuracies. Therefore, we consider mRNA sequencing
based characterizations of breeding material harvested
as seedlings in petri dishes as a powerful and cost effi-
cient approach to replace current SNP based character-
ization. For species that are bred in breeding categories
other than inbred lines, the phenotypic evaluation is
even more expensive [45] than for species bred as inbred
lines. Therefore, an approach as suggested above will
increase the gain of selection for such species even more,
as the cost advantage is higher than in species bred as
inbred lines.

Conclusion
We have used mRNA sequencing as an approach to
explore the dispensable genome and transcriptome of bar-
ley in 23 spring barley inbreds, and estimate that 53% of
genes are ePAV. Our analyses suggest that about 10% of
ePAV in barley are due to the physical absence of a gene in
an inbred (gPAV). We have observed that the omic varia-
tion that was extracted from the mRNA sequencing data
set, the sequence variants (SV), the ePAV, as well as the
transcriptome (T) resulted individually in higher predic-
tion accuracies compared to the classically used SNParray
data set. This superiority was even more pronounced
when using optimal combinations of SV, ePAV, and T to
predict phenotypic traits. Finally our results suggest that
low coveragemRNA sequencing based characterization of
breeding material harvested as seedlings in petri dishes is
a powerful and cost efficient approach to replace current
SNP based characterization.

Methods
Plant material
Our analyses were based 23 spring barley inbreds that
were selected out of a worldwide collection of 224 inbreds
[31] (Additional file 1: Table S1) using the MSTRAT
algorithm [46]. For these inbreds, the maximal combined
genotypic and phenotypic richness index was observed.
Seeds of the 23 spring barley inbreds were sown in con-
trolled greenhouse conditions with 16 hours light and
eight hours dark at 22 °C. A fragment of the youngest fully
developed leaf from two different plants was collected
for each inbred. The collection of all samples was done
within one hour tominimize the variation due to circadian
rhythms. For a total of six inbreds, apices were harvested
at stage 47 of the Zadoks scale [47]. Young seedlings were
harvested in an independent experiment. Seeds were sur-
face sterilized with 1% bleach and rinsed with sterile water.
Eight seeds per inbred were placed between two layers
of sterile filter paper soaked with 5 mL of sterile water.
The petri dishes were placed in the greenhouse with the
above described environmental conditions. Five days after
germination, two seedlings were sampled for each inbred.
All collected samples were immediately flash frozen in
liquid nitrogen. The above described experiments were
performed in accordance to the experimental design of
related studies [20, 21] with one biological replicate only,
as the replication of alleles is provided among genotypes.
For the assessment of phenotypic traits under field

conditions, the 23 spring barley inbreds were planted
as replicated check genotypes in an experiment with
other entries which was layed out as an augmented
row column design. This experiment was performed in
three environments (Cologne 2017 and 2018 and Mech-
ernich 2018) as single row plots with 10 plants/plot as
well as in a fourth environment (Quedlinburg 2018) as
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double row plots with 40 plants/plot. At each of the
four agro-ecologically diverse environments in Germany,
the 23 barley inbreds were replicated 21, 20, 19, and
19 times, respectively. For each experimental plot, three
traits were assessed. The leaf angle of about four weeks
old plants was scored on a scale from 1 to 9, where 1
indicates erect leaves and 9 prostrate leaves. The head-
ing date was assessed as number of days after planting.
Furthermore, the plant height in cm was assessed after
heading.

SNP genotyping and quantification of gene expression
An Illumina 50K barley SNP array [5] was used to geno-
type the 23 inbreds. This data set is designated in the fol-
lowing as SNParray. The same array was used to genotype
between 35 and 146 F5 progenies of 45 segregation popu-
lations which were derived from double-chain crosses [32]
of the 23 inbreds (Casale et al. in preparation).
mRNA was extracted from leaf, seedling, and apex

samples (cf. Digel et al. [16]). A total of 52 polyA
enriched mRNA libraries were prepared. The 150 bp
paired-end Illumina sequencing libraries with individu-
ally barcoded samples were sequenced on an Illumina
HiSeq2000 sequencer (Illumina, Inc., San Diego, CA
USA). Reads were trimmed using trim_galore and then
mapped against the unmasked barley reference sequence
[6] using HISAT2 [48]. Trinity was used to perform a de
novo assembly of the unmapped reads of all inbreds [49].
The assembled contigs that were expressed in at least two
tissue samples were BLASTn-searched against a human
and viral database, to exclude contigs that are due to con-
taminations (e-value ≤1e-5, identity ≥95.0%). Then, the
contigs were searched against a barley database to remove,
based on the same thresholds, genes which are too similar
compared to barley reference genes. All contigs that had
a homology (e-value ≤1e-5, identity ≥98.0%) to an anno-
tated protein in at least one of the species Arabidopsis
thaliana, Brachypodium distachyon, Sorghum bicolor,
Zea mays, Oryza sativa, Triticum aevisticum, Triticum
dicoccum, and Secale cereale were retained. The contig
with the maximum coverage was chosen as representative
contig for each gene [6]. These contigs were designated as
newly identified genes.
Transcript calling was performed with StringTie [50]

using a gene annotation file that comprised low and high
confidence genes of transcripts defined in the barley ref-
erence genome [6] and the newly identified genes of the
de novo assembly.
Genes which mapped to the reference sequence and were
expressed in at least two samples, but which were not
available in the IBSC-reference annotation file were des-
ignated in the following as newly annotated genes. The
gene expression quantified as fragments per kilobase of
exon model per million fragments mapped (FPKM) is

designated in the following as T, where the indexes l,
s, a were used to separate the tissues leaf, seedling,
and apex.

Identification of ePAV
For each tissue, a presence call was made for each inbred-
gene combination in the matrix of presence/absence calls,
if T >0 and an absence call if T = 0. No call was made
for the inbreds with 0< T <10% of the maximum value
of T for a gene-tissue combination (cf. Jin et al. [21]).
Tissue specific ePAV calls were combined to an across
tissue ePAV call as follows: If the presence/absence call
made for all tissues of one inbred-gene combination was
identical, this call was kept. For all inbred-gene com-
binations with a presence call for at least one tissue, a
presence call was kept in the across tissue matrix of pres-
ence/absence calls. An absent call was kept in the across
tissue matrix of presence/absence calls for all inbred-gene
combinations with only no or absent calls across tissues.
These genes were designated in the following as ePAV
which have an across tissue ePAV call of present and
absent each for at least two inbreds (cf. Jin et al. [21]).
We used in analogy to Gabur et al. [30] the segregation

of missing data in biparental populations to determine
the percentage of ePAV that are due to gPAV. For the
SNP from the SNParray dataset for which no missing data
was observed, the Q90 of the major allele frequency was
calculated per population to consider random deviations
from an allele frequency of 0.5. For each population, each
SNP was assigned to one of three categories based on the
proportion of missing data: A: [0, Q90), B: [Q90,1-Q90], C:
(1-Q90, 1]. Category A to C can be interpreted as both
parental inbreds have a present call, one parental inbred
has a present and one an absent call, both parental inbreds
have an absent call, respectively. A parental inbred was
assigned an absent call at a SNP, if all populations derived
from that parent were of category B or C. A parental
inbred was assigned a present call at a SNP, if all pop-
ulations derived from that parent were of category A or
B. These 1,972 SNP that have a present and absent each
for at least one inbred were designated in the following as
gPAV-SNP (Additional file 1: Figure S2). A total of 14,843
barley genes comprised in their coding sequence one SNP
from the SNParray and were designated in the following as
genic SNP.
The 1,105 gPAV-SNP that were genic SNP and that were

not within 30 bp of an insertion were designated as genic
PAV-SNP.
The statistical power (1-β∗) to detect gPAV by mRNA

sequencing was calculated as the percentage of genic
PAV-SNP that were located within the coding sequence
of ePAV. Furthermore, the empirical type I error (α∗) of
our ePAV procedure was estimated as the proportion of
genes that comprised a genic SNP, no genic PAV-SNP, but
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were detected as ePAV out of the total number of detected
ePAV. In addition, we calculated the proportion of cor-
rect allele assignments (o) as the proportion of common
presence/absence ePAV calls and presence/absence calls
at genic PAV-SNP across all 23 inbreds. We estimated 1-
β∗ and α∗ firstly for ePAV determined based on T of the
entire gene as well as based on T calculated for 10 bp large
windows surrounding the genic SNP.
A resampling procedure was used to determine the

robustness of our ePAV detection procedure. For each
gene, randomly 20% of the entire gene length were
selected and transcript calling and ePAV detection were
performed. This was repeated 50 times and the average of
number and proportion of detected ePAV was calculated.
The null hypothesis of a uniform distribution of ePAV
across the genome and chromosomes was tested by a per-
mutation procedure. The difference of mean gene length
of ePAV and non-ePAV was tested for its statistical sig-
nificance using a t-test. GO term enrichment analysis of
ePAV was performed using the R-package topGO [51].
GO terms of newly annotated genes and newly identi-
fied genes were defined based on those available from the
agriGO-database of homologous genes as described by
Mascher et al. [6].

Population genetic analyses
Variant calling was performed with samtools and bcftools.
Sequence variants “SV” with mapping quality < 55 were
removed from the analysis. If the sequencing depth of a
SV was smaller than 5, the allele call was set to “NA”. SV
with a heterozygosity >10% were discarded and the alle-
les at remaining heterozygous sequence variants were set
to “NA” for the corresponding inbreds. Biallelic sequence
variants with a maximum of 20% missing information
were retained. If the allele call was different between
the tissues of the same inbred, the call with the higher
sequencing depth was retained. Missing values in the
matrices of SV and ePAV were mean imputed.
Associations among inbreds based on SV, ePAV, as well

as T were revealed with a principal component analysis
[52]. Pearson’s correlation coefficients were calculated
between euclidean distance matrices of SV, ePAV, and T.
Linkage disequilibriummeasured as r2 [53] was calculated
between ePAV and linked/unlinked SV.

Genomic prediction
Each of the three phenotypic traits leaf angle, heading
date, and plant height was analyzed across the four envi-
ronments using mixed models. This allowed to estimate
adjusted entry means as well as the heritability on an entry
mean basis.
The adjusted entry mean of each barley inbred for
each trait was predicted using genomic best linear unbi-
ased prediction (GBLUP) [54–57]. GBLUP was used as

implemented in the R-package sommer [58], where only
additive effects were modeled and the residuals were
assumed to be normally distributed with mean 0 and vari-
ance σ 2

e .
The performance of the barley inbreds was predicted
using different predictors: (i) SNParray, (ii) SV, (iii) ePAV,
(iv) Tl, (v) Ts. W is a matrix of feature measurements for
the respective predictors. The dimension of W is deter-
mined by the number of barley inbreds and the number
of features in the corresponding predictor (mSNParray =
44,045 mSV = 133,566, mePAV = 38,810, mTl = 60,888,
mTs = 67,844). The columns in W were centered and
standardized to unit variance. For each predictor, an addi-
tive relationship matrix G was calculated according to
VanRaden [59]. The matrices G of two or three predictors
were weighted and summed up, resulting in one joined
weighted relationship matrix [29]. A grid search, varying
the relative weights in increments of 0.1, resulted in 66
different joined weighted relationship matrices. We calcu-
lated the prediction accuracy [ r(ĝ, g)] for each examined
scenario.
The standard scheme for validation of genomic predic-
tion was five-fold cross-validation. For this purpose, the
23 inbreds were randomly subdivided into five disjoint
subsets. One subset was left out for validation, whereas
the other four subsets were used as training set. This pro-
cedure was replicated 200 times, yielding a total of 1000
cross-validation runs. The median of the prediction accu-
racy across the 1,000 cross-validation runs was calculated.
From the original data set of seedling samples, the number
of reads was randomly reduced to 10, 5, 1, and 0.5% of the
original number of reads per inbred. This procedure was
replicated 30 times. For these subsets of reads, the above
described work flow of read mapping, determination of
gene expression, expression presence/absence variation,
and sequence variant calling was performed. The predic-
tion accuracy for the single predictors SVs, ePAVs, and Ts
and the combination of these predictors, was calculated
for leaf angle, heading date, and plant height as average
across the 30 replications.
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