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Cox regression increases power to detect
genotype-phenotype associations in
genomic studies using the electronic health
record
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Abstract

Background: The growth of DNA biobanks linked to data from electronic health records (EHRs) has enabled the
discovery of numerous associations between genomic variants and clinical phenotypes. Nonetheless, although
clinical data are generally longitudinal, standard approaches for detecting genotype-phenotype associations in such
linked data, notably logistic regression, do not naturally account for variation in the period of follow-up or the time
at which an event occurs. Here we explored the advantages of quantifying associations using Cox proportional
hazards regression, which can account for the age at which a patient first visited the healthcare system (left
truncation) and the age at which a patient either last visited the healthcare system or acquired a particular
phenotype (right censoring).

Results: In comprehensive simulations, we found that, compared to logistic regression, Cox regression had greater
power at equivalent Type I error. We then scanned for genotype-phenotype associations using logistic regression
and Cox regression on 50 phenotypes derived from the EHRs of 49,792 genotyped individuals. Consistent with the
findings from our simulations, Cox regression had approximately 10% greater relative sensitivity for detecting
known associations from the NHGRI-EBI GWAS Catalog. In terms of effect sizes, the hazard ratios estimated by Cox
regression were strongly correlated with the odds ratios estimated by logistic regression.

Conclusions: As longitudinal health-related data continue to grow, Cox regression may improve our ability to
identify the genetic basis for a wide range of human phenotypes.
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Background
The growth of DNA biobanks linked to data from elec-
tronic health records (EHRs) has enabled the discovery
of numerous associations between genomic variants and
clinical phenotypes [1]. Two salient characteristics of
EHR data are the large number of correlated phenotypes
and the longitudinal nature of observations. Although
methods have recently been developed to handle the
former [2, 3], approaches to make use of the latter in the
context of genome-wide or phenome-wide association

studies (GWAS or PheWAS) are less common. Cases
are typically defined as individuals with evidence of a
phenotype at any timepoint in their record, and most
large-scale analyses to date have employed logistic or
linear regression, which do not naturally account for the
time at which a particular event occurs or the highly
variable length of observation between patients.
Statistical modeling of time-to-event data has been

well studied and frequently applied to the clinical do-
main [4]. One such method often used to identify
genotype-phenotype associations is Cox (proportional
hazards) regression [5]. Previous work has demonstrated
the advantages of Cox regression over logistic regression
for data having a small number of single-nucleotide
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polymorphisms (SNPs) or collected under particular
study designs [6, 7]. To our knowledge, the extent to
which these findings generalize to analyses of genome-
wide, EHR-linked data remains unclear. Unlike most
data analyzed by Cox regression, EHR data are collected
for the purposes of clinical care and billing, and are only
made available secondarily for research. Thus, not only
may individuals leave the healthcare system prior to hav-
ing an event (a common issue known as right censor-
ing), but they enter the system at various ages (a
phenomenon called left truncation).
Here we sought to compare the performance of Cox

regression and logistic regression for identifying
genotype-phenotype associations in genetic data linked
to EHR data. Using both simulated and empirical data,
we found that Cox regression shows a modest but con-
sistent improvement in statistical power over logistic
regression.

Results
We first compared logistic regression and Cox regres-
sion based on their abilities to detect associations in data
simulated from either a logistic model or a Cox model.
In simulations from either model and at various p-value
cutoffs, the true positive rate tended to be higher for
Cox regression than for logistic regression (Fig. 1). As

expected, the difference in true positive rates between
the two regression methods was smaller when the data
were simulated from a logistic model. In simulations
from either model, both regression methods had mean
false positive rates < 2·10− 7 even at the highest p-value
cutoff. Based on our simulations, we would expect Cox
regression to detect an additional 3 to 9 associations for
every 100 true risk alleles, while falsely claiming 0.05 as-
sociations for every 106 non-risk alleles.
Because Cox regression is less computationally effi-

cient than logistic regression, previous work suggested a
sequential strategy of running logistic regression on all
SNPs, then running Cox regression on the SNPs that
meet a particular logistic p-value cutoff [7]. The number
of hypotheses and thus the threshold for Bonferroni cor-
rection do not change. In our simulations, this sequen-
tial strategy achieved a true positive rate similar to or
slightly lower than Cox regression alone, and consider-
ably higher than logistic regression alone (Fig. 1a).
We next compared the two methods using genetic

data linked to electronic health records. We selected a
cohort of 49,792 individuals of European ancestry,
genotyped using the Illumina MEGA platform. We de-
fined 50 phenotypes from the EHR, with the number of
cases per phenotype ranging from 104 to 7972
(Additional file 1: Table S1). For each phenotype, we used
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Fig. 1 Comparing logistic regression and Cox regression on data simulated from either a logistic model or a Cox model (1000 simulations each).
Each simulation included 100 risk alleles and 799,900 alleles not associated with the phenotype. True positive rate was calculated as the fraction
of risk alleles having Bonferroni-adjusted p-value less than the given cutoff. a Boxplots of true positive rate for logistic regression, Cox regression,
and the sequential strategy, across simulations from each simulation model. The sequential strategy used the p-value from Cox regression, if the
unadjusted p-value from logistic regression was ≤10− 4. For ease of visualization, outliers are not shown. b 95% confidence intervals of the
difference between the true positive rates of Cox and logistic regression
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Cox regression and logistic regression to run a GWAS on
795,850 common SNPs (including terms for principal
components of genetic ancestry, Additional file 2: Fig. S1).
Overall, the two methods gave similar results (Manhattan
plots and QQ plots for four phenotypes in Fig. 2 and
Additional file 2: Fig. S2). The p-values were highly corre-
lated and the genomic inflation factors for both methods
were generally slightly greater than 1 (Additional file 2:
Fig. S3A-B). In addition, although coefficients from the
two methods have different interpretations with different

assumptions, the hazard ratios from Cox regression were
strongly correlated with the odds ratios from logistic re-
gression (R = 0.9997; Additional file 2: Fig. S3C). For
associations with a mean -log10(P) ≥ 5, however, the
p-value from Cox regression tended to be moder-
ately lower than the p-value from logistic regression
(Additional file 2: Fig. S3D-E). Cox regression also
resulted in consistently smaller standard errors of
coefficient estimates (Additional file 2: Fig. S3F).
Across the 50 phenotypes, the total number of
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Fig. 2 Manhattan plots of GWAS results using Cox and logistic regression for four phenotypes (phecode in parentheses). For each phenotype,
only associations having mean(−log10(P))≥ 2 are shown. Dark green lines correspond to P = 5·10− 8 and light green lines correspond to P = 10− 5
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statistically significant associations was 7340 for Cox
regression and 7109 for logistic regression (P ≤ 5·10−
8).
We next used the GWAS results from the 50 pheno-

types to evaluate each method’s ability to detect known
associations from the NHGRI-EBI GWAS Catalog (Add-
itional file 3: Table S2). Across a range of p-value cut-
offs, Cox regression had approximately 10% higher
relative sensitivity compared to logistic regression
(Fig. 3). As in our simulations, the improvement in sen-
sitivity was maintained by the sequential strategy of lo-
gistic followed by Cox.
In parallel to quantifying associations using Cox re-

gression, it is natural to visualize them using Kaplan-
Meier curves. For various phenotype-SNP pairs, we
therefore plotted the number of undiagnosed individuals
divided by the number at risk as a function of age and
genotype (Fig. 4). These curves highlight not only a

phenotype’s association with genotype, but also its char-
acteristic age-dependent diagnosis rate.

Discussion
The key piece of additional information required in Cox
regression is the time to event. Thus, whereas an odds
ratio from logistic regression represents the ratio of cu-
mulative risk over all time, a hazard ratio from Cox re-
gression represents the ratio of instantaneous risk at any
given time (the strong correlation between the two
quantities in our empirical data is likely due to low event
rates and a valid proportional hazards assumption). In
our analysis of EHR data, the time to event corre-
sponded to the age at which a person either received a
particular diagnosis code for the second time or was
censored. Although acquisition of a diagnosis code is
only an approximation for onset of a phenotype, the
Kaplan-Meier curves for multiple phenotypes suggest
that this approximation is valid [8–10].
To account for the fact that most individuals in our

data are not observed from birth, we used the age of
each individual’s first visit. This formulation of Cox
regression, with left truncation and right censoring,
corresponds to a counting process [11] and is not
currently available in recently published software
packages for GWAS of time-to-event outcomes [12,
13]. Furthermore, Cox regression is not available at
all in popular GWAS tools such as PLINK. Thus, the
implementation of Cox regression we used was not
optimized for GWAS. Future work should make it
possible to reduce the differences in computational
cost and ease of use between Cox regression and lo-
gistic regression. In the meantime, we recommend the
sequential strategy of logistic followed by Cox [7]. Al-
though the initial threshold for logistic regression is
arbitrary, our results suggest that a relatively loose
threshold (e.g., P ≤ 10− 4) is likely to catch all signifi-
cant associations without appreciably increasing com-
putational cost.
Our use of the GWAS Catalog has multiple limita-

tions. First, both methods showed low sensitivity, likely
because for half of the 50 phenotypes, the number of
EHR-derived cases was in the hundreds, whereas the
number of cases from GWAS Catalog studies for these
phenotypes was in the thousands. Thus, our analyses
were underpowered for many SNP-phenotype associa-
tions. Second, the majority of studies in the GWAS
Catalog followed a case-control design and quantified
associations using either logistic or linear regression, not
Cox regression. Thus, although the GWAS Catalog is
the closest we have to a gold standard, it was important
that our analyses of simulated data and empirical data
gave consistent results.
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Fig. 3 Comparing Cox regression and logistic regression for the
ability to detect known genotype-phenotype associations for the 50
phenotypes analyzed. Known significant associations (P≤ 5·10− 8)
were curated from the NHGRI-EBI GWAS Catalog and aggregated by
LD for each phenotype. a Sensitivity of each method, i.e., fraction of
known and tested associations that gave a p-value less than or
equal to the specified cutoff. The sequential strategy used the p-
value from Cox regression, if the unadjusted p-value from logistic
regression was ≤10− 4. The sequential line overlaps the Cox line. b
Relative change in sensitivity between logistic and Cox regression,
i.e., difference between the sensitivities for Cox and logistic, divided
by the sensitivity for logistic. The gray line corresponds to the raw
value at each cutoff, while the black line corresponds to the
smoothed value according to a penalized cubic regression spline in
a generalized additive model
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Conclusions
Here we used Cox regression to model the time to a sin-
gle event, i.e., diagnosis of a particular phenotype. In the
future, more sophisticated models may be able to ac-
count for subsequent response to treatment or semi-
continuous traits such as lab values. We are especially
interested in the potential of models that relax the pro-
portional hazards assumption [14, 15] and the potential
of Cox mixed models. The latter, like linear mixed
models [16], use random effects to account for genetic
relatedness, an increasingly important factor in EHR-
linked samples [17]. Such an approach applied to large-
scale datasets such as from the Million Veterans Pro-
gram or the All of Us Research Program [18, 19], if ap-
propriately adjusted for environmental and societal
factors, may enable the creation of clinically useful poly-
genic hazard scores. Overall, as longitudinal, health-
related data continue to grow, accounting for time
through methods such as Cox regression may improve
our ability to identify the genetic basis for human
phenotypes.

Methods
Simulating linked genotype-phenotype data
We compared logistic regression and Cox regression in
comprehensive simulations. As the effect sizes estimated
by the two methods are not equivalent (i.e., odds ratio
versus hazard ratio), we evaluated the methods in terms
of average power and type I error calculated from true
and false associations in each simulation.
The simulations and the analyses were designed to ap-

proximately mimic the empirical study on EHR data. In
each simulation, we sampled minor allele counts for 800,
000 SNPs in 50,000 individuals from a binomial distribu-
tion, with each minor allele’s probability independently
simulated from the distribution of minor allele frequen-
cies in the empirical genotype data. For simplicity, we
simulated a haploid genome, i.e., each individual had

only one allele at each SNP. Of the 800,000 minor al-
leles, 100 were declared as true risk alleles and the
remaining 799,900 minor alleles were declared as false
risk alleles by setting their coefficients to 0. We simu-
lated data from both a Cox model and a logistic model.
Due to computational burden, for each simulation
model, we used 1000 simulations to assess true positive
rates and 125 simulations to assess false positive rates.
To simulate data from a Cox model, the true event

time was simulated from a multivariable Cox regression
with baseline hazard generated from Exponential(λ) with
λ = 10,000 and the parametric component including all
SNPs. The coefficients of the 100 true alleles sampled
from Unif(0.3, 0.5), i.e., a uniform distribution between
0.3 and 0.5, and coefficients of the remaining minor al-
leles were zeros. The censoring time was simulated from
Gamma(1,1) and set at an upper bound of 2, which was
designed to represent administrative censoring. The
Gamma distribution is non-informative and allows non-
uniform censoring [20]. The right censored observed
event time was the minimum of the true event time and
the censoring time. The left truncation time was simu-
lated from Unif(0, 0.1). Individuals whose censoring time
or event time was less than the truncation time were re-
moved from the dataset (mean 9% of individuals, range
6.61 to 9.48%). The mean event rate was 30.2% (range
6.66 to 66.9%). For each SNP in each simulation, we ran
univariate Cox regression (with left truncation) and mul-
tivariable logistic regression. The latter included two
additional variables: age at event and difference between
age at truncation and age at event, both encoded as re-
stricted cubic splines with five knots.
To simulate data from a logistic model, age (a surro-

gate of the true event time) was simulated from a nor-
mal distribution with mean 60 and standard deviation 5.
The event indicator was simulated from a logistic regres-
sion model with all SNPs and age. The coefficients were
sampled from Unif(0.3, 0.7) for the 100 true alleles, zero
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for the remaining null minor alleles, and 0.001 for age.
The censoring time was simulated from Unif(50, 85)
[21], leading to 31.8% mean event rate (range 6.48 to
68.3%). For each SNP in each simulation, we ran univari-
ate Cox regression (without truncation, since no trunca-
tion time was simulated) and multivariable logistic
regression. The latter included an additional variable for
age at event, which was encoded as a restricted cubic
splines with five knots.
Statistical significance was based on Bonferroni correc-

tion with an overall type I error rate of 0.01, 0.05, and
0.1.

Processing the empirical genotype data
Our empirical data came from the Vanderbilt Synthetic
Derivative (a database of de-identified electronic health
records) and BioVU (a DNA biobank linked to the Syn-
thetic Derivative) [22]. We used a cohort that was geno-
typed using the Illumina MEGA platform. To identify
individuals of European ancestry (the majority in
BioVU), we used STRUCTURE to create three clusters,
keeping those individuals who had a score ≥ 0.9 for the
cluster that corresponded to European ancestry [23]. We
then filtered SNPs to keep those that had a minor allele
frequency ≥ 0.01, call rate ≥ 0.95, p-value of Hardy-
Weinberg equilibrium ≥0.001, and p-value of association
with batch ≥10− 5. To calculate the principal components
(PCs) of genetic ancestry, we followed the recommended
procedure of the SNPRelate R package v1.16.0 [24]. Spe-
cifically, we pruned SNPs based on a linkage disequilib-
rium (LD) threshold r = 0.2, then used the randomized
algorithm to calculate the first 10 PCs [25].

Identifying phenotypes for empirical study
To compare the ability of Cox and logistic regression to
detect known associations, we selected 50 phenotypes
that could be studied with EHR data and which also had
known associations from the NHGRI-EBI GWAS Cata-
log v1.0.2 r2018-08-30 (Additional file 1: Table S1) [26].
The phenotypes were selected before the analysis was
performed. We only considered GWAS Catalog studies
with at least 1000 cases and 1000 controls of European
ancestry (Additional file 3: Table S2). We manually
mapped studies and their corresponding traits to EHR
phenotypes using phecodes, which are derived from bill-
ing codes [27]. For each phenotype, we defined cases as
individuals who received the corresponding phecode on
two distinct dates, and controls as individuals who have
never received the corresponding phecode. Each pheno-
type had at least 100 cases.

Running the GWAS on empirical data
For both Cox regression and logistic regression, the lin-
ear model included terms for genotype (assuming an

additive effect) and the first four principal components
of genetic ancestry (Additional file 2: Fig. S1). Depending
on the phenotype, the model either included a term for
biological sex or the cases and controls were limited to
only females or only males. For logistic regression, the
model also included terms for age at the time of last visit
(modeled as a cubic smoothing spline with three degrees
of freedom) and the length of time between first visit
and last visit. For Cox regression, the model used the
counting process formulation, such that time 1 (left
truncation time) corresponded to age at first visit ever
and time 2 (event time or right censoring time) corre-
sponded to age on the second distinct date of receiving
the given phecode (for cases) or age at last visit (for
controls).
Logistic regression was run using PLINK v2.00a2LM

64-bit Intel (30 Aug 2018) [28]. Cox regression was run
in R v3.5.1 using the agreg.fit function of the survival
package v2.43–3. The agreg.fit function is normally
called internally by the coxph function, but calling
agreg.fit directly is faster. The total runtimes for the
GWASes of the 50 phenotypes using logistic and Cox
regression (parallelized on 36 cores) were 1.6 days and
7.1 days, respectively.

Comparing the GWAS results to the GWAS catalog
For each mapped study from the GWAS Catalog, we
only considered SNPs having an association P ≤ 5·10− 8.
For each phenotype, we then used LDlink [29] to group
the associated SNPs into LD blocks (r2 ≥ 0.8). For each
associated SNP for each phenotype, we then determined
which SNPs on the MEGA platform were in LD with
that SNP (r2 ≥ 0.8), and assigned those SNPs to the cor-
responding phenotype and LD block. Using the EHR-
based GWAS results, we then calculated the sensitivity
of Cox regression and logistic regression based on the
number of phenotype-LD block pairs for which at least
one SNP in that LD block had a p-value less than a given
p-value cutoff (across a range of cutoffs).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-019-6192-1.

Additional file 1: Table S1. Information for each of the 50 phenotypes.

Additional file 2: Figs. S1-S3. Supplemental figures for principal
components of genetic ancestry and GWAS results using Cox and logistic
regression.

Additional file 3: Table S2. Mapping between phecodes and GWAS
Catalog study accessions.
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