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Abstract

Background: Resistance genes composing the two-layer immune system of plants are thought as important
markers for breeding pathogen-resistant crops. Many have been the attempts to establish relationships between
the genomic content of Resistance Gene Analogs (RGAs) of modern sugarcane cultivars to its degrees of resistance
to diseases such as smut. However, due to the highly polyploid and heterozygous nature of sugarcane genome,
large scale RGA predictions is challenging.

Results: We predicted, searched for orthologs, and investigated the genomic features of RGAs within a recently
released sugarcane elite cultivar genome, alongside the genomes of sorghum, one sugarcane ancestor (Saccharum
spontaneum), and a collection of de novo transcripts generated for six modern cultivars. In addition, transcriptomes
from two sugarcane genotypes were obtained to investigate the roles of RGAs differentially expressed (RGADE) in
their distinct degrees of resistance to smut. Sugarcane references lack RGAs from the TNL class (Toll-Interleukin
receptor (TIR) domain associated to nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains) and
harbor elevated content of membrane-associated RGAs. Up to 39% of RGAs were organized in clusters, and 40% of
those clusters shared synteny. Basically, 79% of predicted NBS-encoding genes are located in a few chromosomes.
S. spontaneum chromosome 5 harbors most RGADE orthologs responsive to smut in modern sugarcane. Resistant
sugarcane had an increased number of RGAs differentially expressed from both classes of RLK (receptor-like kinase)
and RLP (receptor-like protein) as compared to the smut-susceptible. Tandem duplications have largely contributed
to the expansion of both RGA clusters and the predicted clades of RGADEs.

Conclusions: Most of smut-responsive RGAs in modern sugarcane were potentially originated in chromosome 5 of
the ancestral S. spontaneum genotype. Smut resistant and susceptible genotypes of sugarcane have a distinct
pattern of RGADE. TM-LRR (transmembrane domains followed by LRR) family was the most responsive to the early
moment of pathogen infection in the resistant genotype, suggesting the relevance of an innate immune system.
This work can help to outline strategies for further understanding of allele and paralog expression of RGAs in
sugarcane, and the results should help to develop a more applied procedure for the selection of resistant plants in
sugarcane.
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Background
Plants have evolved a two-layer immune system in order
to hamper pathogen attacks [1, 2]. Resistance signaling
cascades are triggered in the plants throughout direct/in-
direct association of their resistance genes with either the
pathogen-associated molecular patterns (PAMPs) — first
layer, the PAMP-Triggered Immunity (PTI) — or with
specific effectors — second layer, the Effector-Triggered
Immunity (ETI) [1]. Consequently, the genomic content
of Resistance Gene Analogs (RGAs) is frequently associ-
ated with crop resistance and have been gathering the at-
tention of many breeding programs [3–5]. RGAs have
conserved domains/motifs and structural features, and
can be classified into two major encoding families: 1) the
classical R genes harboring a nucleotide-binding site
followed by leucine-rich repeat (NBS-LRR or NLRs); and
2) the pattern recognition receptors (PRR) characterized
by transmembrane domain followed by leucine-rich repeat
(TM-LRR) [2]. RGAs also have a notably genomic
organization. Both the classical genetics [6] and analysis
from large scale sequencing data [3] have shown RGAs
biased to form clusters in the plant genomes. These
clusters may contain RGAs related in function but not ne-
cessarily in sequence [7]. Ancient whole-genome duplica-
tions (WGDs), in addition to segmental duplications, both
followed by gene deletions and genomic reorganizations
have contributed to the expansion of RGA families [8, 9].
Based on the conserved structural characteristics of

RGAs, genomic screening approaches may represent an
important strategy for breeding pathogen-resistant
crops. Sugarcane (Saccharum spp.) is one of the most
economically important crops, responsible for 80% of
total sugar produced in the world (“European Commis-
sion of Agriculture and rural development. Sugar.,” n.d.).
Sugarcane plantations are often opposed by diseases that
culminate in economic losses. Many attempts have been
made to establish relationships between the RGA con-
tent of modern sugarcane cultivars to its degrees of re-
sistance to diseases caused by pathogens such as rust
[10–12], yellow leaf [13], red hot [14–17], and smut
[18–21]. The strategies applied to investigate RGAs in
sugarcane have mainly focused on the development of
degenerate primers targeting conserved RGA motifs [15,
16, 22], in addition to the structural identification from
expressed sequence tag (EST) libraries [10–12, 14, 20].
The ploidy and highly repetitive genome characteris-

tics of sugarcane have imposed challenges for breeding.
Modern sugarcane cultivars are products from hybrid-
izations between S. officinarum L. and S. spontaneum L.
[23]. The domesticated S. officinarum L. (2n = 80) was
used because of its high sugar content, whereas the wild
S. spontaneum L. (2n = 40 to 128) was expected to bring
disease resistance. Genomic references have been re-
cently released for sugarcane. A sugarcane monoploid

genome from the elite cultivar R570 was achieved [24]
from the alignment of cloned inserts in bacterial artificial
chromosomes (BAC) to the Sorghum bicolor genome.
Shortly after, the genome of one important autopolyploid
ancestor of sugarcane, the tetraploid S. spontaneum L.
clone of SES208 namely AP85–441 was also published
[25]. The release of aforementioned genomes makes feas-
ible new genomic research in sugarcane. Investigation of
the RGA content within those genomes may shed light on
the molecular basis of sugarcane resistance to diseases.
The sugarcane smut disease, for example, is spread world-
wide and during severe infections may result in produc-
tion losses up to 62% [26, 27]. Smut is caused by the
biotrophic fungus Sporisorium scitamineum and is mainly
characterized by the development of a whip-like structure
from the primary meristems. As could be anticipated from
biotrophic fungi, no hypersensitive response has been re-
ported during the smut-sugarcane interaction. Although
oxidative burst in the early stages of infection has been
shown for smut-resistant sugarcane cultivars [28], no
genomic investigation has focused on the investigation of
RGAs involved in the first layer of sugarcane immune sys-
tem. Herein, we used conserved structural features to
predict RGAs in three references of sugarcane for com-
parative analysis: the monoploid genome of the modern
sugarcane cultivar R570 [24], a monoploid version of the
genome of sugarcane ancestor S. spontaneum AP85–441
[25], and a broad set of de novo unique transcripts (N =
88.488) generated from data of six modern sugarcane cul-
tivars, including the RB925345 that has been obtained
after inoculation with smut [21, 29]. In addition, we also
analized RGAs within the genome of Sorghum bicolor
[30], a genome reference commonly used for sugarcane
comparative analysis. We then analyzed the transcriptome
profiles from two modern sugarcane genotypes — having
distinct degrees of resistance to smut disease — to investi-
gate the early stages of RGA expression during smut-
sugarcane interaction. In particular, we addressed the fol-
lowing questions: 1) How many RGAs can be predicted
within the genomes of sugarcane ancestors, and within
the available genome of modern sugarcane cultivar? 2)
How are they distributed and organized within those ge-
nomes? 3) Do transcriptomes from sugarcane genotypes
having distinct degrees of resistance to smut can help to
unravel the roles of PTI and ETI immune systems during
the early stages of sugarcane-smut interaction? 4) Do the
orthologs of differentially expressed RGAs are biased to-
wards chromosomes, clusters, or syntenic segments? 5)
Do their expression profiles reflect their phylogenetic
relationships?

Results
Our strategy was first to develop a pipeline to retrieve
and classify RGAs in the protein of four sugarcane
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references: 1) the available monoploid genome versions
of the sugarcane cultivar R570, and 2) S. spontaneum
AP85–441, 3) the genome of Sorghum bicolor, in
addition to 4) a set of de novo unique transcripts assem-
bled from RNAseq data from six modern sugarcane
cultivars. We then established the genome organization
of predicted RGAs in the two sugarcane genomes and S.
bicolor, followed by a phylogenetic study. Finally, a tran-
scriptomic approach revealed the differential expression
profile of the RGAs using two sugarcane cultivars with
different degrees of smut susceptibility.

Prediction of RGAs and database assembly
We used a set of five softwares to search for con-
served RGA domains in the protein sequences within
four focal sugarcane references (see methods). Custom
Python3 scripts were then used to parse the predic-
tions outputs from the five softwares and to classify
the sequences as RGAs according to the combination
of domains predicted (see methods). During valid-
ation, our pipeline succeeded in predicting conserved
RGA domains for the majority (~ 97%) of the R refer-
ence genes from the PRG database [31] (Additional
file 1). Out of 128 R reference genes from PRGdb,
only four genes had no RGA-related domains pre-
dicted. The presence of transmembrane domains
(TM) was the most frequent divergence among the
annotation retrieved from PRGdb and our pipeline
predictions. Nine PRGdb protein sequences were not
initially considered as RGA because they lacked es-
sential RGA domains combinations, or some of the
used softwares failed during predictions. Additionally,
protein sequences were also analyzed using orthology
relationships via BLAST searches against R reference
orthologs from PRGdb (Additional file 2). The largest
part of RGAs (> 62%) predicted as R orthologs had at
least one conserved RGA domain previously predicted
by our pipeline, but were firstly considered as non-
RGA because they lacked RGA combination of do-
mains previously described (see methods).
Five classes of RGAs were more frequently predicted

within the four focal references of this study:1) CN:
coiled coil (CC) domain associated to NB-ARC; 2) CNL:
CC associated to NB-ARC and leucine-rich repeats
(LRR); 3) RLK: Receptor-like kinase; 4) RLP: Receptor-
like protein; and 5) TM-CC: Transmembrane domain
associated to CC (Table 1 The TNL class, TIR domain
associated to NB-ARC and LRR, from the NBS-LRR
encoding family, was not predicted. RGAs harboring
other domains combinations than those five aforemen-
tioned represented up to 11%. The two classes of RGAs
associated to cell membranes of TM-CC and RLK pre-
sented the most significant number of RGAs predicted.

Sugarcane genomic organization of RGAs, orthology,
clusters, and synteny
Genomic coordinates of RGAs from the three genomic
references (cultivar R570, S. spontaneum AP85–441, and
sorghum) were used to investigate their organization.
For the sequences from the COMPGG dataset, we at-
tributed genomic coordinates from sorghum sequences
based on best hits BLASTp searches (see methods). The
predicted RGAs were found distributed along all the
chromosomes within each of the four targeted references
of this study (Fig. 1). Sorghum presented the smallest
percentage of RGAs having chromosome annotations.
From the total of 1919 RGAs predicted for sorghum,
1449 (75.5%) were found within chromosome. The
AP85–441 had the largest percentage, were 2337 out of
the total of 2354 RGAs predicted (> 99%).
Also, RGAs in sorghum were arranged differently from

both R570 and AP85–441 (Fig. 1b-d). They were more
frequently positioned at the extremities of the chromo-
somes (Fig. 1d) — away from centromeric regions —,
whereas in sugarcane references the RGAs were evenly
distributed over the chromosomal extension (Fig. 1b,c).
COMPGG dataset showed longer sequences of dots as

depicting RGAs across the chromosomes of sorghum
genome (Fig. 1b). Similarly, a few other long sequences
of dots were present in the genomes of AP85–441 (chro-
mosomes 4, 5, 6, 7, and 8), R570 (chromosomes 5 and
7), and sorghum (chromosomes 2, 5 and 10).
We addressed RGA organization as single, two or or-

ganized in clusters (see methods) for the three genomes
references (Table 2). Clusters span regions from > 8 Kbp

Table 1 Number of predicted RGA candidates by encoding
families of nucleotide-biding site followed by leucine-rich repeat
(NBS-LRR) and transmembrane domain followed by LRR (TM-
LRR) and their classes within each of the four targeted
sugarcane references of this study

RGA class Reference

R570 AP85–441 S. bicolor COMPGG

NBS-LRR encoding 47 137 139 109

CNL 22 154 135 140

TNL 0 0 0 0

TM-LRR encoding

RLK 79 427 404 290

RLP 60 157 100 154

Other variants

TM-CC 313 450 482 307

CN 21 36 21 64

NBS-encoding 53 75 38 257

LRR-encoding 336 635 389 998

Other combinations 29 282 209 151

Total number of RGAs 960 2354 1919 2470
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to < 743 Kbp, with sorghum harboring the shortest and
AP85–441 harboring the largest cluster. In both the
sorghum and R570 genomes, the chromosomes 5 and 2
accommodate the largest number of RGA clusters. Sor-
ghum genome had the largest number (N = 179) of pre-
dicted RGA clusters, whereas the R570 had the smallest
number (N = 79). The sorghum genome also had the lar-
gest percentage (39%, N = 749) of RGAs organized in
clusters, followed by R570 (31%; N = 308), and the gen-
ome of AP85–441 with the smallest percentage (23%;
N = 556) (Additional file 2). In the genome of S. sponta-
neum AP85–441, were the chromosomes 6 (Ss6) and 2
(Ss2) those sheltering the largest number of RGA
clusters; 25 clusters in each of the two chromosomes
(Additional file 2). The largest number of RGAs in a
single cluster (N = 17) was encountered within the
chromosome Ss4 of AP85–441 genome. This large RGA
cluster span from about 55 Kbp and consisted of 8 TM-

Fig. 1 Distribution of RGAs predicted within four sugarcane references along their respective genomes. a RGAs predicted for R570 sugarcane
cultivar distributed along its 10 chromosomes monoploid genome. b RGAs predicted for AP85–441 S. spontaneum distributed along its eight
chromosomes of its monoploid genome. c RGAs predicted for S. bicolor distributed along its 10 chromosomes. d RGAs predicted for COMPGG de
novo transcript sequences distributed along 10 chromosomes of Sorghum bicolor. Rings indicate the chromosomes in Mbp. Traces in
chromosomes indicate RGAs positions. Colored dots indicate RGAs according to classes: CN: purple; CNL: green; RLK: blue; RLP: red; TM-CC:
yellow; Other variants: grey

Table 2 Overview of clusters of RGAs predicted within three
genome references of sugarcane

Statistics R570 AP85–441 S. bicolor

Total number of clusters 79 136 179

Total number of RGAs arranged
in clusters

308 556 749

Largest number of RGAs in a
cluster

10 17 11

Maximum cluster length (bp) 359,057 742,308 570,975

Maximum number of RLKs in a
cluster

2 5 7

Maximum number of RLPs in a
cluster

4 5 4

Maximum number of CNLs in a
cluster

1 6 7

Maximum number of TM-CC in
a cluster

4 4 4
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LRR sequences (5 RLKs and 3 RLPs), together with 9
more RGAs harboring other domains combinations.
Many of the RGAs predicted as organized in clusters

were also predicted as originated from tandem duplica-
tions events. In sorghum, ~ 62% of the cluster-arranged
RGAs were also predicted by the DAGchainer software
as tandem-derived. The sugarcane genomic references
AP85–441 and R570 had ~ 48% and ~ 46%, respectively,
of their cluster-arranged RGAs also predicted as
tandem-derived.
The OrthoMCL software predicted a total of 1459

orthogroups containing at least one of predicted RGAs.
Were 220 RGA orthogroups harboring at least one RGA
from each of the four references (N = 2736 RGAs),
which comprises more than 35% of the total of RGAs
(N = 7703) predicted (Additional file 2; Additional file 3:
Figure S6a).
From the total of 2736 RGAs found within the 220

orthogroups mentioned above, 675 were transcripts from
COMPGG. Therefore, we predicted synteny and clusters
for 2061 RGAs. Out of these 2061 RGAs, 720 (35%) were
also found within syntenic segments, and more than 47%
(N = 341 of 720) were also found forming clusters.
We used DAGchainer to investigate shared synteny

among the three focal genome references. Thus, synteny
was firstly evaluated considering the complete set of
proteins sequences encoded from each genome and re-
ported for segments containing at least 12 genes ar-
ranged in pairs (six pairs). Sorghum genome had the
largest number (N = 8899) of genes found within syn-
tenic segments, whereas the R570 genome presented the
lowest number of genes in synteny (N = 5594). A total of
2907 syntenic segments were found among the three ref-
erences, with the longest segment (189 gene pairs) iden-
tified between the chromosome Sb10 of sorghum and
the chromosome Ss8 of AP85–441 (Fig. 2; Additional file
2). RGAs were amongst the genes identified by the
DAGchainer as sharing synteny (Fig. 2; Additional file
2). Several syntenic segments harboring RGAs were ob-
served for the alignments performed between AP85–441
and sorghum genomes (Fig. 2a), and between AP85–441
and R570 (Fig. 2b). Shorter syntenic fragments were also
identified in the alignments between R570 and sorghum
(Fig. 2c). About 54% of RGAs identified within the
AP85–441 genome (Table 1) (N = 611 of 2353) were lo-
cated in syntenic segments, followed by 28% (N = 538 of
1917) of sorghum RGAs, and 27,5% (N = 264 of 960) of
RGAs predicted within the R570 genome.
We detected synteny amongst the RGAs found within

clusters. On average, 40% of the RGAs within clusters
were also within syntenic blocks. The total number of
cluster-arranged RGAs in syntenic segments regions
were 259 in sorghum, 215 in AP85–441, and 109 in the
R570 genome. The chromosomes harboring the largest

number of cluster-arranged RGAs sharing synteny were
chromosome Ss6 from AP85–441 (67 RGAs), chromosome
Sb5 from sorghum (46 RGAs), and chromosome Sh7 from
R570 (23 RGAs).
The syntenic segments from Sb5 and Ss6 chromosomes

were from the classes of RLK and CNL (Additional file 3:
Figure S2). RLP and TM-CC were also found within short
fragments of synteny. RLPs were syntenic between
chromosomes Sb10 and Ss8, and TM-CCs shared synteny
between Sb10 and Sh10 (Additional file 3: Figure S2).

Transcriptome analysis of two sugarcane genotypes
inoculated with smut
Transcriptome profiles from the two sugarcane varieties
of SP80–3280 (smut-resistant) and IAC66–6 (smut-sus-
ceptible) were obtained to investigate differential expres-
sion of RGAs during an initial stage of smut disease.
RNAseq data were obtained for 12 libraries: from each
of the two genotypes, were three biological replicates for
control plant buds, and three replicates for buds 48 h
after inoculation (hai) with the S. scitamineum (SSC39).
From the ~ 105 million paired-end sequence reads (~ 8
million reads per library) obtained, more than 97%
were kept after the preprocessing step (see methods)
(Additional file 3: Table S1).
We used the COMPGG dataset as reference for the

assembly of the reads because it represents the largest
published collection of transcripts obtained for modern
sugarcane varieties. Out of the 88,488 COMPGG total
transcript sequences, more than 69 thousand sequences
(~ 76%) were assembled within each library. Transcrip-
tome assembly of control plants generated 72,078
transcripts for IAC66–6 as compared to 69,356 assem-
bled transcripts for the smut-resistant genotype, SP80–
3280. Control plant libraries had a particular number of
uniquely assembled sequences between the two geno-
types. The smut-susceptible IAC66–6 control plants had
6922 uniquely assembled sequences, whereas the smut-
resistant SP80–3280 control plant had 4200 (Additional
file 2). Differences in the number of uniquely assembled
sequences between sugarcane genotypes were also ob-
served for inoculated plants. The smut-susceptible geno-
type inoculated plants had 4879 sequences exclusively
assembled, whereas the smut-resistant genotype inocu-
lated plants had 7508. During smut-sugarcane inter-
action, the total number of transcripts considered as
expressed in the smut-susceptible genotype was 40,248,
whereas in the smut-resistant was 38,441. Resistant and
susceptible genotypes shared 36,006 expressed tran-
scripts when interacting with smut.
The total number of Differentially Expressed Genes

(DEGs, inoculated/control) were different among
sugarcane genotypes. The IAC66–6 smut-susceptible
genotype had 2300 DEGs, whereas the smut-resistant
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SP80–3280 had 3440. Only 200 DEGs were in common
among sugarcane genotypes.
RGAs were amongst the predicted DEGs (Fig. 3).

Hereinafter, we will report to them as RGADE. From the
total of 101 RGADE found within IAC66–6 genotype, 90
were unique. In the SP80–3280 genotype 149 were
unique from the total of 160. The two targeted geno-
types shared only 11 RGADE. Out of 11 RGADE shared
between sugarcane genotypes, one fell into each of the
CNL, RLK and TM-CC classes, two were predicted as
CN, and six harbored different domain combinations.
No RGADEs from RLP class were found shared by sug-
arcane genotypes. The smut-susceptible genotype of
IAC66–6 presented 20 RGADE from TM-LRR encoding
family: 11 from RLK class, and nine from the RLP.

Compared to the susceptible genotype of IAC66–6, the
SP80–3280 smut-resistant genotype presented more
RGADE (N = 29) from TM-LRR: 22 RLKs, and 7 RLPs.
The TM-CC class of RGAs had the highest number of
RGADEs: were 14 within IAC66–6 and 37 within SP80–
3280. The expression of CNL was found very distinct be-
tween the two sugarcane genotypes. Although most of
CNL were significantly up-regulated in sugarcane geno-
types, only one single up-regulated CNL (comp207865_
c1_seq1) was shared between the genotypes.
We additionally investigated the RGADE expression

profile of the two targeted sugarcane genotypes at the
ortholog groups (orthogroups) level. Most of RGADE
orthogroups from IAC66–6 and SP80–3280 were dis-
tinct. Out of 101 RGADE predicted within the IAC66–6,

Fig. 2 Shared synteny dot plots among predicted RGAs from three sugarcane reference genomes. Dots represents gene pairs alignments
identified by DAGchainer software for: a R570 and S. bicolor. b AP85–441 and R570. c Sorghum bicolor and AP85–441. Axis show chromosomes
coordinates in base pairs
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71 RGADE were found as composing 45 different
orthogroups, whereas 30 RGADE did not form any
orthogroup. Within the SP80–3280 genotype, out of 160
predicted RGADE, 120 were found within 90 different
orthogroups, whereas 40 RGADE were not found form-
ing orthogroups. The two sugarcane genotypes shared a
total of 14 different orthogroups harboring all of the 61
RGADE predicted (Additional file 2).
Although orthologs of RGADEs were distributed all

along with the entire set of chromosomes of the three
focal references, the proportion of RGADE orthologs in
chromosome 5 was found increased in relation to the
proportion of total RGAs predicted for this chromosome
(Additional file 3: Table S2). In summary, the chromo-
some 5 was found enriched for orthologs of RGADEs,
regardless of the genome reference used (Fig. 4;
Additional file 2). Also, in general, there are more

RGADEs responsive to smut in the resistant than in the
susceptible genotype (Fig. 4).
Finally, we investigated whether the RGADE orthologs

predicted within our three genome references were orga-
nized in clusters. The percentage of RGADE having
orthologs organized in clusters comprised from 28 to
43% in relation to the total of predicted RGADE within
each sugarcane genotype evaluated (Additional file 2).
Orthologs from RGADEs predicted within the smut-
susceptible sugarcane were 4% (in average) more fre-
quently found within clusters as compared to the ortho-
logs from smut-resistant RGADEs, regardless of which
of the three genome references used for ortholog investi-
gation (Additional file 2). Out of the 11 RGADE shared
by the two sugarcane genotypes, 7 were found having
orthologs organized in clusters in both the genomes of
AP85–441 and sorghum, whereas 6 RGADE had

Fig. 3 Expression profile of 250 RGAs predicted within two sugarcane genotypes with contrasting degrees of resistance to smut. Transcripts were
assembled having COMPGG dataset as reference, and expression is represented as Log2 Fold Change values (inoculated/control). Blue squares
represent down-regulation, whereas red squares represent up-regulation. Black squares represent no transcript expression. The statistical
significance of expression is presented in Additional file 2
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orthologs organized in clusters in the genome of R570.
In the AP85–441 genome, chromosomes Ss2 (N = 12)
and Ss5 (N = 14) harbored the largest number of clusters
having RGADE orthologs, whereas in the genome of
R570, chromosomes Sh4 (N = 6) and Sh5 (N = 7) har-
bored them, and chromosomes Sb5 (N = 20) and Sb8
(N = 17) from sorghum.

RGADEs evolutionary relationships
We investigated the evolutionary relationships among
the predicted RGADEs through the use of maximum-
likelihood phylogeny. The predicted RGA domains in
addition to the RGAs expression profile (heatmaps) from
both the two sugarcane genotypes (IAC66–6 and SP80–
3280) were placed alongside to the obtained tree. The
resulting tree (Fig. 5) split the predicted RGADEs into
three main clades. RGAs from NBS-LRR encoding family
were mainly grouped within the two clades of RGAC1
(Fig. 4B) and RGAC2 (Fig. 4C). One single NBS-LRR se-
quence was found within RGAC3 clade. Nested to
RGAC1 clade, there were a few closely related TM-LRR

subclades: three RLP subclades, and two RLK subclades.
Another RLK subclade was nested to the clade RGAC2.
No RLP sequences grouped within RGAC2 clade. Al-
most all NBS-LRR and TM-LRR RGA sequences found
within RGAC1 and RGAC2 clades had domains pre-
dicted; few sequences were predicted through orthology.
RGAC1 and RGAC2 clades also hosted TM-CC sub-
clades, in addition to clades grouping other RGA vari-
ants. Most of these RGAs harboring variable domain
combinations, and nested within RGAC1 and RGAC2
clades, formed single branches. TM-CC sequences
formed subclades all across the tree, and showed close
relationships to both NBS-LRR and TM-LRR encoding
families. The RGAC3 clade (Fig. 4D) is sister to RGAC2,
and hosted the largest number of RGADEs. Most of
RGAs sequences within RGAC3 had domains predicted
by our pipeline and a few were RLKs predicted through
orthology searches.
The phylogenetic tree still depicted both the contrast-

ing and related expression profiles of closely related
RGAs between the two sugarcane genotypes. We

Fig. 4 Overview of the chromosomal distribution of the total number of predicted RGAs, and the number of orthologs of RGADEs predicted
within two sugarcane genotypes of IAC66–6 (smut-susceptible) and SP80–3280 (smut-resistant), in three genome references of sugarcane of: a
R570, b AP85–441, and c Sorghum bicolor. Asterisks on the top of the bars indicate enrichment of RGADE orthologs at the level of P < 0.05
(Fisher’s exact test)
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highlighted nine subclades in Fig. 5 using green stars for
subclades showing related RGA expression profiles
among genotypes (N = 2), and yellow stars for subclades

showing contrasting expression profiles of RGAs among
genotypes (N = 8). The most striking finding came from
TM-LRR subclades found within RGAC1 and RGAC2

Fig. 5 Phylogenetic tree showing the relationships among 250 RGADEs predicted within the COMPGG transcripts dataset. Cladogram was
obtained with FastTree software and the Le-Gascuel model of amino acid evolution. a Full cladogram, with subclades collapsed. b, c and d
Expanded RGA subclades. Expression profiles from sugarcane genotypes of IAC66–6 and SP80–3280 are represented as Log2 Fold Change values
(inoculated/control) in the heatmap, if significant at P < 0.05 in at least one sugarcane genotype. In the heatmap, blue squares represent down-
regulation, whereas red squares represent up-regulation; grey squares represent no transcript expression. The statistical significance of expression
is fully presented in Additional file 2. Predicted protein domains are depicted with colors together with geometric forms accordingly to legend.
RGAs not having depicted domains were predicted only based on orthology during BLASTp searches. Branches colors indicate RGA classes
according to legend. Dashed grey lines indicate the amino acid sequence length. Green stars highlight clades where sugarcane genotypes
shared related expression profiles. Yellow stars highlight clades where sugarcane genotypes had distinct expression profiles of RGADE
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clades. Two RLK subclades, and one RLP subclade com-
prised RGAs found as up-regulated in the smut-resistant
SP80–3280 sugarcane genotype when compared to
control plants. While there was an indication for down-
regulation (blue squares) of these RGAs in the smut-
susceptible IAC66–6 genotype, although the Log2 Fold
Change values were not significant at P < 0.05.
We investigated to what extent the RGA orthologs

from each of the three RGADE clades were also pre-
dicted as originated from tandem duplication events.
Percentages of RGA orthologs tandem-derived were very
similar among the three RGADE clades (Additional file 2).
In the sorghum genome, RGADE orthologs were pre-
dicted as derived from tandem duplications between 53 to
58%. Percentages of tandem-derived RGADE orthologs
were lower in the other two genome references: from 34
to 38% within R570 genome, and from 41 to 43% within
the AP85–441 genome.

Discussion
RGA predictions in the sugarcane references
Here we used conserved structural features of both R
and PRR genes to uncover RGAs within four references
of sugarcane: 1) the monoploid genome of cultivar R570;
2) a monoploid version of the genome of S. spontaneum
AP85–441; 3) the genome of sorghum; and 4) the
COMPGG comprising a set of de novo unique tran-
scripts generated from data of six modern sugarcane cul-
tivars. Because RGAs may be encoded by a variety of
domains/motifs combinations, we also used BLAST
searches against the R genes reference database to pre-
dict RGA orthologs [2].
Among all the set of proteins sequences within each of

the four focal sugarcane references, from 3.4% (in
COMPGG) to 6.8% (in AP85–441) were predicted as
RGAs (Table 1 These percentage results are higher com-
pared to those found in literature for the ancient green
plants such as Physcomitrella patens (1.6%) and Selagin-
ella moellendorffii (1.3%), but are similar to those found
for crops such as Oryza sativa (4%), and Glycine max
(4.2%) [32].
Our predictions categorized RGAs into both the NBS-

LRR and TM-LRR encoding families (Table 1). As previ-
ously reported by [33], we could not find RGAs from
TNL class — TIR-NBS-LRR structure — in the sorghum
genome. Likewise, the other three sugarcane references
also lacked TNLs (Table 1). It is known that repeat
masking approaches used to avoid the counting of
transposon-related genes during genome annotations
could impair the identification of TNL genes [34]. How-
ever, since we have also investigated sugarcane de novo
transcriptome assemblies, impaired gene annotations
may not be the cause for the lack of TNL within our tar-
geted genome references. Furthermore, our findings

reinforce other studies for the absence of TNL encoding
genes in sugarcane [12] and other monocots [35–37].
Five were the most frequently observed classes of

RGAs predicted within our four focal sugarcane refer-
ences: CNL class from NBS-LRR encoding family, RLK
and RLP classes from TM-LRR encoding family, in
addition to TM-CC and CN classes. RGAs harboring
other domains combinations were also predicted.

Sugarcane RGA orthologs are organized in clusters and
within conserved regions
We investigated the genomic features of the predicted
RGAs specifically with regard to their chromosomal ar-
rangement, cluster organization, and synteny. Our ana-
lysis showed that the RGAs are not evenly distributed
across the chromosomes of the genome references,
which agrees with a previous study that showed that
80% out of the 361 NBS-encoding genes identified in the
genome of AP85–441 are located in four chromosomes:
Ss2, Ss5, Ss6, and Ss7 [25]. We found a very similar pat-
tern: of the 366 NBS-encoding genes predicted in
AP85–441, 79% were located in the same chromosomes.
Overall, 54% of the AP85–441 RGAs were found in syn-
tenic segments. The largest syntenic segments harboring
RGAs were found between the genomes of AP85–441
and sorghum (Fig. 2a), and between AP85–441 and
R570 (Fig. 2b). Previous synteny analysis between AP85–
441 and sorghum unveiled major chromosomal rear-
rangements in the S. spontaneum genome that reduced
its number of chromosomes from 10 to 8. Inversions
and rearrangements were predicted among chromo-
somes Ss2, Ss5, Ss6, and Ss7 of AP85–441 and Sb5 and
Sb8 of sorghum [25]. In consonance with these previous
findings [25], we encountered several syntenic segments
(Fig. 2) among our three focal sugarcane genomic refer-
ences, in addition to evidences of reorganization in the
mentioned chromosomes. Major rearranged segments
have been observed among Ss2, Ss5, Ss6, and Ss7 of
AP85–441, and Sb5 and Sb8 of sorghum, with 51% of
NBS-encoding genes identified to be located in those re-
gions [25]. This result suggests that the non-rearranged
chromosomal regions between AP85–441 and sorghum
may represent conserved sources of disease resistance
genes in these species. Thus, we investigated for similar
retention patterns of NBS-encoding genes in chromo-
somes 2, 5, 6, 7, and 8 — all related to the rearrange-
ments found in AP85–441 — in the genomes of
sorghum and R570. The five chromosomes of sorghum
harbored 72% of NBS-encoding genes, whereas the five
chromosomes of R570 harbored 62% of NBS-encoding
genes.
Differently from NBS-RGAs, the location of the TM-

LRR ones were not biased towards either the set of four
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rearranged chromosomes of AP85–441 or in the five of
sorghum and R570.
S. spontaneum is estimated to have contributed with

12.5% of the genomes of the modern sugarcane cultivars
[25]. The RGA phylogenomic tree generated for 220
concatenated amino acid sequences of orthologous
RGAs (Additional file 3: Figure S6d) suggests the gen-
ome of AP85–441 as having the closest evolutionary re-
lationships with the clades of R570 and COMPGG.
Therefore, the genome of S. spontaneum likely com-
prises an important source to understand disease resist-
ance in modern sugarcane cultivars as previously
proposed [25].
Another remarkable genomic organization feature of

RGAs is their arrangement in clusters [3, 35]. Within
the three focal genomic references, from 23 to 39% of
the total predicted RGAs were found forming clusters.
Further, cluster-arranged RGAs also presented high
levels of shared synteny. About 40% of all the cluster-
arranged RGAs were encountered within syntenic seg-
ments. The set of five chromosomes (2, 5, 6, 7, and 8)
discussed above, interestingly harbored 57 and 59% of
the total clusters of RGAs within the genomes of R570
and sorghum, respectively. The genome of AP85–441
had the largest percentage (61%) of predicted RGA clus-
ters placed in the set of four chromosomes (Ss2, Ss5,
Ss6, and Ss7).
We also investigated if tandem duplications have con-

tributed to the expansion of predicted clusters of RGAs.
Tandem duplications have been attributed to contribute
greatly for RGA evolution and the rise of novel specifi-
city [38]. Our analysis supports tandem duplication
events as the origin of about 46% of the cluster-arranged
RGAs within the R570 genome. In the other two ge-
nomes of AP85–441 and sorghum, 48 and 62%, respect-
ively, of the cluster-arranged RGAs were also predicted
as tandemly duplicated.

Smut-resistant sugarcane has increased differential
expression of innate immune system
We investigated the RGA transcriptome profiles of two
sugarcane genotypes with contrasting degrees of resist-
ance to smut at the early stage of interaction (48 hai)
with S. scitamineum. The susceptible genotype (IAC66–
6) had a higher number of overall expressed genes com-
pared to the resistant one (SP80–3280). However, both
the number of DEGs and the number of RGADEs were
higher in the smut-resistant sugarcane. Differences in
transcriptome profiles among sugarcane varieties during
interaction with S. scitamineum have been previously re-
ported [21, 39, 40] but in this study we focused on the
analysis of RGADE profiles.
The two focal sugarcane genotypes presented a very

distinct profile of RGADEs. Only 11 RGADEs were

shared between the two genotypes. Disparities among
the two sugarcane RGADE profiles were observed in the
two layers of the plant immune system. With respect to
the first layer, comprised by the transmembrane leucine-
rich repeat (TM-LRR) encoding family proteins, the tar-
geted smut-resistant sugarcane (SP80–3280) had a larger
number (N = 18) of significantly up-regulated RLK as
compared to the number (N = 6) of predicted up-
regulated RLK in the smut-susceptible sugarcane
(IAC66–6). In addition to the quantitative divergence of
RLK expression between genotypes, the smut-resistant
SP80–3280 also had two exclusively up-regulated RLKs
(comp207176_c0_seq1, gg_07042). Orthologs of them
have been previously reported to interact and positively
regulate plant immunity: 1) a LRR-RLK BRI1-Associated
Receptor Kinase1 Bak1; and 2) a leucine-rich repeat
transmembrane receptor-like kinase Strubbelig-Receptor
Family (SRF). Bak1 has been shown as essential to trig-
ger resistance to various pathogens through the produc-
tion of reactive oxygen species [41]. The increased
transcription of SRF genes was recently demonstrated to
respond to environmental stimuli [42]. Furthermore, the
StLRPK1 gene product from SRF was demonstrated to
interact with Bak1 to mediate potato immunity against
Phytophthora infestans [42]. Bak1 has also been previ-
ously related to smut in both transcriptomic and prote-
omic data [21, 43].
Genotypes shared one single RLK up-regulated

(comp190866_c0_seq1), which was annotated by the
Blast2GO software as an ortholog of the receptor
kinase-like protein Xa21 of rice. Xa21 is known to pro-
mote innate immunity by detecting Xanthomonas oryzae
pv. oryzae protein Ax21 [44]. The Xa21 (comp190866_
c0_seq1) was found by the OrthoMCL within a large a
group of orthologs GRU2 (N = 245), grouping sequences
from all the four focal references of this study. Regarding
the second layer of the plant immune system, consisted
by the NBS-LRR encoding family proteins, sugarcane
presented only RGAs from the class of CNL (CC-NBS-
LRR). These were differentially expressed upon inocula-
tion with S. scitamineum. Similarly, to the pattern we
have found for the RGAs from the first layer, the
expression of the CNL RGAs differed between the
resistant and susceptible genotypes. One single CNL
(comp207865_c1_seq1) annotated as a putative disease
resistance protein RGA3 was up-regulated in both geno-
types. This sequence belongs to the ortholog group
GRU18390 which is consisted of only two sequences,
among the COMPGG and AP85–441 references. We
also investigated for orthologs of the brown rust resist-
ance gene Bru1 first identified in the R570 genotype
[45]. Bru1 has proven to be a major dominant resistance
gene in sugarcane and has its origin previously identified
as from S. spontaneum [46, 47]. Bru1 is suggested to
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encode an ortholog of the serine (S)/threonine (T) kin-
ase Rpg1 and lays on a cluster of other S/T kinase [46].
In our analysis, the ortholog Rpp1-like/Bru1
(comp207914_c0_seq1) was not responsive to smut.
At the level of ortholog groups, we could find more

functional relationships among the RGADE profiles from
the two sugarcane genotypes. Smut-resistant and smut-
susceptible genotypes shared 14 orthogroups. Within
each of the 14 orthogroups, RGADEs presented elevated
sequence similarity and are likely related in function. In
total, were 61 RGADE composing the shared orthogroups.
Therefore, 38% (N = 39) of the total of RGADE predicted
within the smut-resistance sugarcane transcriptome is re-
lated in both sequence and function to 20% (N = 32) of
the total of RGADEs predicted within the smut-
susceptible sugarcane genotypes. Alternatively, it has been
demonstrated that approximately 14% of the genes from
sugarcane modern variety RB925345 are alternatively
spliced during infection with smut (Bedre et al., 2019).
Each orthogroup containing RGADEs and predicted as
shared by the genotypes were composed exclusively by
any of the: TM-LRR (N = 1 orthogroup); and NBS-
LRR (N = 3 orthogroups) encoding families; or TM-
CC class (N = 2 orthogroups). In addition,
orthogroups also contained RGADEs harboring other
domains combination. Finally, TM-LRR may comprise
major disparities among RGADE profiles of the two
investigated sugarcane genotypes since a unique
orthogroup from aforementioned encoding family,
containing only 6 RGADE in total, was predicted as
shared among the genotypes. TM-LRRs are pattern
recognition receptors (PRR) comprising the innate
plant immune system and are able to recognize dir-
ectly from cell surface a wide range of PAMPs and
promote PAMP-triggered immunity (PTI). No ETI
has been yet identified for the smut-sugarcane patho-
system. On the other hand, oxidative burst was de-
scribed for the early stages (5 days after inoculation)
of sugarcane interaction with smut [28]. Therefore,
divergences among RGADE profile involving TM-LRR
may be associated to the smut-resistance observed for
the sugarcane variety SP80–3280, in addition to the
increased number of RGADEs from both classes of
RLK and RLP as compared to the smut-susceptible
genotype.
We did not detect the presence of a major resistance

gene influencing resistance to smut as for other pathosys-
tems [48]. However, attention maybe given in future studies
to orthologs of Bak1. Instead, a combination of various
RGAs mostly of the TM-LRR class responded to the patho-
gen infection in resistant plants 48 hai. These various RGAs
were detected as having orthologs enriched in chromosome
5 of the ancestral genotype. The same pattern of distribu-
tion was not detected in the modern cultivars in this work.

RGA families have divergent expression profiles between
sugarcane genotypes
In the phylogeny of RGADEs, the NBS-LRR and TM-
LRR encoding families were closely related. The two
major clades of RGAC1 and RGAC2 grouped mostly of
the RGADE sequences harboring well-defined domains.
In addition, most of RGADEs predicted from the two
aforementioned major encoding families were grouped
in the RGA clades RGAC1 and RGAC2. Clade RGAC3
was closely related to RGAC2. Conversely to the two
other clades, the RGAC3 grouped sequences that either
presented more variable combination of domains or
were predicted as RGA exclusively during orthology
predictions.
Contrasting RGADE profiles between the two focal

sugarcane genotypes were observed for most of the
clades composed by TM-LRR sequences. These data
suggest that divergences observed between the two focal
sugarcane profiles of RGADE associated with the first
layer of sugarcane immune system are indeed related to
function — as suggested throughout RGADE orthogroups
comparison —, rather than only the number of RGADE.
For instance, the RGAC1 grouped most of the TM-LRR
up-regulated genes in the resistant genotype, which in-
cluded orthologs of Bak1 (Fig. 5). As mentioned before,
Bak1 is known to be involved in various signaling path-
ways, including those associated with resistance to patho-
gens and herbivores [41, 42, 49].
Expansion of the predicted RGADE clades is a result of

tandem duplications. Within clades, RGADE orthologs
were up to 58% found as derived from tandem duplica-
tions. Percentages of RGADE orthologs derived from tan-
dem duplications were very similar among the three
major clades predicted. Tandem duplicates are believed as
having higher turnover rates as compared to genes dupli-
cated by larger duplication events such as WGD [50]. Ac-
cordingly, RGAs have been thought as fast-evolving genes,
with the mechanisms of unequal crossing-over, recombin-
ation, gene conversion, transposition, and gene duplica-
tion producing variability, and giving rise to subfamilies
[51, 52]. Novel resistant phenotypes have also been attrib-
uted to events of reorganization and evolution of resist-
ance genes [53].

Conclusions
In summary, our findings showed sugarcane references
as composing a set of 7703 RGAs distributed in 1459
ortholog groups. The most abundant class of RGA iden-
tified were those of TM-CC. Sugarcane did not present
class TNL of RGAs. Chromosomes 02, 05, 06, 07, and
08 were the ones harboring the highest number of RGA
clusters and RGAs derived from tandem duplications.
Chromosome 5 in the ancestral genotype (S. sponta-
neum) is potentially the origin of most RGAs responsive
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to smut in modern sugarcane varieties. Smut resistant
and susceptible genotypes of sugarcane have a distinct
pattern of RGAs expression, probably related to their ge-
nealogy, allele composition, and eventually alternative
splicing that we did not consider in our analysis. The
TM-LRR encoding family was the most responsive to
the pathogen infection (up-regulated) in the resistant
genotype in the early moments of the interaction, sug-
gesting the relevance of an innate immune system as the
first response. Specifically, the resistant genotype had an
increased number of RGAs differentially expressed from
both classes of RLK and RLP as compared to the smut-
susceptible genotype. Phylogenetic studies defined three
main RGADE clades RGAC1–3. RGAC1 grouped most
of the TM-LRR up-regulated in the resistant genotype,
including orthologs of Bak1. We believe that this work
can help to outline strategies for further understanding
of allele and paralog expression of RGAs in sugarcane,
and the results should help to develop of a more applied
procedure for the selection of resistant plants in
sugarcane.

Methods
Plant material, RNA extraction, libraries, and sequencing
Three biological replicates of two sugarcane genotypes
with different degrees of resistance to smut were used in
this study (Additional file 3: Figure S7). First, single-bud
sets of 10-month-old healthy plants of the IAC66–6
(smut-susceptible genotype) and SP80–3280 (resistant
genotype) were inoculated using SSC39 teliospores fol-
lowing as previously described by [54]. The sugarcane
genotypes used in this work have different genealogy:
the IAC66–6 is derived from the cross between Co419 x
Co350, and has a recent ancestral in Sorghum durum;
the SP80–3280 is derived from the cross between SP71–
1088 x H57–5028 (IAC Sugarcane breeding Program
databank - Caiana). The healthy buds used to conduct
the experiments were obtained from IAC sugarcane nur-
sery. No special permits were necessary for teliospores
and genotypes used, because this project was developed
in collaboration with IAC researchers. This work does
not involve endangered or protected species. Twenty
buds of each genotype were collected at each of the time
point of 6, 12, 24, 48 and 72 h post-inoculation (hpi)
[28]. The plant material collected at the time point of 48
hpi was chosen for the development of this study.
Total RNA was extracted from the samples using dis-

tinct methods for each plant developmental stage as de-
scribed by Taniguti et al. (2015). The quality of the total
RNA was verified using an Agilent 2100 Bioanalyzer
(Agilent Technologies, USA), and the libraries were con-
structed using a TruSeq RNA Sample Prep v2 Low
Throughput (LT) kit as described in the manufacturer’s
instructions (Illumina, San Diego, CA). The libraries

were paired-end sequenced using the Illumina system
(HiScanSQ).

Genomic and transcriptomic data collection
Protein sequences and genomic annotation were obtained
for three sugarcane references: 1) for the monoploid gen-
ome of cultivar R570 [24], data were downloaded from
http://sugarcane-genome.cirad.fr/; 2) data for a monoploid
version of the allele defined genome of S. spontaneum
AP85–441 [25] was kindly provided by the authors; and 3)
S. bicolor data was downloaded from PLAZA monocots
4.0 [29]. Additionally, a set of 72,269 unique de novo tran-
scripts from six sugarcane genotypes [30] was obtained
alongside with 16,219 de novo assembled transcript se-
quences from variety RB925345 [21], to assembly the
COMPGG sugarcane transcript reference dataset (N = 88,
488). Finally, 152 reference R genes protein sequences
were downloaded from Pathogen Receptor Genes data-
base (PRGdb) [31].

RGA predictions by structural analysis
We investigated RGAs amongst the protein sequences
from each of the three sugarcane references, in addition
to the sorghum protein sequences used in this study,
based on R genes conserved features. Thus, we used five
softwares to predict conserved domains/motifs of R
genes: 1) InterProScan v5.33–72.0 [55] with the analyses
of Coils-2.2.1, Gene3D-4.2.0, Pfam v32.0, SMART-7.1,
and SUPERFAMILY-1.75; 2) PfamScan with Pfam v32.0
[56]; 3) a standalone version of Phobius [57]; 4)
TMHMM v2 [58]; and 5) Coils v2 [59]. Each software
searched for specific or multiple R genes conserved fea-
tures of: Leucine-rich repeats (LRR), Protein kinase do-
mains, Serine-threonine/tyrosine kinase (STTK), Lysine
motifs (LysM), Toll/interleukin-1 receptor (TIR), Coiled-
coil (CC), and Nucleotide-Binding associated to ARC
(NB-ARC), Nucleotide-binding associated to LRR (NB-
LRR), and Transmembrane (TM). Custom Python3
scripts were then used to parse each of the softwares
outputs and classify RGA candidates if harboring a set of
domains/motifs accordingly: 1) TM-LRR encoding fam-
ily: RLK (TM + LRR or NB-LRR + kinase domains), RLP
(TM + LRR or NB-LRR or LysM); 2) NBS-LRR encoding
family: TN (TIR + NBS/NB/NB-ARC), TNL (TIR + NB-
ARC + LRR or NB-LRR), CN (CC +NB-ARC), CNL
(CC +NB-ARC + LRR or NB-LRR); 3) Other domains
combinations: TM-CC (TM +CC), TIR (TIR), Other
variants. Only sequences harboring at least one out of
three RGA basic domains — LRR, NB-ARC, or NB-LRR
— were kept to assembly the RGA candidates databases
for each of the three references (Additional file 2; http://
amos.esalq.usp.br/sord/). We applied our pipeline to a
set of R reference genes from PRGdb for validation. Out
of 152 genes, we excluded 24 genes lacking domain
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information (Additional file 1). Only 128 R genes were
retained in the PRGdb dataset for the validation step of
predicting RGA candidates and downstream analysis.

RGA prediction by orthology searches (BLASTp)
R genes may be encoded in a variety of combinations
[8], and may require the formation of multi-protein R-
complexes to trigger signaling [51]. For example, the R
gene Pto is comprised of only a protein kinase domain
and requires association to the NBS–LRR gene Prf for
function. Accordingly, to the structural features expected
for detecting RGAs implemented in our pipeline, the
prediction of a solely kinase domain would not classify a
sequence such as the Pto as RGA. Thus, we used an add-
itional analysis to find putative R orthologs and supple-
ment each of the RGA candidates databases. Protein
sequences from each sugarcane references were used as
queries during BLASTp searches against sequences from
PRGdb. Queries having an e-value <1e-05, minimum of
40% of identity, and query coverage percentage > 85%
were added accordingly to each of the four references
RGA candidates databases (Additional file 2).

Sugarcane RGA orthologous relationships
We used the Markov Cluster algorithm implemented in
the OrthoMCL v2.0.9 software [60] to establish ortholo-
gous relationships among the total set of RGAs from the
four focal sugarcane references. During BLASTp all-vs-
all step, we used the total set of protein sequences from
the four focal sugarcane references of this study as both
query and database, with an e-value cutoff of e− 05.
OrthoMCL software generates clusters of proteins con-
sisting of orthologs from at least two species. The clus-
ters predicted by the OrthoMCL were then assumed as
ortholog groups (orthogroups).

Sugarcane RGA clusters and shared synteny analysis
We used homemade Python3 scripts to predict RGA
clusters within the four sugarcane references using a
method adapted from [3]. Clusters were established
among at least 3 putative RGA, from any of predicted
classes, if: 1) between two neighboring RGAs there were
no more than 9 other genes; and 2) two neighboring
RGAs were not separated apart by more than 250 kb.
Shared synteny among the predicted RGAs within the

three targeted sugarcane genome references was also in-
vestigated. Firstly, we performed a BLASTp all-against-
all searches with an e-value cutoff of e− 05. Custom Py-
thon3 scripts were used to parse the BLASTp tabular
output in order to prepare input files for the DAGchai-
ner software [61]. DAGchainer was run ignoring tandem
duplication alignments, with 250,000 bp set as maximum
distance allowed between two matches, and only seg-
mental regions of at least six gene pairs were kept. For

both the cluster investigation and synteny analysis, only
the RGAs assigned to chromosomes were used. Figures
were prepared using Circos [62] and the R package
ggplot2.

Tandem-derived RGAs
The RGA content of the three genomic sugarcane refer-
ences were investigated to assess whether tandem dupli-
cations were responsible for their origin. A custom
Python3 script was used to parse BLASTp all-against-all
searches and keep only non-self matches within each of
the three references. An accessory segmental duplication
tool made available alongside DAGchainer was used to
find collinear sets of homologous genes, with the ‘max
intervening genes value’ set to 10.

Reference-based transcriptome assembly
Raw Illumina paired-end reads were firstly preprocessed.
Reads quality were checked using the FastQC v0.11.5
software (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/). Adaptors were filtered out with Cuta-
dapt v1.18 [63], still delivering only reads with no N
bases, length > 20 bp, and average Q > 20. Pre-processed
paired-end reads were mapped against a reference set of
COMPGG sugarcane transcripts using the HISAT2
v2.1.0 software with default parameters [64].

Transcript expression analysis
Counting tables were obtained parsing the mapping
BAM files to the FeatureCounts software, from Subread
package [65]. The EdgeR Bioconductor software package
[66] was then used to identify the Differentially
Expressed Genes (DEGs). DEGs were considered as sta-
tistically significant if P < 0.05, and were represented as
values of a Log2 Fold Change (inoculated/control).

RGAs phylogenetic relationships
We used maximum-likelihood phylogeny to investigate
the relationships among predicted RGADEs. First,
RGADEs protein sequences were aligned using Muscle
[67] with the parameters set for the fastest possible
alignment for amino acids. The phylogeny was inferred
using the FastTree v2.1.10 SSE3 software [68] with the
LG model of amino acid evolution [69], in addition to
parameters -bionj and -slow. Final cladogram was ob-
tained and visualized using iTOL v4.3.2 [70].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-019-6207-y.

Additional file 1. PRGdb Dataset.

Additional file 2. RGA Dataset.
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Additional file 3: Figure S1. Distribution of RGA candidates predicted
from COMPGG de novo unique transcript sequences along 10
chromosomes of Sorghum bicolor genome. Figure S2. Distribution of
RGA candidates predicted from AP85–441 S. spontaneum along 10
chromosomes of Sorghum bicolor genome. Figure S3. Distribution of
RGA candidates predicted from R570 sugarcane cultivar monoploid
genome along 10 chromosomes of Sorghum bicolor genome. Figure S4.
Distribution of RGA candidates predicted from Sorghum bicolor along 10
chromosomes of its genome. Figure S5. Shared synteny view of the four
most frequent RGA subgroups along the chromosomes of three
references of sugarcane. Figure S6. RGA ortholog relationships among
four references of sugarcane. Figure S7. Experimental design used in this
work. Table S1. General RNAseq data statistics used in this study. Table
S2. Overview of the proportion of predicted RGAs and RGADEs in the
chromosomes in relation to the total of correspondent predictions within
each of three sugarcane genome references.
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