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Abstract

Background: Cultivated peanut (Arachis hypogaea L.) is an important oil and protein crop, but it has low disease
resistance; therefore, it is important to reveal the number, sequence features, function, and evolution of genes that
confer resistance. Nucleotide-binding site—leucine-rich repeats (NBS—LRRs) are resistance genes that are involved in
response to various pathogens.

Results: We identified 713 full-length NBS—LRRs in A. hypogaea cv. Tifrunner. Genetic exchange events occurred on
NBS—-LRRs in A. hypogaea cv. Tifrunner, which were detected in the same subgenomes and also found in different
subgenomes. Relaxed selection acted on NBS-LRR proteins and LRR domains in A. hypogaea cv. Tifrunner. Using
quantitative trait loci (QTL), we found that NBS—-LRRs were involved in response to late leaf spot, tomato spotted
wilt virus, and bacterial wilt in A. duranensis (2 NBS—LRRs), A. ipaensis (39 NBS-LRRs), and A. hypogaea cv. Tifrunner
(113 NBS-LRRs). In A. hypogaea cv. Tifrunner, 113 NBS—-LRRs were classified as 75 young and 38 old NBS-LRRs,
indicating that young NBS-LRRs were involved in response to disease after tetraploidization. However, compared to
A. duranensis and A. ipaensis, fewer LRR domains were found in A. hypogaea cv. Tifrunner NBS-LRR proteins, partly
explaining the lower disease resistance of the cultivated peanut.

Conclusions: Although relaxed selection acted on NBS-LRR proteins and LRR domains, LRR domains were preferentially lost
in A. hypogaea cv. Tifrunner compared to A. duranensis and A. ipaensis. The QTL results suggested that young NBS—-LRRs were
important for resistance against diseases in A. hypogaea cv. Tifrunner. Our results provid insight into the greater susceptibility

of A hypogaea cv. Tifrunner to disease compared to A. duranensis and A. ipaensis.
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Background

In plants, the innate immune system can be categorized
into two layers: pattern-triggered immunity (PTI) and
effector-triggered immunity (ETI) [1]. PTI is mediated by
surface-localized pattern recognition receptors (PRRs) that
can recognize pathogen-associated molecular patterns
(PAMPs) of the pathogen. ETI is mediated by intracellular
immune receptors, which evolve resistance (R) genes to
recognize effectors of pathogens. R genes can be divided
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into at least five classes [2, 3], and the biggest category is
nucleotide binding—leucine-rich repeats (NBS—LRRs) [4].
NBS-LRRs are distributed in various plant species. Many
NBS-LRRs have been identified at the genome-wide level
such as in Arabidopsis thaliana [5], Arachis duranensis
[6], Arachis ipaensis [6], Glycine max [7], Medicago trun-
catula (8], Oryza sativa (9], and Triticum aestivum [10].
NBS-LRRs are classified into two types based on the N-
terminal domain, coiled-coil (CC)-NBS-LRR (CNL) and
toll/mammalian interleukin-1 receptor (TIR)-NBS-LRR
(TNL) [5]. Generally, the NBS domain hydrolyzes ATP or
GTP to obtain energy [2]. Overexpression of CC or TIR
domains can reduce hypersensitive response in plants [11,
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12]. The LRR domain undergoes more relaxed selection
or positive selection because this domain interacts with
pathogenic effectors [13—15], indicating that LRR domains
are more diverse compared to NBS, TIR, and CC domains
[13, 14, 16].

To date, a few studies have focused on the phylogenetic
relationship of NBS—LRRs between polyploids and their
donors. T. aestivum (AABBDD) is a hybrid of Aegilops
tauschii (DD) and T. dicoccoides (AABB) which originated
from a hybridization process between T. urartu (AA) and
A. speltoides (BB) [17]. Many NBS—LRRs are extinct in T.
aestivum compared to the NBS-LRRs in its donors; the
evolutionary rate of NBS-LRRs of T. aestivum is also
slower than that of its donors [10], causing disease resist-
ance in T. aestivum to be lower than its donors. Similarly,
Gossypium hrisutum (AADD) is a hybrid between G. rai-
mondii (DD) and G. arboretum (AA) [18]. New NBS—
LRRs are produced in G. hrisutum because of polyploidy,
natural and artificial selection, gene duplication, and
chromosomal recombination [19]. However, gene number
and gene structure of NBS—LRRs are similar for Citrus
sinensis and its donor, C. clementina [16]. Therefore, it is
important to study the evolution and function between
polyploids and parental donors.

NBS-LRRs involved in response to pathogens have
been well documented. RFOI, WRR4, and RPWS8 genes
are NBS—LRRs that have been isolated from A. thaliana
[20-22]. Functional analyses have shown that RFOI
genes provide resistance to a broad spectrum of Fusar-
ium races [20], and RPWS8 controls resistance to a broad
spectrum of powdery mildew pathogens [21]. Overex-
pression of WRR4 in Brassica species can confer broad-
spectrum white rust resistance [22]. In addition, a total
of 15 NBS—LRRs from five rice cultivars have been intro-
duced into a transgenic rice cultivar, increasing its
broad-spectrum resistance to Magnaporthe oryzae [15].
In legumes, RCT1 from M. truncatula, which is classi-
fied as a TNL gene, confers broad-spectrum anthracnose
resistance in transgenic susceptible alfalfa plants [23]. In
Arachis, NBS—LRRs are involved in response to Aspergil-
lus flavus and Meloidogyne arenaria infection [6, 24, 25].

Cultivated peanut (Arachis hypogaea L., AABB) is an
allotetraploid hybrid between two wild peanuts, A. dura-
nensis (AA) and A. ipaensis (BB) [26—28]. The complete
genome sequences of A. hypogaea cv. Tifrunner and re-
lated diploids, A. duranensis and A. ipaensis, have been
published [26, 29-32]. In addition, NBS—LRRs of A. dur-
anensis and A. ipaensis have been identified and sub-
jected to phylogenetic analyses [6]. These studies
provided a powerful basis for the understanding of evo-
lution and function of NBS-LRRs in A. hypogaea cv.
Tifrunner. In this study, we identified 713 full-length
NBS-LRRs in A. hypogaea cv. Tifrunner. We analyzed
the sequence structure, evolution and function of NBS—
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LRRs in A. hypogaea cv. Tifrunner. We proposed that
the low disease resistance of A. hypogaea cv. Tifrunner
may be partially caused by the loss of LRR domains.

Results and discussion

NBS-LRR gene family in A. hypogaea cv. Tifrunner

We identified 1105 NBS-containing sequences using
HMMER in A. hypogaea cv. Tifrunner. Among the NBS-
containing sequences, 713 NBS-containing genes con-
tained complete NBS domains and had full-length coding
sequences (Additional file 1: Table S1). Previously, results
were more difficult to interpret when the evolution of
NBS-LRR proteins was analyzed using the incomplete
NBS domain of Lotus japonicus [33]. Therefore, in our
study, only 713 regular NBS-LRRs encoding intact NBS
domains were used for further analyses. There are a total
of 278 and 303 full-length NBS-LRRs in A. duranensis
and A. ipaensis, respectively [6].

Among the 713 NBS-LRR proteins, 229 sequences
contained TIR domains, and 118 sequences included CC
domains (Additional file 1: Table S1). Interestingly, we
found that 26 sequences contained both TIR and CC do-
mains in A. hypogaea cv. Tifrunner (Additional file 1:
Table S1). However, none of the sequences contained
both TIR and CC domains in A. duranensis and A.
ipaensis [6]. Previous studies have demonstrated that
TNL and CNL have different origins [34—36]. We specu-
lated that genetic exchange or gene rearrangement likely
resulted in the fusion of the TIR and CC domains after
tetraploidization. Bertioli et al. [30] found many cross-
overs between A and B subgenomes, and chromosome
inversions were detected in A. hypogaea cv. Tifrunner.
The chromosome translacations could change gene dir-
ection. In addition, we found three sequences that simul-
taneously contained an NBS domain and WRKY domain
in A. hypogaea cv. Tifrunner. In other legumes, NBS—
WRKY fusion proteins have only been identified in G.
max, A. duranensis, and A. ipaensis [37]. The bacterial
effectors AvrRps4 or PopP2 can trigger WRKY tran-
scription factors that are involved in active NBS—LRR
gene responses to pathogens [38]. We speculated that
NBS-WRKY fusion proteins can play a crucial role in
response to biotic stress in A. hypogaea cv. Tifrunner.

LRR domains play important roles in protein—ligand
and protein—protein interactions; these LRR domains are
involved in plant immune responses [39, 40]. In this study,
we found that 348 NBS-LRR proteins contained four
types of LRR domains in A. hypogaea cv. Tifrunner,
namely, LRR1, LRR3, LRR4, and LRR8 (Additional file 1:
Table S1). Among these sequences, the greatest number
of LRR domains were classified as LRR8-type (308),
followed by LRR3 (133), LRR4 (88), and LRR1 (7). A. dur-
anensis and A. ipaensis had five types of LRR domains:
LRR1, LRR3, LRR4, LRR5, and LRR8 [6]. Moreover, the
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greatest number of LRR domains in A. duranensis were
classified as LRR8-type, followed by LRR4, LRR3, and
LRR5 [6]. In A. ipaensis, the greatest number of LRR do-
mains were classified as LRR8-type, followed by LRR4,
LRR3, LRR5, and LRR1 [6]. The LRR5 domain only ap-
peared in CNL proteins in A. duranensis and A. ipaensis
[6]. We proposed that A. hypogaea cv. Tifrunner lost the
LRR5 domain possibly due to genetic exchange or gene
loss after tetraploidization or whole genome duplication
(WGD).

Genetic exchange of NBS-LRRs in A. hypogaea cv.
Tifrunner

A. hypogaea cv. Tifrunner has 20 chromosomes,
Arahy.01-Arahy.20 [30]. The chromosomal location re-
sults showed that the greatest number of NBS-LRRs was
located on Arahy.12, while the lowest number of NBS—
LRRs were located on Arahy.17 (Fig. 1). The chromo-
somal location of NBS—-LRRs was reported in A. dura-
nensis (chromosome: AO01-A10) and A. ipaensis
(chromosome: B01-B10) by Song et al. [6]. A02 and B02
contained the highest number of NBS-LRRs in A. dura-
nensis and A. ipaensis, respectively, and A06 and B07
had the lowest NBS—LRR number in A. duranensis and
A. ipaensis, respectively [6]. In this study, the A subge-
nome was represented as Arahy.0l1-Arahy.10, and B
subgenome was represented as Arahy.11-Arahy.20 in A.
hypogaea cv. Tifrunner based on the number of NBS-
LRRs on each chromosome (Fig. 2). This result was con-
sistent with a previous description of chromosome as-
sembly in A. hypogaea cv. Tifrunner by Bertioli et al
[30].
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A polyploidization event (or WGD) can cause gene
duplication and loss [41, 42]. A. hypogaea had at least
three WGDs [32]; therefore, the number of NBS—LRRs
on each chromosome of A. hypogaea cv. Tifrunner chan-
ged and was different from the number of NBS-LRRs on
each chromosome of A. duranensis and A. ipaensis. We
found that although some NBS—LRRs were lost, the total
number of NBS-LRRs was higher in A. hypogaea cv.
Tifrunner. For example, the number of NBS—LRRs on
Arahy.10, 17, and 20 decreased, and the number of
NBS-LRRs on other chromosomes increased compared
with A. duranensis and A. ipaensis (Fig. 2).

To further reveal the relationship of NBS-LRRs be-
tween wild and cultivated peanuts, we constructed one-
to-one orthologs. A total of 99 one-to-one orthologous
gene pairs were identified between A. hypogaea cv.
Tifrunner and A. duranensis, and 142 one-to-one ortho-
logous gene pairs were identified between A. hypogaea
cv. Tifrunner and A. ipaensis (Fig. 3). Most one-to-one
orthologs corresponded to a similar location on the
chromosome between wild and cultivated peanut spe-
cies. However, some NBS—LRRs from A. duranensis (A
genome) corresponded to NBS-LRRs in the B subge-
nome of A. hypogaea cv. Tifrunner and vice versa (Fig.
3). These results indicated that there was genetic ex-
change in the A. hypogaea cv. Tifrunner genome, which
is consistent with previous findings by Leal-Bertioli et al.
[43], who demonstrated that A. ipaensis B genome
segments were replaced by the A. hypogaea cv. Tifrun-
ner A subgenome segments, and A. duranensis A gen-
ome segments were replaced by A. hypogaea «cv.
Tifrunner B subgenome segments. The genome struc-
ture was not the expected AABB, but was AAAA or
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BBBB in A. hypogaea cv. Tifrunner [30]. Specifically, ap-
proximately 14.8 Mb of the A subgenome sequences
were transferred into the B subgenome, and 3.1 Mb of
the B subgenome sequences migrated into the A subge-
nome based on genetic exchange or homoeologous ex-
change [30].

Relaxed selection acting on paralogous NBS-LRR gene
pairs in A. hypogaea cv. Tifrunner
A total of 43, 87, and 756 paralogous gene pairs were
found in A. duranensis, A. ipaensis, and A. hypogaea cv.
Tifrunner, respectively (Additional file 2: Table S2 and
Additional file 3: Table S3). A. hypogaea cv. Tifrunner
had a greater number of paralogous gene pairs than A.
duranensis and A. ipaensis. This could be explained by
tetraploidization or WGD. Specifically, a polyploidization
event may have retained many duplicated genes [41, 42].
The average K,/K; of paralogous NBS-LRRs in A. hypo-
gaea cv. Tifrunner (0.60) was greater than the K,/K; of
A. ipaensis (0.59) and A. duranensis (0.55, Fig. 4a).
Nevertheless, the average K,/K; value of paralogous
NBS-LRRs was greater than 0.5 in A. duranensis, A.
ipaensis, and A. hypogaea cv. Tifrunner, indicating that
the paralogous NBS-LRRs were under relaxed selection.
Compared to other domains of NBS-LRR proteins,
the LRR domain underwent more relaxed selection or
positive selection because this domain was implicated in
pathogenic effector sensing [13—15]. Our results showed
that the average K,/K; value of the LRR domain in A.
hypogaea cv. Tifrunner (0.80) was greater the average
K, /K value of A. duranensis (0.33) and A. ipaensis (0.41,

Fig. 4b), suggesting that LRR domains were under re-
laxed selection in A. hypogaea cv. Tifrunner, but under
purifying selection in A. duranensis and A. ipaensis.

Young NBS-LRR paralogs in A. hypogaea cv. Tifrunner

In this study, the paralogs produced by gene duplication
events that occurred before tetraploidization were considered
old paralogs. Young paralogs were generated by gene dupli-
cation events after tetraploidization. We detected 29 old and
727 young paralogous NBS-LRR gene pairs in A. hypogaea
cv. Tifrunner (Additional file 3: Table S3), indicating that
many young NBS—LRR paralogs were generated as a result
of gene duplication events after tetraploidization. In addition,
some old paralogous NBS—LRR gene pairs were lost after tet-
raploidization, where A subgenome lost 35 paralogous NBS—
LRR gene pairs, and B subgenome lost 66 paralogous NBS—
LRR gene pairs compared with A. duranensis and A. ipaensis.
Previous studies have reported that the properties of old and
young genes have different features [44—50]. For example,
young genes have faster evolutionary rates, relaxed selection,
lower gene expression levels, shorter gene length, and higher
intrinsic structural disorder (ISD) than old genes [46, 47, 49—
53]. We found that the average K,/K; values of young paralo-
gous NBS-LRRs (0.60) were higher than old NBS-LRRs
(0.54, Fig. 5a), indicating that young paralogous NBS—LRRs
were under relaxed selection. The average polypeptide length
of young paralogous NBS—LRRs (1110 amino acids) was lon-
ger than old paralogous NBS—LRRs (1080 amino acids; Fig.
5b). The average ISD value of young paralogous NBS—LRRs
(0.14) was lower than the old paralogous NBS-LRRs (0.15,
Fig. 5c), indicating that the protein structure of young



Song et al. BMC Genomics (2019) 20:844 Page 5 of 12

128
Arahy.12 88]
30

0
120
Arah‘/-11 %?%
o0
0.
0 %3
[\

90
A

Q 20
SR

Fig. 3 One-to-one orthologous NBS-LRR gene pairs among Arachis duranensis, A. ipaensis, and A. hypogaea cv. Tifrunner. The orange line indicates
orthologous NBS-LRR gene pairs in a similar chromosomal location between wild and cultivated peanuts. The blue line indicates orthologous

NBS—LRR gene pairs in a different chromosomal location between wild and cultivated peanuts
- J

Mann-Whitney U, P < 0.05 Mann-Whitney U, P < 0.05

IS

Mann-Whitney U, P > 0.05

Mann-Whitney U, P < 0.05

3 Mann-Whitney U, P> 0.05
1.0
2
Mann-Whitney U, P > 0.05
05 L
0

0.0

Ka/Ks

Ka/Ks

A. duranensis A. ipaensis A. hypogaea A. duranensis A. ipaensis A. hypogaea

Fig. 4 Comparison of selective pressure (Ky/K,) of paralogous NBS-LRR proteins among Arachis duranensis, A. ipaensis, and A. hypogaea cv. Tifrunner. A.
K./Ks of paralogous NBS-LRR proteins; B. K,/K; of paralogous LRR domains. K,/Ks: nonsynonymous to synonymous per site substitution rates. P < 0.05

indicates a statistically significant difference
. J




Song et al. BMC Genomics (2019) 20:844 Page 6 of 12
p
A B | C.o |
1 5|Mann-Whitney U, P < 0.05 Mann-Whitney U, P> 0.05 | -001Mann-Whitney U, P < 0.01
1500 5
g o5
5 2
»1.0 © o
1000 4
s 4 2050
X g 2
:
05 & 500 3025
g
0 0.00
0.0

Old paralog Young paralog

indicate significant differences

Old paralog

Fig. 5 Comparison of sequence features and substitution rates between old and young paralogous NBS-LRR proteins in Arachis hypogaea cv.
Tifrunner. A. Selective pressure (K,/K,) between old and young paralogous NBS-LRR proteins in A. hypogaea cv. Tifrunner; B. Polypeptide length
between old and young paralogous NBS-LRR proteins in A. hypogaea cv. Tifrunner; C. The intrinsic structural disorder (ISD) of old and young
paralogous NBS-LRR proteins in A. hypogaea cv. Tifrunner. K,/Ks: nonsynonymous to synonymous per site substitution rates. P < 0.05 and < 0.01

Young paralog Old paralog Young paralog

paralogous NBS—LRRs was stable compared to old paralo-
gous NBS—LRRs. In contrast to these findings, previous stud-
ies have found that young genes often have shorter gene
length and higher ISD compared to old genes [46, 49].
Young gene has essential function at least underwent 100
MYA [52]. However, the A. hypogaea origination is relatively
late [26, 31]. Therefore, we speculated that young NBS—LRRs
played the essential functions need more time, it was just rap-
idly fixed in A. hypogaea cv. Tifrunner.

NBS-LRR proteins lost LRR domains in A. hypogaea cv.
Tifrunner

NBS-LRR orthologs in A. duranensis, A. ipaensis, and
A. hypogaea cv. Tifrunner were under relaxed selec-
tion (Fig. 6a), indicating that the biological functions
of NBS—LRRs diversified after the divergence of these

three Arachis species. Relaxed selection acted on LRR
domains of NBS—LRR orthologs between A. duranen-
sis and A. ipaensis (0.53) and between A. duranensis
and A. hypogaea cv. Tifrunner (0.71) and purifying se-
lection acted on LRR domains from NBS—LRR ortho-
logs between A. ipaensis and A. hypogaea cv.
Tifrunner (0.39; Fig. 6b). These results indicated that
the LRR domains between A. ipaensis and A. hypogaea
cv. Tifrunner were conserved, and LRR domains be-
tween A. duranensis and A. hypogaea cv. Tifrunner
were divergent. Moreover, we found that the average
K,/K, value of homoeologous NBS-LRR proteins
(0.57) and LRR domains (0.75) in A. hypogaea cv.
Tifrunner was greater than the average K,/K; value of
orthologs between A. duranensis and A. ipaensis
(NBS-LRR: 0.55; LRR domain: 0.53; Fig.7). Taken

0.5

w

—

DI

DH

IH

DI

DH

IH

Fig. 6 Comparison of selective pressure (K,/K;) between orthologous NBS-LRR proteins among Arachis duranensis, A. ipaensis, and A. hypogaea cv.
Tifrunner. A. K,/K; of orthologous NBS-LRR proteins; B. K,/K; of orthologous LRR domains. DI. A. duranensis VS A. ipaensis; DH. A. duranensis VS A.
hypogaea cv. Tifrunner; IH. A. ipaensis VS A. hypogaea cv. Tifrunner. K/Ks: nonsynonymous to synonymous per site substitution rates
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together, the LRR domains were under more relaxed
selection after tetraploidization.

The number of LRR domains in A. duranensis and A.
ipaensis were greater than that in A. hypogaea cv.
Tifrunner (average number: 2.35 vs 0.72; Fig. 8a). There
were fewer types of LRR domains in A. hypogaea cv.
Tifrunner NBS—-LRRs compared to A. duranensis and A.
ipaensis (average number of type: 1.45 vs 0.64; Fig. 8b).
Similarly, the number of LRR domains in orthologs of A.
duranensis and A. ipaensis was greater than the homo-
eologs of A. hypogaea cv. Tifrunner (average number:
2.48 vs 0.56, average number of type: 1.73 vs 0.48; Fig.
8c and d).

Although relaxed selection had a greater effect on the
NBS-LRRs of A. hypogaea cv. Tifrunner compared to A.
duranensis and A. ipaensis, A. hypogaea cv. Tifrunner
lost a greater number of LRR domains. These results in-
dicated that the resistance of A. hypogaea cv. Tifrunner
to biotic effectors was weaker than that of A. duranensis
and A. ipaensis, likely because A. hypogaea cv. Tifrunner
lost LRR domains. Similarly, Peele et al. [54] found that
A. thaliana was sensitive to biotic stress due to the loss
of LRR domains compared to Arabidopsis lyrata, Cap-
sella rubella, Brassica rapa, and Eutrema salsugineum.

It is unclear whether A. duranensis donated the A sub-
genome to A. hypogaea [26]. A recent study showed that
the genome of A. duranensis from Rio Seco, Argentina,
was the most similar to the A subgenome of A. hypogaea
using chloroplast and ribosomal DNA haplotypes from
50 accessions [30]. In this study, we used A. duranensis
(no. V14167) from Argentina [26]. Although there may
be differences in the species used in this study, our data
suggests that these potential population-level differences
did not influence our results. The A subgenome from A.
hypogaea had an average DNA similarity of 99.76% to
the A. duranensis Rio Seco accessions and 99.61%

similarity to A. duranensis V14167 using whole-genome
sequencing [30].

NBS-LRRs involved in biotic resistance based on QTLs in
A. hypogaea cv. Tifrunner

The QTLs of resistance to late leaf spot, tomato spotted
wilt virus, and bacterial wilt were identified in cultivated
peanut using A. duranensis and A. ipaensis as reference
genomes [55, 56]. Three QTLs with 27 NBS-LRRs, four
QTLs with six NBS-LRRs, and one QTL with eight
NBS-LRRs were involved in response to late leaf spot,
tomato spotted wilt virus, and bacterial wilt, respectively
(Table 1 and Additional file 4: Table S4). All of these
QTLs were mapped onto the genome of A. hypogaea cv.
Tifrunner. One QTL (qTSW_T10_B03_1) contained two
NBS-LRRs in A. ipaensis, but its collinear region was ab-
sent in NBS—LRRs in A. hypogaea cv. Tifrunner (Table
1), indicating that some NBS—LRRs were lost in A. hypo-
gaea cv. Tifrunner.

In the collinear region, A. duranensis and A. ipaensis
had greater number of LRR domains than A. hypogaea
cv. Tifrunner (average number: 2.56 vs 0.60, average
number of type: 1.58 vs 0.56; Fig. 8e and f). These results
indicated that the loss of LRR domains may have de-
creased ability of NBS-LRR to recognize effectors of bac-
terial wilt, late leaf spot, and tomato spotted wilt virus in
A. hypogaea cv. Tifrunner. Many studies have demon-
strated that A. duranensis and A. ipaensis have greater
resistant to biotic stressors than cultivated peanut [57-
60]. Thus, we proposed that we may have overestimated
the disease resistance of cultivated peanut using A. dura-
nensis and A. ipaensis as reference genomes.

In this study, we identified 31, 11, and 71 NBS—LRRs
that responded to late leaf spot, tomato spotted wilt
virus, and bacterial wilt in A. hypogaea cv. Tifrunner, re-
spectively. Among these NBS—LRRs, we found 75 young
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NBS-LRRs and 38 old NBS-LRRs based on gene dupli-
cation events after tetraploidization. There were more
young NBS-LRRs compared to old NBS-LRRs in A.
hypogaea cv. Tifrunner, indicating that young NBS-
LRRs were involved in the plant’s response against
pathogens. Similarly, Song et al. [61] found that com-
pared to old duplicated genes, young duplicated genes
were more likely to be involved in response to biotic
stressors in A. duranensis. Although no studies have
demonstrated that young genes confer resistance to

biotic stress in A. hypogaea cv. Tifrunner, our results
indicated that young NBS-LRRs may be involved in
response to late leaf spot, tomato spotted wilt virus,
and bacterial wilt compared to old NBS-LRRs in A.
hypogaea cv. Tifrunner.

Conclusions

We identified NBS—-LRRs in A. hypogaea cv. Tifrunner.
Genetic exchange events occurred in NBS-LRRs in A.
hypogaea cv. Tifrunner compared to A. duranensis and A.



Song et al. BMC Genomics (2019) 20:844

Page 9 of 12

Table 1 The number of NBS-LRRs in QTLs that respond to late leaf spot, tomato spotted wilt virus, and bacterial wilt in Arachis

duranensis, A. ipaensis, and A. hypogaea cv. Tifrunner

QTLs in wild Genomic NO. NBS-LRR in QTLs in cultivated Genomic region NO. NBS-LRR in
peanut® region (bp)° wild peanut peanut® (bp)® cultivated peanut
gLLS_T12_A05_5 15,720,064-42,599,528 2 gLLS_T12_Arahy05_5 40,799,649-18,809,983 3
gLLS_T11_B02_1 105,499,048-106,618,489 21 qLLS_T11_Arahy02_1 117,079,303-118,213,823 25

qLLS_T12_B10 10,864,883-11,224,499 4 gLLS_T12_Arahy20 11,390,610-11,757,408 3

qTSW_T10_B02 99,031,265-101,253,445 1 qTSW_T10_Arahy12 110,327,651-112,677,850 4
qTSW_T10_B03_1 128,864,060-128,903,550 2 qTSW_T10_Arahy13_1 139,479,956-139,524,916 0
qTSW_T10_B09_1 9,631,598-14,497,666 1 qTSW_T10_Arahy19_1 9,479,684-14,682,777 1
qTSW_T10_B09_2 6,739,506-5,189,475 2 qTSW_T10_Arahy19_2 6,650,549-4,973,413 6
gBWR_Com_B02 3,250,000-6,600,000 8 gBWR_Com_Arahy12 461,172-7,066,164 71

Note: QTLs: quantitative trait locus

@ The QTLs are named from references 55 and 56. A and B indicated the chromosome in A. duranensis and A. ipaensis, respectively

® The genomic region of QTLs located on A. duranensis and A. ipaensis

€ The QTLs named based on the collinear region between wild and cultivated peanuts. ‘Arahy’ indicates the chromosome in A. hypogaea cv. Tifrunner

< The genomic region of QTLs located on A. hypogaea cv. Tifrunner

ipaensis. Although the LRR domains were under relaxed
selection, more LRR domains were lost in A. hypogaea cv.
Tifrunner compared to A. duranensis and A. ipaensis.
Based on the QTL data, we found that NBS—LRRs were in-
volved in response to late leaf spot, tomato spotted wilt
virus, and bacterial wilt in A. duranensis, A. ipaensis, and
A. hypogaea cv. Tifrunner. Interestingly, the results sug-
gested that young NBS—-LRRs were more likely to be in-
volved in disease resistance compared to old NBS-LRRs in
A. hypogaea cv. Tifrunner.

Methods

Identification of the NBS-LRR gene family in A. hypogaea
cv. Tifrunner

The complete genome sequence of A. hypogaea cv. Tifrun-
ner has been published [30] and is available on PeanutBase
(https://www.peanutbase.org/data/public/ Arachis_hypogaea/)
[29]. The hidden Markov models (HMM) of NBS (PF00931)
and TIR (PF01582) domains were downloaded from the
Pfam database [62]. We identified the NBS-containing se-
quences using NBS domain by HMMER [63] in A. hypogaea
cv. Tifrunner. We extracted NBS-containing sequences using
an in-house Perl script based on the sequencing ID. Subse-
quently, we uploaded the NBS-containing sequences to the
Pfam database [62] and re-examined these sequences.
Among the NBS-containing sequences, we used the same
method to identify the TIR-containing sequences. In A. dur-
anensis and A. ipaensis, we found the following five types of
LRR domains: LRR1, LRR3, LRR4, LRR5, and LRR8 [6]. We
downloaded these five HMMs of the LRR domain from the
Pfam database [62] and identified the LRR domains in NBS-
containing sequences using HMMER [63] in A. hypogaea cv.
Tifrunner. The CC domains of NBS-containing sequences
were surveyed using Paircoil2 (http://groups.csail. mit.edu/cb/
paircoil2/). The P-score cutoff was 0.03.

Chromosomal location

The gff3 file of the A. hypogaea cv. Tifrunner genome
has been released on PeanutBase (https://www.peanut-
base.org/data/public/Arachis_hypogaea/) [29]. We used
the TBtools program [64] to extract the chromosomal
location of NBS—LRRs based on the sequencing ID. The
chromosomal location of NBS—LRRs was reported in A.
duranensis and A. ipaensis [6]. We used Circos v0.69
[65] to compare the chromosomal location of NBS—LRRs
in A. duranensis, A. ipaensis, and A. hypogaea cv.
Tifrunner.

Homology in Arachis species

Genes that are paralogs and orthologs in A. duranen-
sis and A. ipaensis have been reported in previous
studies [66, 67]. We identified NBS—LRR paralogs and
homoeologs in A. hypogaea cv. Tifrunner, and NBS-
LRR orthologs between wild and cultivated peanut
species. The following evaluation criteria were used as
thresholds to determine paralogs and homoeologs in
local BLAST analyses [26]: (1) alignment coverage ex-
ceeding 80% of the two sequences, (2) identity > 80%,
and (3) E-value <10~ *°.

The paralogous, orthologous, and homoeologous
NBS-LRR gene pairs were extracted using an in-house
Perl script. MAFFT [68] was used to align pairs of amino
acid sequences. PAL2NAL [69] was used to convert
amino acid sequences into their corresponding nucleo-
tide sequences. PAML 4.0 [70] was used to calculate the
nonsynonymous substitution per nonsynonymous site
(K,), synonymous substitution per synonymous site (Kj),
and nonsynonymous to synonymous per site substitution
rates (K,/Ky). K,/Ks=1, K,/Ks>1, and K,/K ;<1 indi-
cated neutral, positive, and purifying selection, respect-
ively. We estimated the K, K, and K,/K; of LRR
domains using the same methods.
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Polypeptide length and intrinsic structural disorder

The polypeptide length of each NBS—LRR sequence was
estimated using codon W (version 1.4, http://codonw.
sourceforge.net) with default parameters. The intrinsic
structural disorder (ISD) was estimated using [UPred2A
with default parameters [71]. The ISD value ranged from
0 to 1, where 0 indicated a stable protein structure, and
1 indicated an unstable protein structure.

Identification of the potential function of NBS-LRRs using
quantitative trait loci analysis

To date, many recombinant inbred peanut lines have
been constructed to improve biotic resistance, includ-
ing resistance to bacterial, fungal, insect, and viral
stressors. A number of major quantitative trait loci
(QTL) were obtained using various molecular markers
and genome sequencing methods [55, 56, 72—75]. Agar-
wal et al. [55] identified major QTLs related to re-
sponse to early leaf spot, late leaf spot, and tomato
spotted wilt virus using a recombinant inbred popula-
tion (Tifrunner x GT-C20). Luo et al. [56] identified
two QTLs that act in response to bacterial wilt using a
recombinant inbred population (Yuanza 9102 x Xuzhou
68—4). The abovementioned QTLs were obtained using
genome sequencing of A. duranensis and A. ipaensis as
the reference genomes [55, 56]. We obtained these
QTLs, and mapped them onto the genome sequences
of A. hypogaea cv. Tifrunner using a local BLAST pro-
gram [76]. The parameters were set as follows: (1)
alignment coverage exceeding 80% of QTL sequences,
(2) identity >80%, and (3) E-value <10~ '°, The NBS-
LRRs were identified using the gene location informa-
tion across the collinear areas in A. duranensis, A.
ipaensis, and A. hypogaea cv. Tifrunner.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512864-019-6212-1.

Additional file 1: Table S1. Information of chromosomal location and
structure in Arachis hypogaea cv. Tifrunner NBS—LRRs.
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pairs. PAL2NAL was used to convert amino acid sequences into the
corresponding nucleotide sequences. PAML 4.0 was used to calculate the
nonsynonymous substitution per nonsynonymous site (K,), synonymous
substitution per synonymous site (K;), and nonsynonymous to
synonymous per site substitution rates (K,/Ko).
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PAL2NAL was used to convert amino acid sequences into the
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