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Abstract

Background: Single nucleotide polymorphism (SNP) arrays have facilitated discovery of genetic markers associated
with complex traits in domestic cattle; thereby enabling modern breeding and selection programs. Genome-wide
association analyses (GWAA) for growth traits were conducted on 10,837 geographically diverse U.S. Gelbvieh cattle
using a union set of 856,527 imputed SNPs. Birth weight (BW), weaning weight (WW), and yearling weight (YW)
were analyzed using GEMMA and EMMAX (via imputed genotypes). Genotype-by-environment (GxE) interactions
were also investigated.

Results: GEMMA and EMMAX produced moderate marker-based heritability estimates that were similar for BW
(0.36–0.37, SE = 0.02–0.06), WW (0.27–0.29, SE = 0.01), and YW (0.39–0.41, SE = 0.01–0.02). GWAA using 856K imputed
SNPs (GEMMA; EMMAX) revealed common positional candidate genes underlying pleiotropic QTL for Gelbvieh
growth traits on BTA6, BTA7, BTA14, and BTA20. The estimated proportion of phenotypic variance explained (PVE)
by the lead SNP defining these QTL (EMMAX) was larger and most similar for BW and YW, and smaller for WW.
Collectively, GWAAs (GEMMA; EMMAX) produced a highly concordant set of BW, WW, and YW QTL that met a
nominal significance level (P ≤ 1e-05), with prioritization of common positional candidate genes; including genes
previously associated with stature, feed efficiency, and growth traits (i.e., PLAG1, NCAPG, LCORL, ARRDC3, STC2).
Genotype-by-environment QTL were not consistent among traits at the nominal significance threshold (P ≤ 1e-05);
although some shared QTL were apparent at less stringent significance thresholds (i.e., P ≤ 2e-05).

Conclusions: Pleiotropic QTL for growth traits were detected on BTA6, BTA7, BTA14, and BTA20 for U.S. Gelbvieh
beef cattle. Seven QTL detected for Gelbvieh growth traits were also recently detected for feed efficiency and
growth traits in U.S. Angus, SimAngus, and Hereford cattle. Marker-based heritability estimates and the detection of
pleiotropic QTL segregating in multiple breeds support the implementation of multiple-breed genomic selection.
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Background
Growth traits are commonly recorded and used as selection
criteria within modern beef cattle breeding programs and
production systems; primarily because of their correlation
with increased overall meat production and other econom-
ically important traits [1–4]. Some of the most commonly
investigated growth traits include birth weight (BW),

weaning weight (WW) and yearling weight (YW); with BW
considered as both a production indicator, and a primary
selection criterion for improving calving ease by reducing
dystocia events [1, 2, 5–7]. Moreover, while previous stud-
ies have demonstrated that low estimated breeding values
(EBVs) for BW are associated with reductions in both calf
viability [6] and growth rates [5, 7], increased dystocia rates
may also occur if sires with high EBVs for BW are used in
conjunction with dams that possess small pelvic size.
Therefore, modern beef breeding programs and production
systems generally strive to increase calving ease, and
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maximize other growth-related traits such as WW and
YW, particularly considering the known correlations be-
tween growth traits and other economically important
carcass and reproductive traits [3, 5, 7].
Given the increasing economic importance of growth

traits in beef cattle, a number of studies have sought to
identify quantitative trait loci (QTL) influencing bovine
body weight, growth, and aspects of stature, including both
linkage studies and modern genome-wide association ana-
lyses [2, 8–13]. Several recent studies have also established
moderate heritability estimates for bovine growth traits in
U.S. beef cattle including BW, WW, and YW [14–17], with
a number of relevant QTL and positional candidate genes
identified to date, including orthologous genes that affect
both human and bovine height [2, 18–22]. Notably, with
the advent of the bovine genome assembly [23], the devel-
opment of the Illumina Bovine SNP50 and 778K HD assays
[23, 24], and more recently, the demonstrated ability to im-
pute high density genotypes with high accuracy [25], an
industry-supported research framework [26] has emerged
that allows for very large-sample studies to be conducted
without the costs associated with directly ascertaining high
density genotypes (≥ 778K) for all study animals.
Herein, we used 10,837 geographically diverse U.S. Gelb-

vieh beef cattle and a union set of 856,527 (856K) imputed
array variants to conduct GWAA with marker-based herit-
ability estimates for BW, WW, and YW. Additionally, we
used thirty-year climate data and K-means clustering to as-
sign all Gelbvieh beef cattle to discrete U.S. climate zones
for the purpose of estimating genotype-by-environment
(GxE) interactions for BW, WW, and YW. This study rep-
resents the largest, high-density, single breed report to date
with both standard GWAA and GxE GWAA for BW,
WW, and YW. Additionally, we also evaluate the general
concordance of GWAAs conducted using two popular
methods (GEMMA; EMMAX) [27–29]. The results of this
study are expected to positively augment current beef cattle
breeding programs and production systems, particularly for
U.S. Gelbvieh cattle, but also serve to highlight the increas-
ing potential for eliciting economic impacts from industry-
supported research frameworks that were developed for en-
hancing U.S. food security.

Results and discussion
Heritability estimates for BW, WW, and YW in U.S.
Gelbvieh beef cattle
Herein, we used two approaches to generate marker-
based heritability estimates for all investigated traits. Spe-
cifically, standardized relatedness matrices produced with
GEMMA (Gs) [27] and genomic relationship matrices
(GRM) normalized via Gower’s centering approach and
implemented in EMMAX [25, 28–30], were used to com-
pare the chip or pseudo-heritability estimates for each in-
vestigated trait (Table 1). Notably, both approaches

produced moderate heritability estimates with small
standard errors for BW, WW, and YW; and heritability es-
timates for YW were highest among all investigated traits
for U.S. Gelbvieh beef cattle. Moderate heritability esti-
mates produced here using both approaches further sup-
port the expectation of positive economic gains resulting
from the implementation of genomic selection [30].

GWAA for BW, WW, and YW in U.S. Gelbvieh beef cattle
The results of our 856K single-marker analyses for BW
(GEMMA; EMMAX) [27–29] are shown in Fig. 1 and in
Figure S1 (Additional File 1), with detailed summary
data for QTL detected by GEMMA and EMMAX de-
scribed in Table 2 and Table S1, respectively. A com-
parison of GEMMA and EMMAX results revealed a
concordant set of QTL defined by lead SNPs (i.e., the
most strongly associated SNP within a QTL region)
which met a nominal significance threshold (P ≤ 1e-05)
[31] (Table 2, Table S1, Additional File 1, Additional File
2). Specifically, QTL signals for BW were detected on
BTA6, BTA7, BTA14, and BTA20 across both analyses
(Table 2, Table S1, Additional File 1), and included an
array of positional candidate genes generally involved in
diverse aspects of mammalian growth and development
(i.e., CCSER1, ST18, RP1/XKR4, SLIT2, STC2, IBSP) as
well as bovine growth (i.e., NCAPG, LCORL, KCNIP4,
ARRDC3), stature (i.e., PLAG1), and production traits
(i.e., IMPAD1/FAM110B, HERC6/PPM1K) [2, 13, 14, 18,
21, 22, 30, 32–60]. Interestingly, the lead SNP defining
the BW QTL detected on BTA14 (14_25 Mb) was lo-
cated in PLAG1, thereby further supporting the involve-
ment of this gene in various aspects of bovine growth
and stature across breeds [2, 14, 18, 21, 30, 32–34]. Add-
itionally, all but one (i.e., NCAPG, exon 9) of the lead
SNPs for the detected Gelbvieh BW QTL (GEMMA,
EMMAX) were noncoding variants (Table 2, Table S1,
Additional File 1). Genomic inflation factors and correl-
ation coefficients for P-values obtained from all BW ana-
lyses are shown in Tables S2-S3 (Additional File 1).
Single-marker analyses (856K) for WW in U.S. Gelbvieh

beef cattle (GEMMA; EMMAX) revealed several of the
same QTL detected for BW (Table 3, Fig. 2, Table S4,
Figure S2, Additional File 1), thus providing statistical sup-
port for pleiotropic QTL located on BTA6 (i.e., NCAPG,
CCSER1, KCNIP4, HERC6/PPM1K, LOC782905/SLIT2,
LOC100336621/LOC104972717) as well as BTA14 (i.e.,
PLAG1, XKR4, IMPAD1/FAM110B). The lead SNPs for
Gelbvieh BW and WW QTL detected on BTA20 (20_05
Mb) suggested proximal but independent causal mutations,
thus implicating the potential involvement of at least three
positional candidate genes (LOC104975192/STC2, ERGIC1).
A detailed summary of lead and supporting SNPs for pleio-
tropic QTL is provided in Additional File 2. Beyond evi-
dence for pleiotropy, four additional Gelbvieh WW QTL
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were also detected on BTA5 (5_60 Mb), BTA6 (6_31 Mb,
6_37 Mb) and BTA28 (28_37 Mb; Table 3, Fig. 2, Table
S4, Figure S2, Additional File 1). Among the additional
QTL detected, several positional candidate genes have
been implicated in aspects of development (UNC5C,
SNCA/GPRIN3) and immune function (SH2D4B) [61–
67]. An investigation of all lead SNPs for the detected
Gelbvieh WW QTL revealed 13 noncoding variants and
one nonsynonymous variant (Table 3, Table S4, Add-
itional File 1). Genomic inflation factors and correlation
coefficients for P-values obtained from all WW analyses
are presented in Tables S2 and S3 (Additional File 1).
Consistent with our analyses of BW and WW, our

single-marker analyses (856K) for YW in U.S. Gelbvieh
beef cattle again revealed evidence for pleiotropic QTL
located on BTA6 and BTA14 (Table 4, Fig. 3, Table S5,
Figure S3, Additional File 1). Specifically, the results ob-
tained from our analyses of BW, WW, and YW revealed
some common QTL signals for all investigated traits on
BTA6 (6_36 Mb, 6_38 Mb, 6_39 Mb, 6_41 Mb, 6_42
Mb) and BTA14 (14_24 Mb, 14_25 Mb, 14_26 Mb).
Likewise, the lead SNPs defining these QTL also resulted
in the prioritization of the same positional candidate
genes on BTA6 (i.e., LCORL, KCNIP4, HERC6/PPM1K,
SLIT2, CCSER1) and BTA14 (i.e., PLAG1, IMPAD1/
FAM110B, RP1/XKR4). Together with pleiotropic signals
on BTA6 and BTA14, eight additional YW QTL were

also detected; including one QTL (7_93 Mb) that was
also found to influence Gelbvieh BW (Table 4, Table S5,
Additional File 1). Positional candidate genes for these
QTL have been implicated in diverse aspects of growth
and development as well as bovine production traits (i.e.,
SNCA/GPRIN3, SLIT2, NSMAF, LOC101905238/
ARRDC3), bovine milk traits (i.e., PPARGC1A), and
chromatin modification (i.e., IWS1) [68–71]. Relevant to
YW, it should also be noted that several of the pleio-
tropic QTL detected for U.S. Gelbvieh in this study have
also been detected for mid-test metabolic weight in U.S.
SimAngus beef cattle (6_39 Mb, 14_24 Mb, 14_25 Mb,
14_26 Mb) [30]. Moreover, Gelbvieh QTL (BW, YW)
detected on BTA14 and BTA7 have also been detected
for Angus residual feed intake (14_27 Mb), and Hereford
average daily gain (7_93 Mb) [30]. An investigation of all
lead SNPs for the detected Gelbvieh YW QTL revealed
16 noncoding variants (Table 4, Table S5, Additional
File 1). Genomic inflation factors and correlation coeffi-
cients for P-values obtained from all YW analyses are
shown in Tables S2-S3 (Additional File 1).

GxE GWAA for BW, WW, and YW in U.S. Gelbvieh beef cattle
To investigate the potential for significant GxE interactions
in relation to BW, WW, and YW in U.S. Gelbvieh beef cat-
tle, we conducted six additional single-marker (856K) ana-
lyses using both GEMMA and EMMAX [27–29]. For all

Table 1 Variance component analysis with marker-based heritability estimates

Trait GEMMAa

h2
GEMMAa

SE of h2
GEMMAa Vg GEMMAa Ve EMMAXa

h2
EMMAXa

SE of h2
EMMAXa Vg EMMAXa Ve

BW 0.36 0.02 15.65 27.62 0.37 0.06 15.87 27.56

WW 0.27 0.01 712.07 1910.71 0.29 0.01 757.63 1881.68

YW 0.39 0.02 2751.21 4242.85 0.41 0.01 2902.56 4157.79
a GEMMA chip heritability [27]; EMMAX pseudo-heritability [28, 29]

Fig. 1 Birth weight (BW) QTL. Manhattan plot with GEMMA -log10 P-values. Lead and supporting SNPs for QTL represented at or above the blue
line (P≤ 1e-05; −log10 P-values ≥ 5.00) for n = 10,837 U.S. Gelbvieh beef cattle. A summary of all markers passing the nominal significance
threshold [31] is presented in Table 2
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analyses, we included a variable for Gelbvieh geographic
zone, which was generated via K-means clustering using
thirty-year U.S. climate data, and treated as an interaction
term (See Methods). Notably, a BW GxE QTL detected on
BTA2 (2_32 Mb; lead SNP is intergenic) revealed multiple
biologically relevant positional candidate genes, including
GRB14, which has been shown to regulate insulin in mice
[72], and FIGN, which has been associated with plasma fol-
ate levels in humans (Fig. 4, Table 5, Additional File 2) [73].
Importantly, maternal folate levels have been shown to in-
fluence human birthweight [74], and a role for insulin regu-
lation in bovine feed efficiency and growth traits has also
been described [30]. Beyond BTA2, BW GxE QTL were
also detected on BTA17 (17_66 Mb) and BTA13 (13_67
Mb). Positional candidate genes for these QTL have been
implicated in the removal of uracil residues from DNA and
apoptosis (UNG) as well as human obesity (CTNNBL1)
(Fig. 4, Table 5, Figure S4, Table S6, Additional File 1) [75,
76]. Examination of the lead SNPs for all GxE QTL de-
tected for Gelbvieh BW (Table 5, Table S6, Additional File
1, Additional File 2) revealed three noncoding variants,
which is suggestive of quantitative (i.e., regulatory) effects.

Genomic inflation factors and correlation coefficients for P-
values obtained from all GxE BW analyses are shown in
Tables S2-S3 (Additional File 1).
Our analyses (GEMMA, EMMAX) to evaluate the poten-

tial for significant GxE interactions with respect to WW in
U.S. Gelbvieh beef cattle produced evidence for one GxE
QTL on BTA2 (2_18 Mb) which was only detected by
GEMMA, and included relatively few supporting SNPs (P ≤
1e-05, Table 6; Fig. 5, Figure S5, Additional File 1). The lead
SNP defining this QTL was located in exon 304 of TTN, and
encoded a nonsynonymous variant (Table 6, Fig. 5, Add-
itional File 2). Interestingly, TTN is known to function as a
myofilament system for skeletal and cardiac muscle, with
mouse M-line deficient knockouts resulting in sarcomere
disassembly as well as muscle atrophy and death [77–79].
Analyses (GEMMA; EMMAX) to evaluate the potential

for significant GxE interactions with respect to YW in U.S.
Gelbvieh beef cattle revealed two GxE QTL with three pos-
itional candidate genes (LRAT/LOC101904475/FGG) on
BTA17 (17_03 Mb), and one positional candidate gene on
BTA5 (PHF21B at 116Mb; P ≤ 1e-05, Table 7, Fig. 6, Table
S7, Figure S6, Additional File 1, Additional File 2). The

Table 2 Summary of QTL detected by GEMMA for BW in U.S. Gelbvieh beef cattle

Chr_Mb MAF -log10
P-value

Supporting
SNPs

Positional
Candidate
Genes

Lead SNP
Location

Scientific Precedence [reference]; organism; trait

14_25a 0.398 29.56 41 PLAG1 3’UTR [2, 14, 18, 21, 30, 32–34]; Cattle; SimAngus mid-test metabolic weight association,
carcass weight, stature, body weight and milk

6_39a 0.293 23.71 140 NCAPG Exonb [18, 21, 30, 35–39]; Cattle, chicken; stature, calving ease and growth traits
association, SimAngus mid-test metabolic weight association, fetal growth,
carcass trait association, average daily gain and daily feed intake, muscle mass

14_26a 0.396 14.63 33 IMPAD1,
FAM110B

Intergenic [30, 32, 34, 40]; Cattle; SimAngus mid-test metabolic weight association, carcass
weight association, stature and body weight association, bone and cartilage
system

6_42a 0.186 9.66 9 KCNIP4 Intron [39, 41, 42]; Chicken, cattle, human; growth and muscle mass trait association,
potassium channel activity

14_24a 0.244 8.93 35 XKR4 Intron [2, 30, 43, 44]; Cattle; birth weight association, SimAngus mid-test metabolic
weight association, growth trait association, feed intake and growth traits

20_05a 0.193 8.65 21 LOC104975192,
STC2

Intergenic [30, 45]; Cattle, mouse; mid-test metabolic weight in Hereford and SimAngus, de
veloping and adult tissue maintenance, body size, related to post-natal growth

7_93a 0.283 8.00 30 ARRDC3,
LOC104972872

Intergenic [14, 22, 30, 46]; Cattle; body and carcass weight association, calving ease, average
daily gain in Hereford, growth and muscularity, birth weight, weaning weight,
yearling weight, and ribeye area in Angus

6_38a 0.053 7.90 23 IBSP,
LOC104972726

Intergenic [13, 47–49]; Cattle, mouse, human; yearling weight association, bone formation
and remodeling, cellular proliferation, milk fat and protein association

6_41a 0.407 7.25 5 LOC782905,
SLIT2

Intergenic [39, 49–53]; Cattle, chicken, human; milk fat and protein association, organ and
muscle weight, development of central nervous system, tumor suppressor
activity

14_23a 0.467 6.19 3 ST18 Intron [54]; Human; regulation of apoptosis and inflammatory response

6_34a 0.039 5.98 8 LOC104972717,
LOC526089

Intergenic NA

6_40a 0.304 5.25 2 LCORL,
LOC782905

Intergenic [18, 21, 37–39, 50, 55, 56]; Cattle, sheep; stature, muscle and organ growth, feed
intake and gain association, growth and carcass traits, skeletal growth and
muscle mass

a Indicates QTL was detected in EMMAX analysis
b Indicates a predicted nonsynonymous mutation Ile➔Met, exon 9
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signal on BTA17 (i.e., GEMMA lead SNP in Intron 4 of
LOC101904475 and supporting SNPs) was replicated by
EMMAX (Figure S6, Additional File 1); but at a less strin-
gent significance threshold (i.e. P < 6e-04). Notably, while
the function of LOC101904475 remains unclear, LRAT is
known to catalyze esterification of retinol (i.e., from Vita-
min A) [80], and Vitamin A has been shown to promote
growth in beef cattle as well as humans [81–83]. However,
FGG is also an intriguing candidate, as fibrinogen has
been shown to constrict blood vessels [84]. This

vasoconstriction may alter the ability to cope with heat
stress, but in the context of cattle production, the rela-
tionship between vasoconstriction and fescue toxicosis
is perhaps more noteworthy. Fescue toxicosis is the result
of ergot alkaloids produced by the endophytic fungus in
fescue forage [85], especially the Kentucky 31 variety. One
of the major symptoms of fescue toxicosis is vasoconstric-
tion, thus variation in FGG expression levels may poten-
tially alter cattle’s innate degree of vasoconstriction;
perhaps further complicating both fescue toxicosis and heat

Table 3 Summary of QTL detected by GEMMA for WW in U.S. Gelbvieh beef cattle

Chr_Mb MAF -log10
P-value

Supporting
SNPs

Positional
Candidate
Genes

Lead SNP
Location

Scientific Precedence [reference]; organism; trait

6_39a 0.289 18.32 107 NCAPG Exonb [18, 21, 30, 35–39]; Cattle, chicken; stature, calving ease and growth traits
association, SimAngus mid-test metabolic weight association, fetal growth,
carcass trait association, average daily gain and daily feed intake, muscle mass

14_25a 0.398 10.69 2 PLAG1 3’UTR [2, 14, 18, 21, 30, 32–34]; Cattle; SimAngus mid-test metabolic weight association,
carcass weight, stature, body weight and milk

5_60a 0.046 8.83 2 LOC527216,
LOC788998

Intergenic NA

6_36a 0.214 7.95 29 CCSER1 Intron [14, 60]; Cattle, human; body and carcass weight association, regulator of mitosis

14_26a 0.415 7.90 11 IMPAD1,
FAM110B

Intergenic [30, 32, 34, 40]; Cattle; SimAngus mid-test metabolic weight association, carcass
weight association, stature and body weight association, bone and cartilage
system

6_42a 0.340 7.77 3 KCNIP4 Intron [39, 41, 42]; Chicken, cattle, human; growth and muscle mass trait association,
potassium channel activity

6_38a 0.220 7.70 9 HERC6, PPM1K Intergenic [49, 58, 59]; Cattle; milk, fat, and protein yield, metabolic processes, feed
efficiency association

6_41a 0.238 6.46 4 LOC782905,
SLIT2

Intergenic [39, 49–53]; Cattle, chicken, human; milk fat and protein association, organ and
muscle weight, development of central nervous system, tumor suppressor activity

6_37a 0.325 5.97 5 SNCA, GPRIN3 Intergenic [61–64]; Human, goat, equine; neurological regulation, milk and meat
associations, tendon tissue association

6_34a 0.295 5.36 4 LOC100336621,
LOC104972717

Intergenic NA

a Indicates QTL was detected in EMMAX analysis
b Indicates a predicted nonsynonymous mutation Ile➔Met, exon 9

Fig. 2 Weaning weight (WW) QTL. Manhattan plot with GEMMA -log10 P-values. Lead and supporting SNPs for QTL represented at or above the
blue line (P ≤ 1e-05; −log10 P-values ≥ 5.00) for n = 10,837 U.S. Gelbvieh beef cattle. A summary of all markers passing the nominal significance
threshold [31] is presented in Table 3
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Table 4 Summary of QTL detected by GEMMA for YW in U.S. Gelbvieh beef cattle

Chr_Mb MAF -log10
P-value

Supporting
SNPs

Positional
Candidate
Genes

Lead SNP
Location

Scientific Precedence [reference]; organism; trait

6_39a 0.305 20.81 103 LCORL Intron [18, 21, 30, 37–39, 55, 56]; Cattle, sheep; stature, SimAngus mid-test
metabolic weight association, muscle and organ growth, feed intake
and gain association, growth and carcass traits, skeletal growth and
muscle mass

14_25a 0.399 13.82 3 PLAG1 3’UTR [2, 14, 18, 21, 30, 32–34]; Cattle; SimAngus mid-test metabolic weight
association, carcass weight, stature, body weight and milk

6_38a 0.222 11.00 20 HERC6, PPM1K Intergenic [49, 58, 59]; Cattle; milk, fat, and protein yield, metabolic processes,
feed efficiency association

6_42a 0.344 11.00 11 KCNIP4 Intron [39, 41, 42]; Chicken, cattle, human; growth and muscle mass trait
association, potassium channel activity

6_37a 0.330 10.12 8 SNCA, GPRIN3 Intergenic [61–64]; Human, goat, equine; neurological regulation, milk and
meat associations, tendon tissue association

5_60a 0.042 9.62 2 LOC527216, LOC788998 Intergenic NA

6_41a 0.247 8.44 6 SLIT2 Intron [39, 49–53]; Cattle, chicken, human; milk fat and protein association,
organ and muscle weight, development of central nervous system,
tumor suppressor activity

6_36a 0.227 8.23 20 CCSER1 Intron [14, 60]; Cattle, human; body and carcass weight association, regulator
of mitosis

14_26a 0.357 6.94 12 IMPAD1, FAM110B Intergenic [30, 32, 34, 40]; Cattle; SimAngus mid-test metabolic weight association,
carcass weight association, stature and body weight association, bone
and cartilage system

7_93a 0.286 6.23 14 LOC101905238,
ARRDC3

Intergenic [14, 22, 30, 46]; Cattle; body and carcass weight association, calving
ease, average daily gain in Hereford, growth and muscularity, birth
weight, weaning weight, yearling weight, and ribeye area in Angus

6_40a 0.109 6.21 11 LOC782905, SLIT2 Intergenic [39, 49–53]; Cattle, chicken, human; milk fat and protein association,
organ and muscle weight, development of central nervous system,
tumor suppressor activity

14_27a 0.348 6.04 6 NSMAF Intron [30, 68]; Cattle, human; Angus residual feed intake association,
immune system
response

2_05 0.497 5.15 3 IWS1 Intron [69]; Human; chromatin modification, histone chaperone,
maintenance of virus latency

a Indicates QTL was detected in EMMAX analysis

Fig. 3 Yearling weight (YW) QTL. Manhattan plot with GEMMA -log10 P-values. Lead and supporting SNPs for QTL represented at or above the
blue line (P ≤ 1e-05; −log10 P-values ≥ 5.00) for n = 10,837 U.S. Gelbvieh beef cattle. A summary of all markers passing the nominal significance
threshold [31] is presented in Table 4
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stress. The other interesting positional candidate gene on
BTA5 (PHF21B) is known to be involved in the modulation
of stress responses, and the regulation of cellular division
[86, 87].

Conclusions
Herein, we present evidence for pleiotropic QTL influen-
cing BW, WW, and YW in U.S. Gelbvieh beef cattle, and
further confirm the involvement of PLAG1 in various as-
pects of bovine growth and stature across breeds [2, 14, 18,
21, 30, 32–34]. Additionally, we also present compelling
evidence for QTL segregating in multiple breeds; with at
least seven U.S. Gelbvieh growth QTL that were also de-
tected for feed efficiency and growth traits in U.S. Angus,
SimAngus, and Hereford beef cattle [30]. Despite the in-
volvement of major genes such as NCAPG, PLAG1 and
LCORL, more of the phenotypic variance in Gelbvieh BW,
WW, and YW was explained by many other genome-wide
loci (See Additional File 1, Additional File 2). Moreover, we
demonstrate that most of the Gelbvieh QTL are detectable
by two different large-sample analyses (GEMMA;
EMMAX). However, some discordant QTL detected by the
GxE GWAAs can also be attributed to differences in the
model specifications for these analyses, as implemented by
GEMMA and EMMAX (See Methods). While relatively
few GxE QTL were detected, the identified GxE QTL har-
bor physiologically meaningful positional candidates. More-
over, the results of this study demonstrate that imputation

to a union set of high-density SNPs (i.e., 856K) for use in
large-sample analyses can be expected to facilitate future
discoveries at a fraction of the cost associated with direct
genotyping, which also underscores the present impact of
genomic tools and resources developed by the domestic
cattle research community.

Methods
Cattle phenotypes were received from the American Gelb-
vieh Association (pre-adjusted for age of animal [i.e. 205-
day weight for WW] and age of dam as per breed associ-
ation practice), and corresponding genotypes were trans-
ferred from their service provider Neogen GeneSeek. For
GWAA analyses, the phenotypes were pre-adjusted for sex
and contemporary group consisting of 5-digit breeder zip-
code, birth year, and birth season (Spring, Summer, Fall,
and Winter) using the mixed.solve() function from the
rrBLUP package v4.4 [88] in R v3.3.3 [89].
To group individuals into discrete climate zones, K-

means clustering was performed on three continuous cli-
mate variables. Thirty-year normal values for temperature,
precipitation, and elevation were drawn from the PRISM
climate dataset [90]. Each one km square of the continen-
tal United States was assigned to one of nine climate
zones using K-means clustering implemented in the
RStoolbox R package [91, 92]. The optimal number of
zones was identified using the pamk function from the R
package fpc [93]. Individuals were assigned to zones based

Fig. 4 Birth weight genotype-by-environment (BW GxE) QTL. Manhattan plot with GEMMA -log10 P-values. Lead and supporting SNPs for QTL
represented at or above the blue line (P ≤ 1e-05; −log10 P-values ≥ 5.00) for n = 10,837 U.S. Gelbvieh beef cattle. A summary of all markers passing
the nominal significance threshold [31] is presented in Table 5

Table 5 Summary of GxE QTL detected by GEMMA for BW in U.S. Gelbvieh beef cattle

Chr_Mb MAF -log10
P-value

Supporting
SNPs

Positional
Candidate Genes

Lead SNP
Position

Scientific Precedence [reference]; organism; trait

2_32 0.105 6.25 2 GRB14, FIGN Intergenic [72–74]; Mouse, human; insulin receptor related to growth and metabolism,
folic acid association with impact on BW

17_66 0.026 6.21 2 UNG Intron [75]; Human; DNA maintenance
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on the zip code of their breeder as recorded in the Ameri-
can Gelbvieh Association herdbook.
Quality control was performed on genotypes for 13,166

Gelbvieh individuals using PLINK 1.9 [94]. Individuals
with call rates < 0.90 were removed on an assay-by-assay
basis (For assay information see Additional File 3). Vari-
ants with call rates < 0.90 or Hardy-Weinberg Equilibrium
(HWE) P-values <1e-20 were also removed. For this
analysis, only autosomal chromosomes were analyzed.
After filtering, genotypes for the 12,422 individuals that
remained were merged using PLINK and then phased
using EagleV2.4 [95]. Genotypes inferred by Eagle were re-
moved with bcftools [96]. Imputation was performed with
IMPUTE2 [97] using the “merge_ref_panels” flag. This
allowed the phased haplotypes for 315 individuals geno-
typed on the Illumina HD (Illumina, San Diego, CA) and
559 individuals genotyped on the GGP-F250 (GeneSeek,
Lincoln, NE) to be recursively imputed and treated as ref-
erence haplotypes. These reference haplotypes were used
to impute the remaining 11,598 low-density genotypes
from various assays (Additional File 3) to the shared num-
ber of markers between the two high-density research
chips. The resulting dataset consisted of 12,422 individuals
with 856,527 markers each (UMD3.1). To account for un-
certainty in imputation, IMPUTE2 reports dosage geno-
types. Hard-called genotypes were inferred from dosages
using PLINK. When making hard-calls, PLINK treats

genotypes with uncertainty > 0.1 as missing. This resulted
in a hard-called dataset of 856,527 variants, which in-
cludes genotypes set as missing. Prior to the execution of
all GWAAs (GEMMA; EMMAX), we filtered the Gelbvieh
samples and all SNP loci as follows: Gelbvieh sample call
rate filtering (< 90% call rate excluded); thereafter SNP fil-
tering by call rate (> 15% missing excluded), MAF (< 0.01
excluded), polymorphism (monomorphic SNPs excluded),
and HWE (excludes SNPs with HWE P < 1e-50), which
resulted in 618,735 SNPs. Additionally, prior to all
GWAAs (GEMMA; EMMAX) hard-called genotypes were
numerically recoded as 0, 1, or 2, based on the incidence
of the minor allele. Missing hard-called genotypes (i.e.,
that met our filtering criteria) were modeled as the SNP’s
average value (0, 1, or 2) across all samples.
Using the numerically recoded hard-called genotypes

and the adjusted Gelbvieh phenotypes, we employed
GEMMA to conduct univariate linear mixed model
GWAAs where the general mixed model can be specified
as y =Wα + xβ + u + ϵ; where y represents a n-vector of
quantitative traits for n-individuals, W is an n x c matrix
of specified covariates (fixed effects) including a column of
1s, α is a c-vector of the corresponding coefficients
including the intercept, x represents an n-vector of SNP
genotypes, β represents the effect size of the SNP, u is an
n-vector of random effects, and ϵ represents an n-vector
of errors [27]. Moreover, it should also be noted that u ∼

Table 6 Summary of GxE QTL detected by GEMMA for WW in U.S. Gelbvieh beef cattle

Chr_Mb MAF -log10
P-value

Supporting
SNPs

Positional
Candidate
Genes

Lead SNP
Location

Scientific Precedence [reference]; organism; trait

2_18 0.012 5.22 2 TTN Exona [77–79]; Rabbit, rat, human; aids in myofibrillar assembly, positioning of myosin
filaments in muscle, coordinates multiple signaling pathways for gene activation,
protein folding, quality control and degradation, heart disease relation

a Indicates a predicted nonsynonymous mutation Arg➔Gln, exon 304

Fig. 5 Weaning weight genotype-by-environment (WW GxE) QTL. Manhattan plot with GEMMA -log10 P-values. Lead and supporting SNPs for
QTL represented at or above the blue line (P ≤ 1e-05; −log10 P-values ≥ 5.00) for n = 10,837 U.S. Gelbvieh beef cattle. A summary of all markers
passing the nominal significance threshold [31] is presented in Table 6
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MVNn(0, λτ
−1Κ) and ϵ ∼MVNn(0, λτ

−1Ιn), where MVN de-
notes multivariate normal distribution, λτ−1 is the variance
of the residual errors, λ is the ratio between the two
variance components, Κ is a known n x n relatedness
matrix, and Ιn represents an n x n identity matrix
[27]. Using this general approach, GEMMA evaluated
the alternative hypothesis for each SNP (H1 : β ≠ 0) as
compared to the null (H0 : β = 0) by performing a like-
lihood ratio test with maximum likelihood estimates
(−lmm 2) as follows:

Dlrt ¼ 2 log
l1ðλ̂1Þ
l0ðλ̂0Þ

, with l1 and l0 being the likelihood

functions for the null and alternative models, respect-

ively, where λ̂ 0 and λ̂ 1 represent the maximum likeli-
hood estimates for the null and the alternative models,
respectively, and where P-values come from a X 2 distri-
bution, as previously described [27]. Herein, the only
fixed-effect covariate specified for all GWAAs was an
environmental variable (geographic zone for each indi-
vidual). For all GxE GWAAs (−gxe command), the
environmental variable (geographic zone for each indi-
vidual) was treated as an interaction term, where the
resulting P-values represent the significance of the
genotype x environment interaction. Specifically, for
the GxE GWAAs in GEMMA, the model is specified as
y =Wα + xsnpβsnp + xenvβenv + xsnp × xenvβsnp × env + u + ϵ;

where y represents a n-vector of quantitative traits for
n-individuals, W is an n x c matrix of specified covari-
ates (fixed effects) including a column of 1s, α is a c-
vector of the corresponding coefficients including the
intercept, xsnp represents an n-vector of SNP genotypes, βsnp
represents the effect size of the SNP, xenv represents an n-
vector of environmental covariates, βenv represents the fixed
effect of the environment, βsnp× env is the interaction be-
tween SNP genotype and environment, u is an n-vector of
random effects, and ϵ represents an n-vector of errors.
GEMMA evaluated the alternative hypothesis for each inter-
action (H1 : βsnp× env≠ 0) as compared to the null (H0 : βsnp×
env= 0). Marker-based relatedness matrices (Gs) relating in-
stances of the random effect specified to each of the growth
phenotypes among all genotyped cattle were used to esti-
mate the proportion of variance explained (PVE) by the
hard-called genotypes in GEMMA, which is also commonly
referred to as the “chip heritability” [27, 98]. For all investi-
gated traits, single-marker P-values obtained from GEMMA
(−lmm 2, −gxe) were used to generate Manhattan plots in R
(manhattan command) and QTL were defined by ≥ 2 SNP
loci with MAF ≥ 0.01 (i.e., a lead SNP plus at least one add-
itional supporting SNP within 1Mb) which also met a nom-
inal significance threshold (P ≤ 1e-05) [30, 31].
Using hard-called genotypes and the adjusted Gelbvieh

phenotypes, we performed a second set of GWAAs using a
mixed linear model with variance component estimates, as

Table 7 Summary of GxE QTL detected by GEMMA for YW in U.S. Gelbvieh beef cattle

Chr_Mb MAF -log10
P-value

Supporting
SNPs

Positional
Candidate
Genes

Lead SNP
Location

Scientific Precedence [reference]; organism; trait

17_03 0.328 5.02 2 LRAT, LOC101904475,
FGG

Intron [80–85]; Mouse, cattle, human, rat; retinal development,
muscular growth and fiber composition, vitamin A
regulation, vascular constriction

Fig. 6 Yearling weight genotype-by-environment (YW GxE) QTL. Manhattan plot with GEMMA -log10 P-values. Lead and supporting SNPs for QTL
represented at or above the blue line (P ≤ 1e-05; −log10 P-values ≥ 5.00) for n = 10,837 U.S. Gelbvieh beef cattle. A summary of all markers passing
the nominal significance threshold [31] is presented in Table 7
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implemented by EMMAX [28–30, 99–101]. Briefly, the
general mixed model used in this approach can be specified
as: y =Xβ +Zu + ϵ, where y represents a n × 1 vector of
phenotypes, X is a n × q matrix of fixed effects, β is a q × 1
vector representing the coefficients of fixed effects, and Z is
a n × t matrix relating the random effect to the phenotypes
of interest [30, 99–101]. Herein, we must assume that Varð
uÞ ¼ σ2gK and VarðϵÞ ¼ σ2e I , such that VarðyÞ ¼ σ2gZKZ

0

þσ2
e I , however, in this study Z represents the identity

matrix I, and K represents a kinship matrix of all Gelbvieh
samples with hard-called genotypes. Moreover, to solve the
mixed model equations using a generalized least squares
approach, we must estimate the variance components (σ2g
and σ2e ) as previously described [28–30, 99, 100]. For this
study, we estimated the variance components using the
REML-based EMMA approach [29], with stratification
accounted for and controlled using the genomic relation-
ship matrix [25, 30], as computed from the Gelbvieh hard-
called genotypes. Moreover, the only fixed-effect covariate
specified for all GWAAs was an environmental variable
(geographic zone for each individual). For all EMMAX GxE
GWAAs utilizing hard-called genotypes, we used an imple-
mentation of EMMAX [29, 102] where interaction-term
covariates may be specified; with the environmental variable
(geographic zone for each individual) specified as the inter-
action term. The basis of this approach is rooted in full ver-
sus reduced model regression [99], where interaction-term
covariates are included in the model as follows: each speci-
fied interaction-term covariate serves as one reduced-
model covariate; each specified interaction-term covariate
is also multiplied, element by element, with each SNP pre-
dictor (i.e., SNP × geographic zone) to create an interaction
term to be included in the full model. Specifically, given n
measurements of a Gelbvieh growth phenotype that is in-
fluenced by m fixed effects and n instances of one random
effect, with one or more GxE effects (e) whereby the inter-
action is potentially with one predictor variable, we model
this using a full and a reduced model. The full model can
be specified as y =Xcβkc +Xiβki +Xkβkp +Xipβip + ufull + ϵfull,
and the reduced model as y =Xcβkrc +Xiβkri +Xkβrkp + ure-
duced + ϵreduced, where y is an n-vector of observed pheno-
types, Xc is an n ×m matrix of m fixed-effect covariates, Xi

is an n × e matrix of e fixed terms being tested for GxE in-
teractions, Xk is an n-vector containing the covariate or pre-
dictor variable that may be interacting, and Xip is an n × e
matrix containing the e interaction terms created by multi-
plying the columns of Xi element-by-element with Xk. All
of the β terms correspond to the X terms as written above,
and to the full or the reduced model, as specified, with u
and ϵ representing the random effect and error terms, re-
spectively. Like the EMMAX method without interactions
[28, 29], we approximate this by finding the variance com-
ponents once, using the parts of the above equations that

are independent of Xk as follows: y=Xcβcvc +Xiβivc + uvc+ ϵ
vc, where vc indicates the variance components. To estimate
the variance components, we must again assume that Varð
uvcÞ ¼ σ2gK and VarðϵvcÞ ¼ σ2e I , such that VarðyÞ ¼ σ2gK

þσ2
e I . The EMMA technique can then be used to estimate

the variance components σ2g and σ2
e as well as a matrix B

(and its inverse) such that BB
0 ¼ H ¼ VarðyÞ

σ2g
¼ K þ σ2e

σ2g
I .

Thereafter, for every marker (k) we can compute (as an
EMMAX-type approximation) the full and reduced
models as: B−1y = B−1Xcβkc + B−1Xiβki + B−1Xkβkp + B−1Xip-

βip + B−1(ufull + ϵfull) for the full model, where B−1(ufull + ϵ
full) is assumed to be an error term proportional to the
identity matrix, and as B−1Xcβkrc + B−1Xiβkri + B−1Xkβrkp +
B−1(ureduced + ϵreduced) for the reduced model, where B−1(ur-
educed + ϵreduced) is assumed to be an error term propor-
tional to the identity matrix. To estimate the significance
of the full versus reduced model, an F-test was performed;
with all analyses utilizing the EMMAX method [28, 29]
(i.e., GWAAs, GxE GWAAs) produced and further evalu-
ated by constructing Manhattan plots within SVS v8.8.2
(Golden Helix, Bozeman, MT). Moreover, while SVS ex-
plicitly computes the full model mentioned above and
outputs all of its β values, it only performs an optimization
of the reduced model computation, which is sufficient to
determine the SSE of the reduced-model equation, and
thereafter, estimate the full versus reduced model P-value
via F-test. This optimization is used to solve: MB−1y =
MB−1Xkβrkp + ϵMB, where M = (I −QQ′), and Q is derived
from performing the QR algorithm, as QR = B−1 [Xc ∣Xi].
All Gelbvieh QTL were defined by ≥ 2 SNP loci with
MAF ≥ 0.01 (i.e., a lead SNP plus at least one additional
supporting SNP within 1Mb) which also met a nominal
significance threshold (P ≤ 1e-05) [30, 31], and all
EMMAX marker-based pseudo-heritability estimates were
produced as previously described [28–30, 99, 100].
Genomic inflation factors (λ) for all analyses (GEMMA;

EMMAX) were estimated from the observed and expected
P-values using genABEL [103], and the relationships be-
tween the observed P-values were estimated (GEMMA ver-
sus EMMAX) via correlation coefficients (i.e., Pearson,
Spearman) in R v3.3.3 [89].
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