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ycf1 located in the IRA/SSC junction, extended the IRA
region by several bases. A ycf-like gene was also reported
in the IRB region, one of the two IRs, with two annotation
tools, DOGMA and GeSeq, but it was a truncated frag-
ment of ycf1 gene, and thus not included in the genome
map. Of the 76 unique protein-coding genes, five genes
(atpF, ndhA, ndhB, rpl2, and rpoC1) contained one intron,
while two protein-coding genes (clpP and ycf3) contained
two introns each. The gene rps12 was annotated as trans-
spliced gene of which the 5′-end exon was located in the
LSC region while its intron and 3′- end exon were situ-
ated in the IR region (Additional file 1: Tables S1, S2).
RNA editing, a post-transcriptional modification process,

exists in chloroplasts to encode appropriate amino acids
and maintain conserved protein functions by correcting
codons, especially by alteration of nucleotides from cyto-
sine to uracil (C-to-U) and less frequently from uracil to
cytosine (U-to-C) [44–46]. Wang et al. [47] indicated that
several changes were observed in protein-coding tran-
scripts from chloroplasts, including C to U, along with G
to A and C to G, A to G and G to A. Several nucleotide
alterations are required to provide functional start codons
in a handful of the genes annotated in the present study
(Additional file 1: Table S3). RNA editing at these sites has

not previously been confirmed in the Betulaceae, thereby
further RNA sequence analysis should be carried out to de-
termine whether these modifications occur.
Comparing the results of the annotation tools, ten

genes (atpF, clpP, ndhA, ndhB, ndhK, petA, rpl2, rpoC1,
ycf3, ycf15) were erroneously reported twice as 2 gene
fragments by DOGMA and GeSeq, whereas they were
correctly reported as a single gene containing an intron
by cpGAVAS (Additional file 1: Table S9). When the
annotated genes were compared with those previously
reported in other species’ chloroplast sequences, the
GeSeq tool gave the most accurate results for gene loca-
tions, including starting and end points of the CDS.
DOGMA did not define the start and end point of
exons, therefore start and stop codons had to be manu-
ally checked, and added from the cp genome. All of the
genome and annotation information is shown in Fig. 1.
Prediction of cv Tombul cp gene functions was based

on homology, and as expected they were mostly involved
in photosynthesis and other metabolic processes. The
genes were classified into three broad categories based
on their functions: photosynthesis, self-replication and
other genes. While 42 protein-coding genes participated
in photosynthesis, 25 protein-coding genes were

Table 1 Gene contents and functional classification of cv Tombul chloroplast genome

Category Group of genes Code of genes List of genes

Genes for photosynthesis Subunits of ATP synthase atp atpA, atpB, atpE, atpF, atpH, atpI

Subunits of NADH-dehydrogenase ndh ndhA, ndhB, ndhC, ndhD, ndhE, ndhF,
ndhG, ndhH, ndhI, ndhJ, ndhK

Subunits of cytochrome b/f complex pet petD, petG, petL, petN

Subunits of photosystem I psa psaA, psaB, psaC, psaI, psaJ

Subunits of photosystem II psb psbA, psbB, psbC, psbD, psbE, psbF, psbH,
psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ

Subunit of rubisco rbc rbcL

Self-replication Large subunit of ribosome rpl rpl2,rpl14,rpl16, rpl20, rpl22, rpl23, rpl32,
rpl33, rpl36

DNA dependent RNA polymerase rpo rpoA, rpoB, rpoC1, rpoC2

Small subunit of ribosome rps rps2, rps3, rps4, rps7, rps8, rps11, rps12, rps14,
rps15, rps16, rps18, rps19

rRNA Genes rrn rrn4.5S, rrn5S, rrn16S, rrn23S

tRNA Genes trn trnC-GCA, trnD-GTC, trnE-TTC, trnF-GAA, trnfM-CAT,
trnG-GCC, trnH-GTG, trnM-CAT, trnP-TGG, trnQ-TTG,
trnR-TCT, trnS-GCT, trnS-GGA, trnS-TGA, trnT-GGT,
trnT-TGT, trnW-CCA, trnY-GTA, trnL-TAG, trnI-CAT,
trnI-GAT, trnL-CAA, trnN-GTT, trnR-ACG, trnV-GAC

Other genes Subunit of Acetyl-CoA-carboxylase acc accD

c-type cytochrome synthesis gene ccs ccsA

Envelop membrane protein cem cemA

Protease clp clpP

Maturase mat matK

Genes of unkown function Conserved open reading frames ycf ycf1, ycf2, ycf3, ycf4
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involved in the chloroplast self-replication processes,
and 5 genes represented other functions, all of which
were summarized in Table 1.
Based on a sequence similarity search of the whole

genome, the C. avellana cv Tombul chloroplast was
most similar to chloroplast genomes belonging to the
Corylus family with a range from 99.46 (Corylus wangii,
Accesion: MH628454.1) to 99.88% (Corylus heterophylla
var. sutchuenensis, Accesion: MF996573.1) identity via
Basic Local Alignment Search Tool (BLAST) search in
NCBI website (http://blast.ncbi.nlm.nih.gov/) against
Viridiplantae (taxid: 33090) [38]. In addition, Carpinus
and Ostrya families also showed high similarity with cv
Tombul cp genome with nearly 98.91 and 99.21% iden-
tity, respectively. (Additional file 1: Table S4).

Comparison of chloroplast genome sequences with other
species
The similarities and differences of the cp genome be-
tween C. avellana cv Tombul and other species,

including representatives of the Malpighiales, Fabales
and Brassicales, were determined by a global alignment
program, mVISTA [48]. The chloroplast genome se-
quences were aligned to each other and plotted using C.
avellana cv Tombul as a reference (Fig. 3). Tombul had
a similar cp genome size to the other species, which
range from 152,217 bp to 161,303 bp (Tombul cp gen-
ome size is 161,667 bp). In addition, the alignment re-
vealed a very high level of identity in the global patterns
of sequence similarities with KX822768, an accession of
an unspecified C. avellana variety found in China, and
Betula nana with 99.8 and 96.6% identity, respectively.
As expected, coding regions were more highly conserved
than non-coding regions. The highest polymorphism
was observed in intergenic regions (such as rps16-psbK,
psbI-atpA, psbM-psbD), but the ycf1 gene had higher
variability regions, especially between distant species. At
the species level, nucleotide substitution could more rap-
idly occur in intergenic regions, and these regions with
high levels of divergence could have high potential for

Fig. 3 Phylogenetic position of Corylus avellana cv Tombul inferred by maximum likelihood (ML) analysis of 22 complete cp genomes. Numbers
above each node indicate the bootstrap values based on 500 replicates
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Kit 1D, according to the manufacturer’s protocols (Ox-
ford NanoPore Technologies, Oxford, UK).

Chloroplast genome assembly and annotation
Whole genome Illumina paired-end raw data without
adapters were used in de novo assembler NOVOPlasty, a
seed-extend based assembler [37] (Fig. 2). The cp gen-
ome was assembled from WGS data, initiated by a seed
sequence, which is iteratively extended bidirectionally, to
obtain the circular genome. Using a reference genome is
optional in the pipeline, but can be useful to obtain a
single circular genome, and to eliminate manual adjust-
ments. In this study, Arabidopsis thaliana (KX551970.1)
and Corylus avellana complete cpDNA sequences
(KX822768.2) were used as seed and reference genomes,
respectively. We specified the following parameters:
automatic insert size detection, a genome size range
from 120,000 to 200,000, a K-mer value of 39, an insert
range of 1.8, a strict insert range of 1.3, and the paired-
end reads option. Moreover, the contig was checked
using BLAST searches against the available complete cp
sequence of KX822768 [47]. Relative positions were
manually curated according to the reference genome,
and the complete cp genome for Tombul cultivar was fi-
nally acquired for further analysis. In addition, Illumina
paired-end raw sequence reads were processed by Trim-
momatic to remove adapters, and trimmed sequences
were assembled using ABySS 1.9 [39, 69]. Then, the cv
Tombul cp genome obtained from NOVOplasty was
aligned to the ABySS contigs using BLAST.
The Tombul cp genome was annotated through three

different online programs, GeSeq, CpGAVAS and
DOGMA with default parameters [40–43]. For the
annotation file, the gene locations were compared and
accepted when they matched the same position with at
least two annotation tools. MEGA pairwise alignment
was additionally used to confirm the genes among
closely related taxa, and the gene locations were verified
from cv Tombul cp genome sequences. Protein-coding
and tRNA genes found by only one tool were not in-
cluded in the map. The visual image of annotation was
illustrated with the help of OGDRAW [70]. The final as-
sembly was submitted to GenBank (MN082371).

Comparative chloroplast genomic analysis
Complete cp genomes of seven species, including Corylus
avellana (GenBank accession number: KX822768.2), Betula
nana (GenBank accession number: NC_033978.1), Juglans
regia (GenBank accession number: MF167463.1), Populus
trichocarpa (GenBank accession number: EF489041.1), Quer-
cus rubra (GenBank accession number: JX970937.1), Glycine
max (GenBank accession number: NC_007942.1) and Arabi-
dopsis thaliana (GenBank accession number: KX551970.1),
were downloaded from NCBI, in order to compare the

overall similarities among different cp genomes with Tombul
cultivar. Pairwise alignments were implemented in the
LAGAN alignment program included in mVISTA program
with default parameters [48] using the annotation of Corylus
avellana cv Tombul (Betulaceae, Fagales; GenBank accession
number: MN082371) as the reference.

SSR analysis
Simple sequence repeats (SSRs) were detected using two
different microsatellite identification web tools, MISA
(MIcroSAtellite identification tool) and IMEx-web (Im-
perfect Microsatellite Extraction Webserver) by setting
the minimum number of repeats to 10, 5, 4, 3, 3 and 3
for mono-, di-, tri-, tetra-, penta- and hexanucleotides,
respectively [49, 50].

Phylogenomic analysis
The complete cp genome sequences of 22 species from
Fagales were used for phylogenetic analysis, including
representatives of genera from the Betulaceae, Fagaceae,
and Juglandaceae. The cp genomes of species were
aligned with multiple sequence alignment tool, MUSCLE
[71]. All sequence gaps were excluded after alignment in
the analysis. The evolutionary history was inferred by
using the Maximum Likelihood method and Tamura-
Nei model and analyses were conducted in MEGA X
[72, 73]. The bootstrap consensus tree inferred from 500
replicates was taken to represent the evolutionary history
of the taxa analyzed. All positions with less than 90% site
coverage were eliminated, i.e., fewer than 10% alignment
gaps, missing data, and ambiguous bases were allowed at
any position (partial deletion option).
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