Zhang et al. BMC Genomics (2019) 20:876

https://doi.org/10.1186/512864-019-6261-5 B M C Gen om iCS

RESEARCH ARTICLE Open Access

Identification of key genes and regulators @
associated with carotenoid metabolism in

apricot (Prunus armeniaca) fruit using

weighted gene coexpression network

analysis

Lina Zhang'", Qiuyun Zhang?', Wenhui Li*, Shikui Zhang® and Wanpeng Xi"

updates

Abstract

Background: Carotenoids are a class of terpenoid pigments that contribute to the color and nutritional value of many
fruits. Their biosynthetic pathways have been well established in a number of plant species; however, many details of the
regulatory mechanism controlling carotenoid metabolism remain to be elucidated. Apricot is one of the most carotenoid-
rich fruits, making it a valuable system for investigating carotenoid metabolism. The purpose of this study was to identify
key genes and regulators associated with carotenoid metabolism in apricot fruit based on transcriptome sequencing.

Results: During fruit ripening in the apricot cultivar ‘Luntaixiaobaixing’ (LT), the total carotenoid content of the fruit
decreased significantly, as did the levels of the carotenoids B-carotene, lutein and violaxanthin (p < 0.01). RNA
sequencing (RNA-Seq) analysis of the fruit resulted in the identification of 44,754 unigenes and 6916 differentially
expressed genes (DEGs) during ripening. Among these genes, 33,498 unigenes were annotated using public protein
databases. Weighted gene coexpression network analysis (WGCNA) showed that two of the 13 identified modules
(blue” and ‘turquoise’) were highly correlated with carotenoid metabolism, and 33 structural genes from the carotenoid
biosynthetic pathway were identified. Network visualization revealed 35 intramodular hub genes that putatively control
carotenoid metabolism. The expression levels of these candidate genes were determined by quantitative real-time PCR
analysis, which showed ripening-associated carotenoid accumulation. This analysis revealed that a range of genes
(NCED1, CCD1/4, PIF3/4, HY5, ERFO03/5/12, RAP2—12, AP2, AP2-like, BZR1, MADS14, NAC2/25, MYB1R1/44, GLK1/2 and
WRKY6/31/69) potentially affect apricot carotenoid metabolism during ripening. Based on deciphering the molecular
mechanism involved in ripening, a network model of carotenoid metabolism in apricot fruit was proposed.

Conclusions: Overall, our work provides new insights into the carotenoid metabolism of apricot and other species,
which will facilitate future apricot functional studies and quality breeding through molecular design.
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Background

Carotenoids are widely distributed secondary metabolites
that play important roles in plant physiology and are benefi-
cial to human health as dietary components [1]. They confer
flowers and fruits with yellow, orange and red colors, thereby
helping to attract insects or animals to disperse seeds and
pollen, and they are involved in photosynthesis and photo-
protection. Carotenoids also scavenge free radicals in plants
and help resist biotic and abiotic stresses [2]. In humans,
dietary carotenoids provide vitamin A precursors, scavenge
free radicals, strengthen immunity and prevent various dis-
eases, such as certain cancers and cardiovascular diseases [3].

The carotenoid biosynthesis pathway has been well char-
acterized in many plants [4]. The process starts with gera-
nylgeranyl diphosphate (GGPP) synthesis, which involves a
condensation reaction between isopentenyl diphosphate
isomerase (IPP) and dimethylallyl diphosphate (DMAPP).
GGPP is then converted into phytoene by phytoene syn-
thase (PSY), which is in turn converted into lycopene via a
series of desaturation and isomerization steps. Lycopene is
cyclized by e-cyclase (LCYE) and p-cyclase (LCYB) or by
LCYB to produce a-carotene or [-carotene, respectively.
These carotenes are further hydroxylated to produce zea-
xanthin. Carotenoids can be cleaved into apocarotenoids
(e.g., B-ionone, strigolactones, B-citraurin and abscisic acid)
by carotenoid cleavage dioxygenase (CCD) and 9-cis-
epoxycarotenoid dioxygenase (NCED) [5-7]. The associ-
ated structural genes in this biosynthetic pathway have been
studied in detail in a number of plant species [1]. In tomato,
the increased production of lycopene during the ripening-
related fruit color change from green to red is caused by in-
creased transcription of genes from early ‘upstream’ steps
in the biosynthetic pathway, including PSY, phytoene desa-
turase (PDS), carotenoid isomerase (CRTISO) and deoxy-d-
xylulose-5-phosphate synthase (DXS), and the downregula-
tion of the ‘downstream genes’ LCYB, LCYE, and f-
carotene hydroxylase (CHYB) [8-11]. Additionally, several
transcription factors associated with carotenoid accumula-
tion have been identified. For example, ethylene response
factors (ERFs) and phytochrome interacting factors (PIFs)
have been shown to reduce carotenoid accumulation by
binding specifically to the AtPSY and AtPDS promoter in
Arabidopsis thaliana [12, 13]. In tomato fruit tissues, the
MADS box transcription factor ripening inhibitor (RIN)
has been reported to regulate carotenoid accumulation by
interacting with the SIPSY1 promoter [14, 15]. However,
many details of the regulatory network controlling caroten-
oid metabolism have yet to be identified.

Apricot (Prunus armeniaca L.) is an important fruit
crop that is grown in temperate climates. Fresh apricots
are an excellent source of diverse nutrients, including
carotenoids, polyphenols, ascorbic acid and various mi-
croelements [16]. Processed apricot fruit byproducts
have also been suggested to be valuable for human

Page 2 of 15

nutrition and the treatment of different diseases [16].
The ‘Luntaixiaobaixing’ (LT) apricot cultivar from China
is commercially popular and valued by consumers due to
its attractive flavor, shape and color. During ripening, its
color changes from green to yellow and then to light yellow,
and the fruit exhibits a reduction in carotenoid levels [17],
which involves a range of carotenoid metabolic reactions,
including synthesis, accumulation and cleavage. Thus, the
‘LT’ cultivar represents an excellent model for studying the
regulatory mechanism of carotenoid metabolism.

RNA sequencing (RNA-Seq) is a powerful technology
for studying gene expression, identifying genes and per-
forming functional analysis [18], due to its high through-
put, low cost, high accuracy and high sensitivity [19]. In
recent years, RNA-Seq has been applied to the study of
many fruit species to characterize the molecular pro-
cesses underlying ripening and secondary metabolism
[20-23]. It is a particularly effective approach for species
for which whole-genome sequence data are not yet avail-
able, such as apricot. At present, the public resources of
apricot transcriptome data are still very limited [24, 25].

In this study, we integrated weighted gene coexpression
network analysis (WGCNA), gene-trait correlations and
differential expression analysis in apricot fruit to identify
key genes and regulators related to carotenoid metabolism
during fruit ripening. Based on this analysis, a network
model of carotenoid metabolism is proposed. These data
will help advance the functional genomic analysis of carot-
enoid metabolism in apricot and other species.

Results

Changes in basic quality parameters and carotenoid
content during apricot fruit ripening

During the three apricot ripening stages (T, turning, 57
DPA (days post anthesis); CM, commercial maturation, 65
DPA; R, fully ripe, 74 DPA), ‘LT’ fruit color changed from
green to yellow and then from vyellow to light yellow
(Fig. 1a). Over the same period, fruit firmness dramatically
decreased from 25.55N to 2.77 N compression (p < 0.01),
but fruit weight sharply increased from an average of 8.7 g
to 19.0 g (Fig. 1b). Similarly, the content of fruit total sol-
uble solids (TSS) significantly increased from 10.1 °Brix to
19.9 °Brix, while titratable acidity (TA) decreased substan-
tially from 2.43 mg/mL to 0.4 mg/mL (p <0.01) (Fig. 1b).
We also observed that the citrus color index (CCI) values
of the fruit significantly increased from — 6.77 to — 0.64 dur-
ing ripening (p < 0.01) (Fig. 1c). Notably, the levels of lutein,
violaxanthin and B-carotene significantly decreased during
ripening (Fig. 1c), and the total carotenoid content mark-
edly decreased from 51.4pg/g fresh weight (FW) to
21.3 ug/g FW (p < 0.01). Conversely, the contents of neox-
anthin and phytoene increased during the process (Fig. 1c).
These results indicated that the ‘LT’ fruit underwent nor-
mal ripening based on a range of physiological and
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Fig. 1 Characterization of fruit quality traits during ripening. a Color changes of apricot fruit. b Fruit firmness, fruit weight, total soluble solid (TSS)
and titratable acid (TA) contents. ¢ Changes in the citrus color index (CCl) and carotenoid content in apricot fruit. LSD, least significant difference
(p < 0.01). Error bars represent + SD of the means of three biological replicates
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biochemical characteristics and that the cultivar is a ‘carot-

enoid loss’ type of cultivar.

Transcriptome analysis of fruit ripening

Nine mRNA libraries were generated from the T, CM
and FR stages of ‘LT’ fruit, with three biological

replicates per stage. Average clean read numbers of 26.3,
26.0 and 27.2 million were derived from the T, CM and
FR stages, respectively, corresponding to approximately
2.37, 2.34 and 2.45 gigabase pairs of nucleotides (nt),
with GC percentages of 45.88, 45.58 and 46.16% (Add-
itional file 1). Principal component analysis (PCA)
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confirmed the reproducibility of the sequence data for
each stage (Fig. 2).

Next, a total of 44,754 unigenes with a mean length of
1196 bp and an N50 length of 1860 nt and a total of 71,243
contigs with a mean length of 529 bp and an N50 of 1303
nt, were assembled using Trinity software (Additional file 2).
A total of 23,784 unigenes were assigned gene ontology
(GO) terms and classified into 55 subcategories within the
three standard categories of ‘biological process’, ‘cellular
component’ and ‘molecular function’. The subcategories
‘metabolic process’ and ‘cellular process’ were the most
highly enriched in the ‘biological process’ domain, while
‘cell’ and ‘cell part’ were the most highly enriched subcat-
egories in the ‘cellular component’ domain, and ‘catalytic
activity’ and ‘binding’ were the top ranked terms in the ‘mo-
lecular function’ domain (Additional file 3).

Identification of differentially expressed genes (DEGs)

On the basis of the mapped reads, a total of 6916 DEGs
were identified using fragments per kilobase of transcript
per million mapped reads (FPKM) values, with 2436,
4801 and 5728 DEGs present in the T, CM and FR
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Fig. 2 Principal component analysis (PCA) of transcriptome data.
Three biological replicates per sample were analyzed for each
ripening stage. The percentages on the axes indicate the values
explained by each PCA. The green, red, and sky blue dots represent
the transcriptomes of the samples obtained at 57 DPA (days post
anthesis), 65 DPA and 74 DPA, respectively
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stages, respectively (Fig. 3a). The numbers of unique
DEGs in the different stages were 630, 1288, and 1561 at
57 vs. 65 DPA, 65 vs .74 DPA and 57 vs. 74 DPA, re-
spectively, and a total of 448 genes were expressed at all
three stages. The identified DEGs were selected for fur-
ther analysis (Fig. 3b and Additional file 4).

GO enrichment and Kyoto encyclopedia of genes and
genomes (KEGG) pathway analysis

To help identify the biological functions of the DEGs,
the GO and KEGG databases were used to identify
enriched terms/pathways at the three ripening stages for
the identified DEGs. ‘Cellular process’, ‘metabolic
process’ and ‘single organism process’ were the main
categories in the ‘biological process’ domain, while the
‘cell’, ‘cell part’ and ‘organelle’ categories were enriched
in the ‘cellular component’ domain. Finally, molecular
functions such as ‘binding’, ‘catalytic activity’ and ‘trans-
porter activity’ were the most highly enriched during the
three ripening stages (Additional file 5).

KEGG pathway enrichment analysis was carried out to
assess the biological significance of the DEGs during the
three ripening stages. A total of 1773, 4719, 3215 unigenes
from the T, CM and FR stages, respectively, were mapped
to 20 KEGG pathways. ‘Metabolic pathways’, ‘plant-patho-
gen interaction’ and ‘plant hormone signal transduction’
were the most significantly enriched metabolic pathways.
We identified 19, 33 and 16 DEGs from the carotenoid
biosynthetic pathway enriched in the T, CM and FR
stages, respectively. This analysis suggested that the three
enriched metabolic pathways may play a role in caroten-
oid metabolism in apricot fruit (Additional file 6).

Weighted gene coexpression network analysis (WGCNA)

WGCNA is a method for describing the correlations in
patterns of gene expression and for revealing clusters, or
modules, of genes whose expression is highly correlated.
This method allows the identification of module eigen-
genes and intramodular hub genes and the association
of modules with one another and with sample traits [26].
Here, 13 coexpression modules were identified by
WGCNA, among which the ‘blue’ and ‘turquoise’ mod-
ules were significantly associated with carotenoid metab-
olism during ripening (Fig. 4). Analysis of the module-
trait relationships suggested that the ‘blue’ module, con-
taining 4981 genes, was highly positively correlated with
levels of violaxanthin (r=0.99, P=8e-07), lutein (r=
0.84, P=0.005) and B-carotene (r=0.94, P =2e-04) and
negatively correlated with neoxanthin (r=-0.47, P=0.2)
and phytoene (r=-0.75, P=0.02) contents during rip-
ening. The abundance of phytoene was highly positively
correlated with gene expression in the ‘turquoise’ mod-
ule, which contained 5258 genes, with a coefficient of
0.95 (P =7e-05), but the levels of violaxanthin and lutein
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were significantly negatively correlated with gene expres-
sion, with coefficients of -0.87 (P=0.002) and - 0.97
(P =2e-05), respectively (Fig. 4b). These results sug-
gested that the genes in these two modules were associ-
ated with carotenoid accumulation.

DEGs involved in carotenoid biosynthesis

In the carotenoid biosynthesis pathway (Fig. 5a), we
identified 33 DEGs that were annotated as functioning
in carotenoid metabolism; their expression levels were
represented by both FPKM and qPCR values (Fig. 5b,
Additional file 7), and good linear positive correlations
were observed between them (Fig. 5¢). During ripening,
the expression levels of two IPI genes (U7591 and
U10599) were downregulated and upregulated, respect-
ively. In addition, the expression of the geranylgeranyl
diphosphate synthase (GGPPS) gene was significantly
upregulated, and the expression levels of two PSY
(U14684 and U3487) genes were upregulated and up/
downregulated, respectively. The expression levels of
four PDSI genes gradually increased during ripening,
with PDS1 (U17285) representing the exception. Three
{-carotene desaturase (ZDS) genes (CL1821.1, CL3007.2
and U15347) displayed similar up/downregulated expres-
sion patterns, and other ZDS genes showed significant up-
regulation. CRTISO expression markedly decreased during
ripening, and the expression of three LCYB genes showed
similarly upregulated expression, with LYCB (CL4657.1)
representing the exception, but the expression of two

CHYB genes showed the opposite expression pattern. Five
zeaxanthin epoxidase (ZEP) genes exhibited different
levels of expression. Two violaxanthinde-epoxidase 1
(VDEI) genes were downregulated, while the expression
of neoxanthin synthase (NXS) was upregulated at the FR
stage. The expression of the NCEDI gene as well as CCD1
and CCD4 gradually increased during ripening. Thus, nu-
merous DEGs that were involved in the ripening-related
synthesis and accumulation of carotenoids were identified.

Visualization of gene networks

A total of 78 genes in the ‘blue’ module and 15 genes in
the ‘turquoise’” module were analyzed using Cytoscape
version 2.8. Both modules exhibited a significant associ-
ation with carotenoid contents and gene expression of >
0.4 (Fig. 6 and Additional file 8). In the two networks, 15
ERF, 9 bHLH and 24 WRKY family members were iden-
tified as intramodular hub genes and were therefore pu-
tatively associated with the regulation of carotenoid
metabolism. The carotenoid biosynthesis pathway genes
PDS1, CCDI1, CCD4, VDE1 and ZEP were identified as
key control points for carotenoid metabolism (Fig. 6a
and b). In addition to these structural genes, we identi-
fied transcription factors in the two modules, including
U7919, C4195.1 and U6922, which are homologs of the
Arabidopsis thaliana MYBIR1, MYB21 and MYB44
proteins, respectively, involved in the regulation of carot-
enoid metabolism. Homologs of the A. thaliana tran-
scription factors MYC2, GLK1, GLK2, NAC25, HY5,
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PIF3, MADS14, WRKY6, WRKY31, WRKY69, ERF003,
RAP2-12 (ERF), NAC and bHLH68 were also identified.

Expression of candidate genes and regulators during fruit
ripening

To verify the reliability of the RNA-Seq results and as-
certain the relationship between candidate genes and ca-
rotenoid metabolism, we also measured the expression
levels of the 12 candidate structural genes and 35 tran-
scription factors by qRT-PCR during fruit ripening
(Fig. 7a). Overall, all upstream genes related to caroten-
oid biosynthesis, such as PDSI (CL1571.2), ZEP (U21300
and U10800), CCD1/4 and capsanthin/capsorubin syn-
thase (CCS), were upregulated in the ‘LT’ fruit, while the
expression levels of 15-cis-zeta-carotene isomerase (Z-
1SO), PDS1 (U17285), ZEP (U20649) and VDEI were
downregulated. ERF003, AP2-likee RAP2-12, NAC
(CL3330.2), WRKY6/31 and BZR1 were significantly up-
regulated during ripening, but other genes showed

opposite expression patterns. Linear regression analysis
demonstrated that the FPKM values were highly corre-
lated with the qRT-PCR results (Fig. 7b).

Discussion
An increasing number of studies highlight the complex-
ity and diversity of carotenoid metabolism in different
plant species [1, 4]. Here, we used the apricot cultivar
‘LT’, which exhibits a specific carotenoid accumulation
pattern that includes biosynthesis, sequestration and
degradation during fruit ripening, to identify key candi-
date genes and regulators related to carotenoid metabol-
ism by WGCNA. Based on our results, we conclude that
carotenoid metabolism in apricot fruit is cocontrolled by
light signals, phytohormones, and developmental factors,
and a network regulatory model was proposed (Fig. 8).
Light is a key factor in plant growth and development,
since it provides energy for photosynthesis and regulates
photomorphogenesis as a signal [4, 5]. PIF is a member
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of the bHLH transcription factor family and can integrate
multiple environmental and intercellular signals to control
growth and development, stress responses and secondary
metabolism. A light signal causes a rapid transfer of active
phytochrome to the nucleus, where it interacts with PIFs
[27, 28]. In the present study, we observed that the expres-
sion of two PIF3 genes and two PIF4 genes was positively
correlated with carotenoid accumulation during ripening
(Fig. 1c and Fig. 7a). Our results are in agreement with the
observation that PIF5 functions as a positive regulator of

the MEP pathway and increases the accumulation of chlo-
rophylls and carotenoids in cultured cells [29], but they
contrast with the finding that PIF1 proteins bind directly
to the G-box element in the PSY promoter to inhibit its
expression, resulting in reduced carotenoid accumulation
[13], which suggests that PIF gene members may play a
different role in carotenoid metabolism. Two light signal-
ing transcription factors, LONG HYPOCOTYL5 (HY5)
and COP1-like, were previously identified in tomato fruit.
In contrast to LeCOPI1LIKE, repression of LeHYS5 results
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in a decrease in carotenoid content [30]. In this study, we
observed that the expression level of HY5 gradually de-
creased during ripening, in parallel with the decline in ca-
rotenoid levels in apricot fruit. In Arabidopsis, HY5 and
PIFs form a dynamic activation-suppression transcrip-
tional module that is responsive to light and temperature
cues and regulates carotenoid and chlorophyll accumula-
tion by direct binding to the same G-box cis element of a

target gene [31]. However, more work is required to con-
firm whether this fine-tuning module exists in fruit. Taken
together, these results suggest that light signaling-
associated transcription factors are involved in regulating
carotenoid accumulation in ripening apricot fruit.
Previous studies have shown that the synthesis and ac-
cumulation of carotenoids are regulated by various phy-
tohormones. Tomato fruit ripening is triggered by an
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increase in ethylene biosynthesis and is accompanied by
a large increase in B-carotene and lycopene content as
well as the expression of SIPSY1 and SIPDS, which is
ethylene dependent [32]. Similarly, ethylene induces the
expression of PSY1 and PDS and promotes the accumu-
lation of the corresponding carotenoid product in apri-
cot [32]. This is consistent with our observation that the
upregulation of the expression of PDSI (CL1571.2) and
the ethylene response factor ERFO03 was correlated with
increased phytoene and neoxanthin levels during ripen-
ing. We propose that PDSI may also be regulated by
ethylene in apricots to promote carotenoid accumulation
(Fig. 1c and Fig. 7). In tomato, the suppression of
SIAP2a mediated by RNAI results in lower levels of ca-
rotenoids, and reduced expression of SIERF6 enhances
carotenoid accumulation, suggesting that these genes
play positive and negative roles, respectively, in caroten-
oid accumulation during ripening [33, 34]. In our study,
ERF genes showed two distinct expression patterns, indi-
cating that ethylene signaling member has different
functions in the regulation of carotenoid accumulation
in apricot fruit (Fig. 7a). In A. thaliana, the ERF gene
RAP2.2 directly binds to the AtPSY and AtPDS pro-
moters to reduce carotenoid accumulation [12]. Here,
we also observed that the increased expression levels of
RAP2-12 showed a negative correlation with the levels
of carotenoid accumulation, while ERFIA, ERF5/12, and
APRR2 were positively correlated with carotenoid accu-
mulation (Fig. 7a).

In other studies, the application of the brassinosteroid
(BR) 2,4-epibrassinolide (EBR) to tomato has led to in-
creased levels of lycopene and a reduced chlorophyll

content in the fruit [35]. Additionally, the transcription
factor BRASSINAZOLE RESISTANTI1 (BZRI) has been
shown to play a role in carotenoid accumulation in to-
mato fruit [36]. In this study, we observed increased ex-
pression of BZRI during ripening, suggesting that the BR
signaling pathway may also be associated with carotenoid
accumulation (Fig. 7b). Over time, our results are consist-
ent with the regulation of carotenoid accumulation during
apricot fruit ripening by both ethylene and BR.

Numerous developmental regulatory factors have been
shown to affect the synthesis and accumulation of caroten-
oids. These include the MADS-box genes AGAMOUS-
LIKE 1 and FRUITFULI, which modulate carotenoid accu-
mulation during tomato fruit ripening [37], and the
MADS-box transcription factors RIN and FUL1/TDR4,
which directly bind to the SIPSY1 and SIPDSI promoters to
regulate carotenoid synthesis [38, 39]. Recently, a sweet or-
ange (Citrus sinensis) transcription factor, CsMADS6, was
found to promote carotenoid accumulation by coordinately
modulating the expression of LCYBI, PSY, PDS and CCDI
[40]. Here, we observed that the downregulation of
MADS14 expression was accompanied by upregulated ex-
pression of CCDI1/4 and downregulated expression of
PDS1 (U17285), consistent with their involvement in carot-
enoid accumulation during ripening (Fig. 1c and Fig. 7a).
NAC transcription factors are plant specific and play im-
portant roles in the development of various organs and fruit
[41]. Overexpression of SINACI and SINAC# results in re-
duced carotenoid levels and inhibition of fruit ripening by
altering the carotenoid pathway flux and decreasing the
levels of ethylene biosynthesis genes belonging to system-2,
but a newly identified tomato NAC (N AM/A TAF1/2/C
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UC2), SINAC4, functions as a positive regulator of fruit
ripening and carotenoid accumulation [41, 42]. In this
study, we observed that three NAC (NAC25 NAC_
U12188, NAC_CL3330.2) genes with different expression
patterns were involved in regulating carotenoid accumula-
tion (Fig. 7a).

MYB TFs regulate diverse plant developmental pro-
cesses. The R2R3-MYB TF RCP1 is a master regulator
that controls the entire CBP during flower development
and positively regulates carotenoid biosynthesis during
Mimulus lewisii flower development [43]. MYB7 can ac-
tivate the AdLCYB promoter, thereby modulating carot-
enoid pigment accumulation in kiwifruit (Actinidia
deliciosa) [44]. Similarly, the significantly reduced ex-
pression of MYBIRI and MYB44 during ripening sug-
gested their involvement in carotenoid accumulation in
apricots (Fig. 7a). In contrast, CrMYB68 suppresses the
expression of CrBCH2 and CrNCEDS in the citrus caroten-
oid pathway [45]. Another MYB transcription factor,
GOLDEN2-LIKE (GLK2), has been shown to increase lyco-
pene levels in tomato fruit at the red ripe stage [46—48].
Here, the expression levels of GLKI and GLK2 decreased
during ripening, suggesting that their expression may limit
carotenoid biosynthesis during ripening in apricots (Fig. 7a).
Overexpression of SIPRE2, an atypical bHLH transcription
factor, negatively affects plant morphology and fruit pigment
accumulation in tomato by downregulating the expression
of the chlorophyll-related genes GLK2 and RbcS and the ca-
rotenoid biosynthesis-related genes PSYIA and ZDS in rip-
ening tomato [49], suggesting that bHLH TFs may regulate
carotenoids upstream of GLKs. In the present study, we
identified three bHLHs with downregulated expression pat-
terns, but their regulatory roles are still unknown. We also
examined the expression patterns of the WRKY6/31/69
transcription factors (Fig. 7b), whose homolog OfWRKY3
has been implicated as a positive regulator of the OfCCD4
gene in Osmanthus fragrans [50]. Collectively, these results
indicated that many developmental factors take part in regu-
lating carotenoid biosynthesis and accumulation in apricots.

We noted that higher expression levels of PDS1, ZEP
and VDEI were detected in ‘LT’ apricot fruit. In
addition, the two genes responsible for carotenoid cleav-
age (CCDI and CCD4) exhibited remarkable upregulated
expression patterns in the ‘carotenoid loss’ type of culti-
var during fruit ripening (Fig. 7a). Similarly, studies in
strawberry showed that changes in lutein content were
closely related to the expression level of CCDI during
ripening [51]. CCD4 has also been shown to control
peach flesh pigmentation, with high CCD4 transcript
abundance being observed in white flesh peach, which is
associated with the emission of carotenoid-derived vola-
tiles [52]. In this study, the upregulated expression of
two ZEP genes (U10800 and U21300) was accompanied
by a decrease in violaxanthin during ripening. Loss of
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function of ZEP in the abal mutant of A. thaliana and the
aba2 mutant of tobacco causes the accumulation of high
zeaxanthin levels in leaves [53, 54]. These observations sug-
gest that ZEP, CCD1 and CCD4 play central roles in deter-
mining carotenoid levels in apricots and that degradation is
the key control point for carotenoid accumulation.

Conclusions

In this study, WGCNA analysis revealed that two modules
(‘blue’ and ‘turquoise’) are highly correlated with carotenoid
metabolism. Structural genes (CCD1, CCD4, VDEI1, ZEP
and PDS]I) are associated with the carotenoid biosynthesis
pathway, and transcription factors related to light signaling
(PIF3/4 and HY5), phytohormones (ERF4/5/12, AP2, AP2-
like and BZR1) and development factors (MADS14, NAC2/
25, MYBI1R1/44, GLK1/2, and WRKY6/31/69) may play
important regulatory roles in carotenoid metabolism, but
the specific regulatory mechanism still needs to be eluci-
dated. Our findings not only provide new insights into the
mechanisms of carotenoid metabolism, but these datasets
also provide a useful platform for further functional studies
of candidate genes.

Methods

Plant materials

From May to July 2017, fruits from the ‘LT’ cultivar were
harvested at different ripening stages (turning, T, 57
DPA (days post anthesis); commercial maturation, CM,
65 DPA and fully ripe, FR, 74 DPA) from the National
Fruit Tree Germplasm Repository, Academy of Xinjiang
Agricultural Sciences, Luntai, Xinjiang, China (Fig. 1a). All
samples were transported to the laboratory on the day of
harvest. A set of fruit of uniform size and with no obvious
mechanical damage was selected for the subsequent ex-
periments. Fifty fruits were used as one replicate, and
three biological replicates were used for each sample. For
each replicate, 20 fruit were used to measure a range of
physiological indices. Other fruit were cut into small cubes
and then immediately frozen in liquid nitrogen and stored
at — 80 °C for measurement of carotenoid contents and for
RNA-Seq and gene expression analysis.

Determination of basic quality parameters

Flesh firmness was measured using a firmness tester
(Model: HL-300, Xianlin Non Detection Device Co.,
Ltd., Nanjing, China) with an 8 mm probe. To determine
TSS values, the juice was squeezed from three fruits per
replicate, pooled and analyzed using a handheld digital
refractometer (B32T Brix Meter, Guangzhou Ruigi
Trading Company, Guangdong, China). TA values were
determined after the juice sample was diluted 100 times
with pure water. The fruit color parameters were mea-
sured using a Hunter’s Mini Scanning Colorimeter
(Hunter Associates Laboratory, Inc., Reston, VA, USA).
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The CCI was calculated with the following formula:
CCI=1000 x a*/(L* x b*), using three fruits as a single
replicate and three biological replicates.

Extraction and identification of carotenoids

Carotenoids were extracted as previously described with
some modifications [55]. Eight grams of fruit peel was
placed in a screw-top tube, and 50 mL of extraction solvent
(hexane/acetone/ethanol, 50:25:25, v/v) was added. After
standing for 30 min, the samples were centrifuged for 5 min
at 6500 rpm. The colored top layer of hexane was recovered
and transferred to a volumetric flask, where it was dried
under nitrogen, and dissolved in 2 mL of methyl tert-butyl
ether (MTBE) before being combined with 2mL of 10%
methanol/potassium hydroxide. The mixture was allowed
to stand for 1 h and separated in a separating funnel and
was rinsed twice with water and once with 0.1% butylhy-
droxytoluene (BHT)/MTBE. The rinsed solution was trans-
ferred to a brown bottle and dried under nitrogen before 2
mL methanol/acetone (2,1) was added, and the solution
was filtered through a 0.22 m filter membrane.

Carotenoids were identified by high-pressure liquid
chromatography (HPLC, Waters, Milford, MA, USA) with
a C30 chromatography column (250 mm x 4.6 mm, 5 pm,
YMC, Wilmington, NC, USA). The mobile phase flow rate
was 1 mL/min, and the column temperature was 25 °C,
with a detection wavelength of 450 nm and an injection
volume of 20 uL. The mobile phase composition was as
follows: methanol, MTBE and water. Carotenoids were
identified by comparison to standard retention times and
UV-visible spectral peaks. The quantification of caroten-
oids was performed using a standard curve and expressed
as ug/g FW. Three biological replicates for each sample
were used.

RNA extraction, library construction and data analysis
Total RNA was isolated and extracted from 1g of fruit
peel for each sample using a Tiangen reagent kit (Tian-
gen, Beijing, China). RNA purity, concentration and in-
tegrity were determined using a Nanodrop 2000
(NanoDrop 2000, Wilmington, DC, USA) and denatur-
ing agarose gel electrophoresis. ‘LT” RNA-Seq libraries
of T-, CM- and FR-stage fruit were constructed using an
Mlumina TruSeq RNA Library Prep Kit v2 following
standard procedures, and three biological replicates were
used for each stage. The libraries were sequenced using
an Illumina HiSeq™ 2000 system at the Beijing Genomics
Institute (BGI), China. Clean reads were obtained by re-
moving the linker, repetitive, redundant and low-quality
sequences from the raw reads. The sequence data from
this study have been deposited in the National Center
for Biotechnology Information (NCBI) under Sequence
Read Archive (SRA) accession number PRINA530709.
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De novo assembly and functional annotation

De novo transcriptome assembly was carried out using
the short read assembly program Trinity (http://trinityr-
naseq.sourceforge.net/) [56]. The assembled unigenes
were first filtered to remove redundant sequences and
further spliced using the TGICL (https://sourceforge.
net/projects/tgicl/files/tgicl%20v2.1/) version 2.1 soft-
ware package [57]. The sequences were then clustered
into homologous transcripts to obtain the final unigenes.
Subsequently, the unigenes were divided into two clas-
ses: one with several unigenes with > 70% similarity, with
the prefix CL followed by the cluster ID, and the other
consisting of singletons, with the prefix unigene. Finally,
BLASTx alignment (e-value <0.00001) was performed
between the unigenes and the NR, Swiss-Prot, KEGG
and COG protein databases, and the best alignments
were used to determine the sequence direction of the
unigenes. The GO annotations of unigenes were ob-
tained using Blast2GO Version 2.3.4 software (https://
www.blast2go.com) [58]. WEGO Version 2.0 (Web Gene
Ontology Annotation Plot) software (http://wego.gen-
omics.org.cn) was used to provide the GO functional
classifications of all the unigenes [59].

Principal component analysis (PCA) and identification of DEGs
PCA was performed to verify the reproducibility of the
sequence data using a previously described method [60].
DEGs between each sample were identified on the basis
of FPKM values [61] and pairwise comparisons, with a
false discovery rate (FDR) threshold of <0.001 and an
absolute value of the log2 Ratio > 1 using the DESeq R
package (v1.10.1) [62]. The DEGs were also analyzed by
heatmap clustering using Origin Pro 2018 (Origin Lab,
Northampton, MA, USA).

GO and KEGG pathway enrichment analysis

The DEGs were mapped to each term in the GO data-
base (http://www.geneontology.org/) [63], and the num-
ber of genes associated with each term was determined.
Based on the gene numbers for each GO term, a hyper-
geometric test was applied to determine the GO terms
that were significantly enriched for DEGs compared with
the genome background. A corrected p-value < 0.05 was
used as the threshold, and the GO terms meeting this
condition were defined as significantly enriched for
DEGs. A KEGG pathway enrichment analysis was per-
formed using the KEGG database (http://www.genome.
jp/kegg/) [64]. After multiple tests and corrections, we
determined that pathways with a Q-value 0.05 were sig-
nificantly enriched in DEGs.

WGCNA and visualization of gene networks
A total of 16,773 unigenes with FPKM values > 1 were
used to perform WGCNA by using the WGCNA
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package in R [26]. The modules were obtained using the
automatic network construction function. Modules were
identified using default settings, except that the soft
power was 10, the min module size was 30, and the
merge cut height was 0.25. Finally, Cytoscape version 2.8
(http://www.cytoscape.org/) was used to visualize the ca-
rotenoid metabolism regulatory network based on the
WGCNA modules [65].

Real-time quantitative PCR

The expression levels of candidate structural genes and
transcription factors were measured in ‘LT’ fruit at three
ripening stages by qRT-PCR analysis. Ribosomal RNA
and actin gene expression was used as a normalization
reference as previously described [24]. Specific primers
were designed using Primer5 (Additional file 9). Gene
expression levels were detected using an iQ5 instrument
(Bio-Rad Laboratories, Inc. America) with the SYBR®
Premix Ex TaqTM II Kit (TaKaRa Biotechnology (Da-
lian) Co, Ltd., China). The amplification program was as
follows: 95°C for 1min, followed by 40 cycles at 95°C
for 20's, 58 °C for 20 s and 72 °C for 30s. Each qRT-PCR
analysis was performed in triplicate, and the mean value
was used for the qRT-PCR analysis. The relative expres-
sion of the genes was calculated according to the 2
~AACT method [66], and OriginPro 2018 (OriginLab,
Northampton, MA, USA) was used to analyze the data.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512864-019-6261-5.

Additional file 1. Throughput and quality of RNA-Seq data in apricot fruit.
Additional file 2. Statistics of assembly quality.

Additional file 3. Gene ontology (GO) classification map. The horizontal
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VDET1: Violaxanthinde-epoxidase 1; WGCNA: Weighted gene coexpression
network analysis; WRKY6/31/69: Transcription factor WRKY6/31/69; ZDS: (-
carotene desaturase; ZEP: Zeaxanthin epoxidase; Z-ISO: 15-cis-zeta-carotene
isomerase.
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