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Abstract

Background: Genome-wide association studies (GWAS) are extensively used to identify single nucleotide polymorphisms
(SNP) underlying the genetic variation of complex traits. However, much uncertainly often still exists about the causal variants
and genes at quantitative trait loci (QTL). The aim of this study was to identify QTL associated with residual feed intake (RFI)
and genes in these regions whose expression is also associated with this trait. Angus cattle (2190 steers) with RFI records
were genotyped and imputed to high density arrays (770 K) and used for a GWAS approach to identify QTL associated with
RFI. RNA sequences from 126 Angus divergently selected for RFI were analyzed to identify the genes whose expression was
significantly associated this trait with special attention to those genes residing in the QTL regions.

Results: The heritability for RFl estimated for this Angus population was 0.3. In a GWAS, we identified 78 SNPs associated
with RFl on six QTL (on BTAT, BTA6, BTA14, BTA17, BTA20 and BTA26). The most significant SNP was found on chromosome
BTA20 (rs42662073) and explained 4% of the genetic variance. The minor allele frequencies of significant SNPs ranged from
0.05 to 049. All regions, except on BTA17, showed a significant dominance effect. In 1 Mb windows surrounding the six
significant QTL, we found 149 genes from which OAS2, STC2, SHOX, XKR4, and SGMST were the closest to the most
significant QTL on BTA17, BTA20, BTA1, BTA14, and BTA26, respectively. In a 2 Mb windows around the six significant QTL,
we identified 15 genes whose expression was significantly associated with RFIl: BTA20) NEURL1B and CPEB4; BTA17) RITAT,
CCDC42B, OAS2, RPL6, and ERP29; BTA26) ATCF, SGMST, PAPSS2, and PTEN; BTA1) MFSD1 and RARREST; BTA14) ATP6V1H and
MRPL15.

Conclusions: Our results showed six QTL regions associated with RFl in a beef Angus population where five of these QTL
contained genes that have expression associated with this trait. Therefore, here we show that integrating information from
gene expression and GWAS studies can help to better understand the genetic mechanisms that determine variation in
complex traits.
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Background

The incorporation of genomic information in livestock
breeding programs is a common strategy to improve ac-
curacy of selection for economically important traits.
This is most useful for traits in the breeding objective
that are not often measured by breeders. In beef cattle,
the aim of most production systems is to select for more
feed efficient animals since feed costs constitute around
70% of the total expenses [1]. The measurement of feed
intake is costly, usually requiring expensive equipment
to determine phenotypes for growth and feed intake in a
70 days test period in a feedlot. Feed efficiency in beef
cattle is often expressed as residual feed intake (RFI)
which is the difference between the observed feed intake
recorded over a period of time and the expected feed in-
take based on the animal’s growth rate and maintenance
requirement [2]. RFI reflects the variation in feed intake
conditional on productivity, and therefore the variation
in RFI can be used to explore the underlying causes of
genetic variation using genomic technologies.

Modern genomic tools can be utilised to unravel the
underlying biology of genetic variability in plants and ani-
mals. Methods that examine the heritability of traits, along
with genome-wide association and gene expression studies
have been utilised to attempt to understand the genetic
basis underlying phenotypic differences between individ-
uals. Numerous studies have reported variance compo-
nents and heritabilities for RFI in cattle and correlations
with other important production traits [3—5]. More re-
cently, genome-wide association studies (GWAS) have
been used to reveal the genomic architecture of polygenic
traits by finding statistical associations between the
phenotype and genetic markers assumed close to putative
QTL (quantitative trait loci). Several GWAS for RFI have
been performed in beef and dairy cattle [6—10]. Estimates
of heritability of RFI range from low to moderate (0.14 to
0.49) and GWAS point at QTL for this trait in regions on
many chromosomes (BTA3, BTA5, BTA6, BTA8, BTA12,
BTA13, BTA15, BTA17, BTA18, BTA20, BTA21 and
BTA22, see references 6, 7, 9). Identification of the causal
variants in these QTL regions could help to better under-
stand the genetic mechanisms underlying this trait. How-
ever, GWAS results are rarely conclusive and studies
often require more phenotypic data on a larger number of
animals as well as denser SNP panels to precisely locate
the causative mutations, and genes involved in RFL

Additional to GWAS, a number of studies have used
transcriptomic data to find the genes that are differen-
tially expressed with contrasting phenotypes or geno-
types [11, 12], e.g. some studies have identified genes
significantly associated with RFI in Angus cattle [13] and
others have contrasted divergent lines or extreme phe-
notypes in other breeds of beef cattle [14]. However,
there has been little consistency among the results of
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these studies. Gene expression studies are challenging,
and they can vary widely in describing transcriptomic
differences encompassing different tissues, breeds, sex,
and age. A multi-tissue transcriptome approach com-
bined with GWAS results may allow validation and bet-
ter interpretation of GWAS findings, potentially giving a
better insight into the genetic mechanisms and the biol-
ogy behind this trait.

The aim of the current study was to perform a GWAS
for RFI with imputed high density (770 K) genotypes in
Australian Angus steers to detect significant SNPs statis-
tically associated with phenotypic variation in RFIL. Add-
itionally, results from a multi-tissue gene expression
experiment (RNA-seq) in a separate Angus population
were used to further strengthen evidence for particular
genes being involved in the genetic regulation of feed ef-
ficiency in beef cattle.

Results

Genome-wide association study

The estimated heritability for RFI based on the 2190
steers used for the GWAS was 0.3 (+0.04) using a gen-
omic relationship matrix and after correcting for fixed
effects of the contemporary groups. Genomic inflation
lambda (M) values of 0.95 show that the resulting p-
values from the GWAS follow a chi-squared distribution
and there was no sign of any systematic bias, e. g. due to
population structure. From a visual evaluation (Q-Q
plot), the distribution of most of the observed p-values
aligned with the distribution of the expected p-values ex-
cept for the significant p-values from SNPs associated
with RFI (Additional file 2: Figure S1).

The GWAS resulted in 78 significant SNP from six
QTL regions (on BTA1, BTA6, BTA14, BTA17, BTA20
and BTA26) when using as a threshold —log;o(p) < 5e~°
(Table 1; Additional file 1: Table S1), and from these,
only 11 SNPs passed the more stringent threshold
(-logio(p) < 8.51e” 8), with all of these located in a single
QTL on BTA20 (Fig. 1).

Further details on all significant SNPs are shown in
the Additional file 1: Table S1), while the QTL regions
with the most significant SNPs can be found in Table 1.
The most significant SNP overall was found on

Table 1 Identified QTL associated with RFI in beef Angus (B.
Taurus UMD3.1)

Chromosome Regions (Mb) Significant SNPs
1 11.05-11.06 2

6 55.18-55.08 10

14 24.18-24.39 13

17 63.63 1

20 4.88-6.12 31

26 8.91 1
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Fig. 1 Manhattan plot of SNP's p-values of association with RFI. The lines represent the significant thresholds at -log;o(p) > 7 (blue) and -log;(p) > 4.3 (red)
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chromosome BTA20 and this SNP explained 4% of the
genetic variance, while the variance explained by the
most significant SNPs in each of the other QTL was
smaller (< 2%) (Table 2). From the most significant SNP
per region, four of them (rs42662073, rs137349090,
rs42005099, rs42322957) have MAF > 0.3 while two
(rs42544395 and rs133158056) have MAF < 0.09 (Table
2). The SNPs rs42005099 and rs42322957 had a negative
partial dominance (d) effect of - 0.396 and - 0.336, re-
spectively, while rs137349090 had only an additive (a) ef-
fect with animals having the AA genotype being the
more efficient (i.e. the lowest phenotypic value for RFI;
Additional file 3: Table S2).

A window of 1 Mb surrounding the most significant
SNPs was used to find candidate genes with biological
importance for RFI. In total, 149 genes were found in
these regions and 54 among them corresponded to
uncharacterized proteins (Additional file 3: Table S2).
Except for the rs137349090 SNP on BTA17, which is in
an intronic section of the gene 2’-5'-Oligoadenylate Syn-
thetase 2 (OAS2), all other SNPs were found in

Table 2 Association analysis of genotypes from the most
significant SNP in each QTL region for RFl in Angus (B. Taurus
UMD3.1)

SNP Position A1 A% FC -logi (P) %S Effect®
142662073 204883142 B A 045 898 4% —026
15137349090 17:63630684 A B 034 49 2% —0.19
1542544395 1424181858 A B 008 489 2% —034
142005099  1:110543274 A B 049 468 2% 018
1542322957 655181977 B A 038 459 2% 0.19
15133158056 26:8907239 A B 0049 445 2% —039

2A1: reference allele; °A2: other allele; Fr: MAF (minor allele frequency);
dpercentage of variance explained by the genotype; SNP effect

intergenic regions. For the most significant SNP in this
study, rs42662073 on BTA20, Stanniocalcin 2 (STC2) is
the closest gene. In the case of chromosomes BTAI,
BTA6, BTA14, BTA26, the gene closest to the significant
SNPs are Short Stature Homeobox 2 (SHOX2),
LOC104968862, XK Related 4 (XKR4), and Sphingomye-
lin Synthase 1 (SGMSI), respectively. The most relevant
genes based on the biological functions reported in other
studies (related to feed efficiency and growth) are sum-
marized in Table 3.

Gene expression integration

Genes significantly associated with RFI- GSA (at p-value<
0.001, GSA,.0001) - in each tissue/sex were identified.
The bull dataset had a higher number of GSA,, . 9001 With
23 (A-bulls_liver) genes in liver and 21 (D-bulls_muscle)
genes in muscle, while H-steers_liver, H-heifers_blood, H-
heifers_liver, and H-steers_blood datasets had 8, 6, 5, and
1 GSA,.oom respectively (Additional file 6: Table S5).
From all of the GSA, only the Eukaryotic translation initi-
ation factor 3H (EIF3H) gene was found significantly asso-
ciated with RFI, based on their expression in A-bulls_liver
and D-bulls_muscle tissues. However, the expression
effect was opposite in different tissues (0.101 in liver and
—0.085 in muscle).

The most significant GSA, .01 in the QTL for RFI
from all of the datasets are shown in Table 4 while the
complete list is presented in the (Additional file 5: Table
S4). The five most significant GSA, based on their p-
value, were Neuronal Regeneration Related Protein
(NREP), N-Acetylated Alpha-Linked Acidic Dipeptidase
Like 1 (NAALADLI), Nuclear Receptor Coactivator 4
(NCOA4), CD8b Molecule (CD8B), and 7-Dehydrocholes-
terol Reductase (DHCR7). On the other hand, when the
GSA were ranked based on the effect that gene
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Table 3 Previously reported role of the candidate genes located in the genomic regions associated with RFl in Angus

Genomic Candidate genes Function
region (1 Mb)
BTA20 DUSP1-Dual Specificity Phosphatase 1 Up-regulated gene in muscle from efficient broilers [15] and adipose tissue from obese humans
3.88-5.88 [16]
ERGICT - Endoplasmic Reticulum-Golgi Associated with MMWT in cattle [10]
Intermediate Compartment 1
RPL26L1-Ribosomal Protein L26 Like 1 Gene associated with MMWT in cattle [10] and up regulate in breast carcinoma [17]
STK10-Serine threonine kinase 10 Significantly associated with slaughter weight in beef cattle [18]
ATP6VOET- ATPase H+ Transporting VO Involved in oxidative phosphorylation with up-regulation in rumen epithelium of low RFI cattle
Subunit E1 [19]
STC2-Stanniocalcin 2 Associated with RFI and MBW in cattle [20]; possible modulator of carcass and meat quality traits
in beef cattle [21]. Overexpression resulted in postnatal growth restriction in mice [22]
CPEB4- Cytoplasmic Polyadenylation Gene associated with rib eye area in Nelore [23]. Nearby a suggestive SNP (p-value 1.38e™%) for
Element Binding Protein 4 average daily gain in pig [24]
NEURL1B- Neuralized E3 Ubiquitin Protein  Associated with day 2 of preadipocyte differentiation in chicken [25], nearby gene to the single
Ligase 1B nucleotide variants associated with body mass index in adult humans [26], nearby gene to
significant SNP for longissimus dorsi muscle area in Hanwoo cattle [27]
BOD1- Biorientation Of Chromosomes in  Inhibits PP2A-B56 regulating the function of Plk1 in mitotic cells at spindle poles and kinetochores
Cell Division 1 [28]
BTA17 SDS- Serine Dehydratase, SDSL- Serine Low expression in bovine jejunal epithelium tissue due to restricted dietary [29]
6.26-6.46 Dehydratase Like
DTX1- Deltex E3 Ubiquitin Ligase 1 Regulates transcription in the nucleus downstream the Notch receptor [30]
SLC8BI- Solute Carrier Family 8 Member Up-regulation in high-efficient broiler chickens [31]
B1
OAS2-2"-5"-Oligoadenylate Synthetase 2 Up-regulated in Blonde d’Aquitaine during embryonic muscle developmental when contrasting
with Charolais [32]
PTPN11- Protein Tyrosine Phosphatase, Down regulated gene in high-RFI Holstein [33], and control cell proliferation in postnatal mice [34]
Non-Receptor Type 11
RPL6- Ribosomal Protein L6 Differentially expressed gene in divergent RFI lines of pigs [35]
LHX5- LIM Homeobox 5 Regulates the development and distribution of Cajal-Retzius cells in the developing forebrain [36]
TPCN1- Two Pore Segment Channel 1 Mice with knock down of the Tpcn1/2 had increase body mass due to faster increase in fat mass
compare with the wile mice [37]
BTA14 XKR4- XK Related 4 SNP associated with ADFI and ADG in cattle [38], and backfat thickness in Nelore [39]
2.31-251
SOX17- SRY-Box 17 Transcriptional regulator of differentiation in embryonic stem cells in mouse [40]. Significant SNP
associated with EBV for paternal calving ease in cattle [41]
BTA1 VEPHI- Ventricular Zone Expressed PH Candidate gene for rump fat thickness in Nellore [9]
1.10-1.11 Domain Containing 1
PTX3- Pentraxin 3 Up-regulated in breast muscle of high-feed efficient broilers [42]
MFSD1-Major facilitator superfamily Down-regulated gene in brainstem and hypothalamus of mice raised on high-fat diet [43]
domain containing 1
BTA6 LOC104968862 Located in the region of SNPs for rump fat thickness [39]
541-561 LOC104968863
-un characterize proteins
BTA26 MINPPT- Multiple Inositol-Polyphosphate  Maintains the levels of InsP5 and InsP6 which are essential to normal cell growth [44]
7.90-9.90 Phosphatase 1

AICF- APOBECT Complementation Factor

PAPSS2-3'-Phosphoadenosine 5™
Phosphosulfate Synthase 2

SGMST- Sphingomyelin Synthase 1

ASAH2- N-Acylsphingosine Amidohydro-
lase 2

Splicing regulator and the A1CF loss of function elevated triglycerides levels in mice [45]

Gene located nearby a SNP associated with DMI in feedlot steers [46]; After treating cartilage from
bovine with TGF-@, the expression of gene PAPSS2 was up-regulated in articular chondrocytes,
while the expression was down-regulated in cartilage from mice with negative mutation of the
TGF-(3 receptor [47]

Gene nearby a significant SNP associated with RFI in pigs [48] and average daily feed intake [49]

Up-regulated in pigs with low feed conversion ratio [50]

1Mb: 1 M base, BTA: Bos Taurus Autosome
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expression had on the phenotype, the top five were
Interferon gamma inducible protein 47 (IFI47), Coiled-
Coil Domain Containing 38 (CCDC38), Glutathione S-
Transferase Mu 2 (GSTM?2), uncharacterized protein
(ENSBTAG00000040281), and Retinol Binding Protein 1
(RBPI). The pathways related to the top significant
GSA, < 0.001 were Cholesterol biosynthesis, Fatty acid deg-
radation, MAPK signaling pathway, and PI3K-Akt sig-
naling pathway (Table 4).

When the window was extended to 2Mb, 15 genes
whose expression was associated with RFI (p <0.05;
GSA, .00s5) were identified around the top significant
SNPs on BTA1, BTA14, BTA17 and BTA26. The region
on BTA6 between 54 and 56 Mb does not code for any
genes, therefore, there are no results for the gene expres-
sion in that region. For the most significant QTL on
BTA20 positioned between 3.88 and 5.88 Mb, the GSA
NEURLI1B and CPEB4 were found (Fig. 2a), their expres-
sion had a positive effect on RFI (0.254 and 0.064 respect-
ively). The region with most GSA,, . ¢ o5 genes was BTA17
(Fig. 2b) with five genes (RITAI- RBPJ Interacting and
Tubulin Associated 1, CCDC42B- Coiled-Coil Domain
Containing 42, OAS2, RPL6- Ribosomal Protein L6, and
ERP29- Endoplasmic Reticulum Protein 29). Gene ERP29
was significantly associated in two datasets (H-steers_liver
and D-bulls_muscle). However, similar to gene EIF3H
mentioned before, the direction of the effect was found to
be opposite in different tissues, with a regression of RFI
on lcpm of 0.079 in liver and - 0.12 in muscle. The QTL
region with the second most GSA,, .05 was BTA26 (be-
tween 7.90 and 9.90 Mp) with four GSA (AICF- APO-
BEC1 Complementation Factor, SGMS1, PAPSS2-3’-
Phosphoadenosine 5’-Phosphosulfate Synthase 2, PTEN-
Phosphatase and Tensin Homolog) (Fig. 2e). From these
genes, the gene expression of AICF was down-regulated
(- 0.10), while the other GSA, .5 were up-regulated.
The QTL regions with a smaller number of GSA, 05
were BTA14 (with ATP6VIH and MRPLI15 between 2.31
and 2.51 Mb; Fig. 2c¢) and BTAl (with MFSDI1 and
RARRES]I between 1.10 and 1.11 Mb; Fig. 2d).

Discussion

In this study, the heritability estimated for RFI (h* = 0.3)
is in agreement with other estimates reported previously
for other Angus populations [10, 20, 51], an Angus-
Brahman herd (0.30) [52], and Nellore (0.17) [53]. How-
ever, in some other studies in Angus and Charolais pop-
ulations, the heritability has been reported as high as
0.47 and 0.68, respectively [54]. Most of those studies,
however, are based on relatively small data sets.

Genome-wide association for RFI
Six QTL regions were identified to be associated with
RFI on BTA1l, BTA6, BTA1l4, BTA17, BTA20, and
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BTA26 (Table 1). A QTL for RFI on BTA20 has been re-
ported in earlier studies, however, it is not the same lo-
cation as in this study. The significant SNP for RFI (20_
51402608) [6] was identified in Angus and is located
46.5Mb from our most significant SNP while on
chromosome 20 there was a significant QTL for ADG
(BTA20_39) in SimAngus which is 34.1 Mb apart from
our QTL for RFI [10]. The differences in regions found
in our results compared with the regions reported in
earlier studies could be due to the use of different Angus
population, the number of animals used, some findings
maybe false positives, or the approach applied to meas-
ure and define RFI might differ. Additionally, the fact
that nearby SNPs have been previously reported as being
associated for other traits (like MMWT, DMI) could be
due to the pleiotropic effect of some regions. For ex-
ample, the same regions have been associated for DMI-
MBW, ADG-MBW, REI-MBW [20], and RFI-DFI [6].
Although RFI and ADG and MBW had no correlation at
the phenotypic level due to the conditional adjustment,
there could still be a correlation at the genetic level [55],
albeit relatively small. Interestingly, the gene STC2 was
the closest to the QTL on BTA20 in our study, and pre-
vious studies have reported SNPs (rs133032375) in this
region significantly associated with mid-test weight and
RFI in Hereford [20]. This gene STC2 is a proteinase in-
hibitor of PAPP-A and the over-expression of STC2 in
mice causes a reduction in postnatal growth compared
with normal mice [22, 56]. Additionally, mice with an
over-expression of human STC2 showed reducing bone
and skeletal muscle growth [57].

There were five other regions identified in this study
that provided further information of candidate genes
with biological relevance to RFI (Table 1). On BTAI, a
close QTL has been identified in BTA1_103459113 asso-
ciated with RFI [6], while BTA1_106 [10], and BTA1_
107 [20] were associated with feedlot dry matter intake
(DMI), BTA1_108 was identified for MMWT [10]. Here
we identified the nearby gene PTX3 which previously
was reported as up-regulated in breast muscle of high-
efficient broilers [42]. Another gene found in the 1 Mb
window from the significant SNP for BTA1 is MFSDI
which is down-regulated in the brainstem and hypothal-
amus of mice raised on a high-fat diet [43].

On BTAI14, the SNP rs42544395 was the most signifi-
cant for RFI (Table 2), which is close to the SNP identi-
fied in SimAngus 14_17 for DMI, BTA14_24, BTA14_25
and BTA14_26 for MMWT, while BTA14 27 was asso-
ciated with RFI in Angus [10]. In another population of
Angus cattle, the SNP BovineHD1400006992 (BTA14_
24114365) was significantly associated with PW_Iwt, and
SNP BovineHD1400007153 (BTA14_24621142) was as-
sociated with RFI [6]. The closest gene to SNP
rs42544395 is XKR4 which was associated with feed
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Table 4 Most significant gene expression associated with RFl and their related metabolic pathway

Symbol Effect p- Dataset® Pathway
value
NREP-Neuronal Regeneration Related ~ —021 4.66E- BM MECP2 and Associated Rett Syndrome
Protein 06
NAALADLI- N-Acetylated Alpha-Linked 033  133E- HB -
Acidic Dipeptidase Like 1 05
NCOA4- Nuclear Receptor Coactivator  0.18  1.49E- SL Pathways in cancer, Thyroid cancer
4 05
CD8B- CD8b Molecule 034 197E- HB T-Cell Receptor and Co-stimulatory Signaling, Innate Immune System
05
DHCR7-7-Dehydrocholesterol -0.29 2.32E- BM Regulation of cholesterol biosynthesis by SREBP (SREBF), cholesterol biosynthesis |
Reductase 05
ENSBTAG00000039588 039 381E- HB -
05
SYNE2- Spectrin Repeat Containing 011  401E- BM Meiosis, Ovarian Infertility Genes
Nuclear Envelope Protein 2 05
OLFML1- Olfactomedin Like 1 -0.51 4.56E- BM -
05
ANGPTL2- Angiopoietin Like 2 —-0.27 593E- BM Common Cytokine Receptor Gamma-Chain Family Signaling Pathways
05
ACADSB- Acyl-CoA Dehydrogenase -0.29 6.29E- BL Fatty acid degradation, Valine, leucine and isoleucine degradation, Metabolic
Short/Branched Chain 05 pathways, Fatty acid metabolism
DDIT3- DNA Damage Inducible -0.22 7.26E- BM MAPK signaling pathway, Protein processing in endoplasmic reticulum, Non-
Transcript 3 05 alcoholic fatty liver disease (NAFLD), Transcriptional misregulation in cancer
TDRP- Testis Development Related -045 1218 HL -
Protein 04
CCDC38- Coiled-Coil Domain Contain- 068  167E- BL -
ing 38 04
AIM1- Absent in melanoma 1 015 191E- BL Fatty acid degradation, alpha-Linolenic acid metabolism, Metabolic pathways, Bio-
04 synthesis of secondary metabolites, Fatty acid metabolism
PLA2G16- Phospholipase A2 Group XVI 0.18  232E- HL Glycerophospholipid metabolism, Ether lipid metabolism, Arachidonic acid
04 metabolism, Linoleic acid metabolism, alpha-Linolenic acid metabolism, Metabolic
pathways, Ras signaling pathway, Regulation of lipolysis in adipocytes
TMEM135- Transmembrane Protein -021 2.50E- BM -
135 04
CENPM- Centromere Protein M 045 2.82E- SL Chromosome Maintenance, Signaling by Rho GTPases
04
EIF2A- Eukaryotic Translation Initiation  0.16  2.83E- BL RNA transport, Protein processing in endoplasmic reticulum
Factor 2A 04
SQLE- Squalene Epoxidas —-045 284E- BM Steroid biosynthesis, Metabolic pathways, Biosynthesis of antibiotics
04
GSTT3- Glutathione S-Transferase 027 291E- BL Glutathione metabolism, Metabolism of xenobiotics by cytochrome P450, Drug
Theta 3 04 metabolism - cytochrome P450, Chemical carcinogenesis
HMGCS1-3-Hydroxy-3-Methylglutaryl-  —0.24 294E- BM Synthesis and degradation of ketone bodies, Valine, leucine and isoleucine
CoA Synthase 1 04 degradation, Butanoate metabolism, Terpenoid backbone biosynthesis, Metabolic
pathways, Biosynthesis of antibiotics
GHDC- GH3 Domain Containing 017 359E- HL Innate Immune System
04
EIF3H- Eukaryotic Translation Initiation  0.10  3.62E- BL RNA transport, Measles
Factor 3 Subunit H 04
GPATCH11- G-Patch Domain Contain- 033 4.14E- SL -
ing 11 04
NETI1- Neuroepithelial Cell -0.14 4.79E- HL p75 NTR receptor-mediated signaling, fMLP Pathway
Transforming 1 04
BCKDHB- Branched Chain Keto Acid 010 432E- SL Valine, leucine and isoleucine degradation, Metabolic pathways, Biosynthesis of
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Table 4 Most significant gene expression associated with RFl and their related metabolic pathway (Continued)

Symbol Effect p- Dataset® Pathway
value
Dehydrogenase E1 Subunit Beta 04 antibiotics
DNER- Delta/Notch Like EGF Repeat —1.13 433k BM Signaling by NOTCH1 and NOTCH2 Activation, Transmission of Signal to the
Containing 04 Nucleus
ALDH5AT- Aldehyde Dehydrogenase 5 0.14  4.81E- BL Alanine, aspartate and glutamate metabolism, Butanoate metabolism, Metabolic
Family Member A1 04 pathways
ROBO2- Roundabout Guidance 049 503E- BL Axon guidance
Receptor 2 04
GSTM?2- Glutathione S-Transferase Mu 061  551E- BL Glutathione metabolism, Metabolism of xenobiotics by cytochrome P450, Drug
2 04 metabolism - cytochrome P450, Chemical carcinogenesis
PRICKLE1-Prickle Planar Cell Polarity -031 562E- BL Whnt signaling pathway
Protein 1 04
ENSBTAG00000040281 059 6.02E- HB -
04
IFI47- Interferon Gamma Inducible 088 6.02E- SL TNF signaling pathway
Protein 4 04
ENSBTAG00000002786 -1.10 642E- SL -
04
RBPI- Retinol Binding Protein 1 055 701E- HB Nicotinate and nicotinamide metabolism, Metabolic pathways
04
UBE2D2- Ubiquitin Conjugating 010 721E SL Ubiquitin mediated proteolysis, Protein processing in endoplasmic reticulum
Enzyme E2 D2 04
ENSBTAG0O0000001489 -0.18 7.24E- SB Phagosome, Gap junction
04
GDPGP1- GDP-D-Glucose Phosphoryl- 032 7.40E- HB -
ase 1 04
ITGB4- Integrin Subunit Beta 4 034 859E- HL PI3K-Akt signaling pathway, Focal adhesion, ECM-receptor interaction, Regulation of
04 actin cytoskeleton, Hypertrophic cardiomyopathy (HCM), Arrhythmogenic right ven-
tricular cardiomyopathy (ARVC), Dilated cardiomyopathy
URIT- URI1, Prefoldin Like Chaperone 019 9.32E- SL Translational Control, Apoptosis and Autophagy

04

@BM: bulls_muscle, HB: H-heifers_blood, SL: H-steers_blood, BL: A-bulls_liver, HL: H-heifers_liver

intake and growth in cattle [38]. This gene was also re-
ported as associated with rump fat thickness [58] and
back fat [39]. In the Nellore breed, the XKR4 gene was
associated with tenderness [59].

The SNP 17_58 was earlier reported for RFI in Angus
[10] and it is close to the identified QTL on BTA17
(rs137349090). Multiple interesting genes were identified
in the 1 Mb region surrounding this SNP (Table 3). The
OAS2 gene seems to play an important role during
muscle development [60]. Another gene, SLC8BI, was
reported as up-regulated in high-efficient broiler chick-
ens [31], while the gene PTPN11 was down regulated in
high-RFI Holstein [33]. Divergent RFI lines of pigs had
differential expression of RPL6 [35], another gene lo-
cated close to rs137349090. The estimation of domin-
ance effects in the most significant SNPs for each QTL
showed that with the exception of SNP rs137349090, all
SNPs had a significant dominance effect, with some even
showing overdominance (Additional file 4: Table S3).
Similarly, significant dominance and epistatic effects for

carcass, growth and fertility traits were found in Angus
cattle [61]. This pattern of large dominance effect is con-
sistent with the suggestion by Jiang, et al. [62] that the
contribution of non-additive effects to the total genetic
variance for complex trait in Holstein cattle can be con-
siderable. However, as pointed out by Hill et al. (2008),
most of the dominance effects are captured by the addi-
tive genetic variance [63].

In our study, we found more negative than positive
dominance effects, which is in agreement with those re-
ported previously for RFI, age at puberty and postpar-
tum anoestus interval [61]. The SNP rs137349090
identified on BTA17 had no dominance effects, which is
a relatively accurate estimate as we found that this SNP
has a sufficient number of observations for each of the
genotypes (MAF =0.34). There are two important GSA
in this region (RPL6 and ERP29; see Fig. 2b) that were
reported as differentially expressed in divergent lines for
RFI in pigs [35] and chicken [64]. Altogether, these re-
sults suggest that the information on this SNP genotype
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might contribute to a higher accuracy of genomic pre-
diction of phenotype or breeding value for RFIL.

Finally, we identified a QTL for RFI on BTA26, and
this region has not been reported previously for RFI.
In this region, the gene SGMSI is close to the most
significant SNP rs133158056. The function of the
SGMSI gene has not been documented, however, sig-
nificant SNPs for RFI [48] and average feed intake
[49] have been identified in pig for the homologous
gene region. Moreover, in the present study, the ex-
pression of SGMSI in bulls strongly selected for RFI
was significantly higher (with a positive effect 0.11)
than in animals selected for low RFL

Gene expression overlap with GWAS results

The use of RNA-seq in multiple tissues of Angus cattle
allowed us to identify the genes that were significantly
associated (GSA,.o0s5) with RFI inside a window of 2
MB from the most significant SNPs. The genes
NEURL1B and CPEB4 were located on BTA20 (Fig. 2a)
and have not been reported to be associated with feed
efficiency traits in previous studies, motivating further
analysis of these genes to validate these results and to
determine the role of these genes in relation to RFI. On
BTA17, we found a relatively high number of GSA, with
gene ERP29 proximal to the SNP rs137349090. This
gene has been reported previously as differentially
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expressed between high and low RFI lines in chickens
[64]. In addition, on chromosome BTA17, the gene
RITA1 was significantly associated with RFI and is close
to the significant SNP rs137349090. This gene is a
tubulin-binding protein that acts as a negative regulator
in the Notch signaling pathway. However, there is no
previous report of this gene to be associated with feed
efficiency traits. On BTA14, the gene ATPase H+ Trans-
porting V1 Subunit H (ATP6VIH) was nearest to the
significant SNP (rs42544395) and was significantly asso-
ciated (GSA, . o0s5) for RFI in steer liver tissue (Fig. 2c).
This gene has been reported previously for traits that
define puberty (age at first corpus luteum and scrotal
circumference of 26 cm) in Brahman cattle [65]. The
scrotal circumference was reported to be higher in
young bulls with high RFI (when backfat thickness was
corrected for in the model) [66]. Nonetheless, in a previ-
ous study, there was no detrimental effect of low RFI on
scrotal circumference of bulls [67]. On the same
chromosome, the expression of the gene Mitochondrial
Ribosomal Protein L15 (MRPLI15) was significantly asso-
ciated (GSA,.005) with RFI in muscle from D-bulls.
Previous reports have shown low expression of MRPLIS
in double muscle Semitendonosus in cattle [32], but a
higher gene expression was found in more feed efficient
broilers [68].

We used a higher significance threshold (GSA,, . ¢001)
for a genome wide search for differentially expressed
genes, and observed that the highest number of GSA, .
0.001 Was observed in A-bulls_liver followed by D-bulls_
muscle, H-steers_liver, H-heifers_blood, H-heifers_liver,
and H-steers_blood with 23, 21, 8, 6, 5, and 1 GSA re-
spectively (Additional file 6: Table S5). The higher num-
ber of GSA, <0001 in A-bulls_liver agrees with the larger
variation in phenotypes for RFI found in the bulls used
in this study, while the lower number of GSA in the H-
groups, maybe due to the smaller variation in RFI values
observed among heifer and steers in these groups
(Table 6). Additionally, the small library size used in this
analysis could lead to missing observations on some
genes relevant in the RFI biology.

The gene EIF3H was found significantly associated in
A-bulls_liver and D-bulls_muscle. Interestingly, this
gene was observed to be over-expressed in Hanwoo cat-
tle for animals with increasing CWT and EMA [69]. In
trout, the EIF3H gene has been shown to be involved in
compensatory muscle growth [70]. Further studies are
needed to better understand the role of EIF3H gene on
RFI in liver and muscle tissues.

The top significant genes (GSA, . o001) Seem to play a
role in RFI as they were shown to be associated with
phenotypic differences and their functional annotation is
consistent with RFI as a biological trait. The gene NREP
for example, is close to a region associated with feed

Page 9 of 16

efficiency in Nellore cattle [71]. Another interesting gene
is GSTM2, which in this study, we found positively asso-
ciated with RFI in liver tissue from bulls. GTM gene
family had been reported previously to be associated
with RFI, GSTMI and GSTM3 were highly expressed in
high-RFI animals in liver [11]. GSTMI and GSTM2 were
significantly correlated with RFI-EBV and were up-
regulated also in liver from high RFI steers [72]. The
corresponding pathways in which the top significant
GSA,, <0001 were involved is reported in Table 4. In spite
of the underpowered small library size obtained in the
RNA-seq data, multiple genes could be found to have a
significant effect on RFI, based on their observed expres-
sion and their potential function in pathways like Chol-
esterol biosynthesis, Fatty acid metabolism, MAPK
signaling pathway, Glycerophospholipid metabolism, Me-
tabolism of xenobiotics by cytochrome P450 and PI3K-
Akt signaling pathway (Table 4). The diversity of path-
ways found in our results and other studies [19] reflect
many processes involved in RFI and the genetic com-
plexity of this trait.

Limitations of the study

This study has some limitations in the analysis of
gene expression (RNA-seq). The small library size ob-
tained from sequencing the RNA reduced the chance
of finding strong GSA for RFI in the transcriptome of
the animals. A pathway enrichment analysis from the
obtained GSA was not significant (for the Benjamini
multiple test) and was not included in this study be-
cause it could be affected by the low level of deep se-
quencing. However, we still consider our results
meaningful and they could be used to validate results
from the GWAS, overall offering more evidence and
a biological interpretation of their potential role in
determining genetic variation in RFI. The Angus pop-
ulations used for the genomic analysis came from a
commercial herd while the dataset used in the tran-
scriptomic analysis was from animals under divergent
selection lines for RFI. In addition, the animals were
tested for RFI at different ages in both datasets, 18
months and 13 months for the GWAS and transcrip-
tomic dataset, respectively. Therefore, due to these
differences, results in this study, obtained by combin-
ing gene expression results in RFI contrasting pheno-
types and results from genetic variants found to be
associated with phenotypic variation in RFI should be
interpreted with care. Nevertheless, our results en-
courage the use of various types of “omics” informa-
tion in the same population as a way to decipher the
genetic and genomic architecture of complex traits
and as a way to obtain a better biological interpret-
ation of the trait.
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Future implications

The approach followed in this study illustrated the bene-
fit of combining genomic information with gene expres-
sion to obtain an enriched overview of the genes
implicated in RFI. The genes identified in this study
could be used as a target for further functional studies,
to help further elucidate their role in other cattle breeds
or with different diets.

In future studies, the access to whole-genome se-
quence and larger datasets are desired to confirm and
refine the five suggestive QTL at BTA1, BTA6, BTA14,
BTA17, and BTA26. The use of sequence data and lar-
ger more diverse or multi-breed population could allevi-
ate the limitation due to linkage disequilibrium (LD),
where the genotypes of multiples SNPs would be corre-
lated with the causal variant. Furthermore, sequence in-
formation is more likely to uncover QTL in other
regions. Finally, combining information from both
GWAS and transcriptomic profiling could help to select
the SNPs that can contribute to an increased accuracy of
prediction of phenotype or breeding values for RFL

Conclusion

In this study, we investigated the genome-wide associ-
ation of SNPs with RFI in an Australian Angus beef cat-
tle population. We identified six QTL regions associated
with RFI (BTA1l, BTA6, BTA14, BTA17, BTA20 and
BTA26) reflecting the polygenic nature of this trait.
Promising candidate genes were identified around the
most significant SNPs in each QTL. We also revealed 15
genes in these QTL regions whose expression were sig-
nificantly associated with phenotypic and genetic differ-
ences in RFI (NEURLIB, CPEB4, RITAI, CCDC42B,
OAS2, RPL6, ERP29, ATP6VI1H, MRPLI15, MFSDI,
RARRES1, AICF, SGMSI1, PAPSS2 and PTEN). Our ap-
proach demonstrates that combining GWAS and RNA-
seq information improves the interpretation of GWAS
results and gives it a more biological connotation.

Methods

Data used for the GWAS

Animals and phenotypes

All phenotypic data were collected on 2190 Angus steers
from the Angus Sire Benchmarking Program (ASBP, also
known as the Angus Beef Information Nucleus) during a
feedlot testing period between 2013 and 2017. This struc-
tured dataset represented a progeny test of registered
Angus sires from herds located in New South Wales and
Victoria, Australia. All the procedures were managed ac-
cording to the welfare guidelines established by the Austra-
lian Animal Welfare Standards and guidelines for cattle
(Edition one 2013) approved by the University of New Eng-
land Animal Ethics Committee (Approval No. AEC12-
082). All steers, were born from fixed time Al in various
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herds and within each herd-year calves had a maximum
variation in age of 15days. The steers were moved from
pasture feeding into a feedlot at an average of 17 months of
age. Before entering the test period in the feedlot, these ani-
mals had an adjustment period of 21 days followed by a 70
d test period in the Tullimba research feedlot (30°20°S,
151°10°E, altitude 560 m) near Kingstown, NSW, Australia,
as described in [73] and after the test all the animals were
returned to industry owners. Daily records on feed intake
and fortnightly records of body weight were used to derive
average daily gain and metabolic mid-weight [1, 74] and
were fitted together with age in the following model:

Y; =P, + BL1ADG,; + 2MWT; + B3TestGroup;
+e; (1)

where Y; is the daily feed intake of animal i (kg/day), So
is the regression intercept, Pl is the partial regression
coefficient of feed intake on average daily gain (kg/day),
B2 corresponds to the partial regression coefficient of
feed intake on metabolic mid weight (kg®7%), B3 is the
partial regression coefficient of feed intake on the feed
test management group (defined as feedlot test pen
within herd of origin and year), and e; is the residual
error in feed intake of animal i, therefore defined as the
phenotype for residual feed intake (RFI). The mean and
standard deviation for RFI are shown in Table 6, with a
range in RFI from - 9.3 to 4.2 kg/day.

Genotypes

All 2190 steers with RFI phenotypes were genotyped using
various lower density SNP panels (Table 5). Their geno-
types were imputed to medium density (50k) and then to
high density (HD- 770K) as part of an imputation per-
formed on the wider Australian Angus population. The ref-
erence population for the 50 k imputation consisted of 11,
226 animals from the Angus Australia genotyped with a
number of 50 k arrays (see Reflmp50k in Table 5). The ref-
erence population for the high density imputation consisted
of 1069 animals, again from Angus Australia (See
ReflmpHD, Table 5). For each SNP chip listed in Table 5,
quality control (QC) was applied where only autosomal
SNPs and the SNPs with a call rate higher than a 0.6 Gene-
Call score were kept. Further QC was undertaken using
Plink v1.90b3.42 [75], filtering out those SNPs with minor
allele frequency (MAF) < 0.01, deviation from Hardy Wein-
berg equilibrium (P<10~ %), and those SNPs with more
than 5% missing genotypes. Only animals that had a valid
genotype on more than 95% of the SNPs were kept in the
analysis. The total number of animals and SNPs remaining
after quality control are shown in Table 5. The 50 k refer-
ence consisted of 39.7 k SNPs after QC and the merging of
50 k reference chips. Similarly, 587,437 SNPs remained after
QC for the HD reference chip. Imputation to 50 k and then
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Table 5 SNPs in each chip panel (SNPs after quality control)
and samples used in the imputation

SNP Chip Number of SNPs Number of samples
(after QC%)
Low density panel
GGP_8K 8753 (7569) 849 (325)
GGPLD-10K-V2.0 9323 (7636) 980 (424)
GGPLD-20K-V1.0 20,701 (14,062) 1189 (534)
GGPLD-20 K-V3.25 25,712 (18,786) 1138 (374)
GGPLD-26 K-V3.0 26,728 (18,187) 1344 (526)
GGPLD-30K-V4.0 30,865 (20,560) 1556 (1)
GGPLD-9K 8659 (6230) 574 (6)
Reflmp50k
LDMAX_SNPMap 56,955 (39,736) 3950
ZM2_SNPMap 60,911 (42,522) 778
GSTP_SNPMap 54,609 (39,706) 6673
ZOE-50K 54,001 (37,231) 231
ReflmpHD
GGPHD-770K 777,984 (587,437) 1069

In low density arrays only the samples indicated in parenthesis were
phenotyped for RFI. °QC: quality control

HD was undertaken using FImpute v2.2 [76]. The final
dataset consisted of 2190 phenotyped steers.

To ensure imputation accuracy was acceptable, a simple
cross validation was performed. One thousand animals
were extracted from the 50 k reference (Reflmp50k) popu-
lation, their genotypes were updated to only include the
low density SNP and they were subsequently imputed back
up to 50 k. The HD reference genotypes were evaluated by
extracting 100 animals and keeping only the SNPs corre-
sponding to the 50k panel and then imputed up to HD.
The accuracy of imputation was measured with the correl-
ation between the imputed genotypes and the true geno-
types. The imputation accuracy was also measured as
concordance which is the proportion of SNPs with match-
ing imputed and original genotypes. The average accuracy
of imputation measured as correlation and concordance
were 0.96 and 0.98, respectively, for low density imputed to
50 k; while a value of 0.99 was obtained for imputing from
50 k to high density.

Genome-wide association study

The GWAS for RFI was performed using GCTA v1.26.0
(Yang et al. 2011) fitting the genomic relationship matrix
(G) [77] in a univariate linear mixed model:

Vi = H+cg; + g+ ai + ey (2)
where y is the RFI phenotypic value, y is the mean, cg; is

the effect of contemporary group i, g; is a fixed effect of
the allele dosage at a single SNP; to contrast with fitting
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3 genotypes (i.e. a covariate representing the number of
“1” alleles), a is the regression coefficient for the allele
substitution effect, ay is the random additive genetic ef-
fect of animal k, and ejj is a random residual effect [73].
A total number of 98 contemporary groups (CG) were
formed by concatenating herd of origin, year of birth,
age, management group prior to the feed test, feed test
management group and birth type [78]. A matrix G with
genomic relationships among the steers was calculated
based on [77] and was fitted as a covariance matrix for
the additive genetic effects, i.e. var.(a) = Gafl, in order to
account for residual additive genetic effects as well as for
population structure effects and family relatedness. The
effect of individual SNPs was estimated each time using
the same estimated value for aﬁ. Therefore, model [2]
was run 587,437 times, once for each SNP.

To control false-positive associations, a Bonferroni cor-
rection was applied. The SNPs were considered significant
when its p-value <0.05/587,437 giving a threshold of
-logio(p) > 7. Additionally, we also used a lower threshold
(-logio(5e” %) > 4.3) to identify SNPs that were not statisti-
cally significant but that could be close to genes with a
biological function that could be related to RFL. QTL re-
gions were defined as the section of the genome that con-
tains significant SNP (-log;o(5e™°) > 4.3) extending for 1
Mb on either side of the significant SNPs.

Genomic inflation of the GWAS was calculated as the
median of the chi-squared test divided by the expected
median of the chi-square distribution expressed as
lambda (A). The variance explained by the significant
SNP as a proportion of genetic variance was calculated
as the percentage of:

20.0.a:2
PAFL ¢ 100%

a

where p and g (=1-p) are the allele frequencies for the i-
th SNP, o is the estimated additive effect of the i-th
SNP and o2 is the additive genetic variance.

Candidate genes within the QTL regions were further
investigated for their function. For the most significant
SNPs in each QTL region, we used the model [2] but
with the three genotypes for a SNP locus as a fixed class
variable in a univariate linear mixed model using MTG?2
v2.09 [79] in order to estimate both additive (a) and
dominance (d) effects at each SNP using the formulas
[80]:

(A4-BB)  AB-iA+ 5B
2 N 2

a =

where AA and BB are the estimated effects of the homo-

zygous genotypes, and AB is the effect of the heterozy-
gous genotype.
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Gene expression by RNA sequencing
Experimental design
The animals used for the gene expression section were
an independent dataset to the animals used in the
GWAS analysis. All the procedures involved in the
experiment were approved by the University of New
England Animal Ethics Committee (AEC 06/123,
AEC14-002 and AEC14-036) and New South Wales
Department of Primary Industries (NSW DPI) Animal
Research Authority (ORA09/015, ORA 13/16/004).
Three cohorts of animals were used for gene expres-
sion studies. All animals used for the gene expression
study came from the feed efficiency selection lines of
Angus cattle at the Agricultural Research Centre, Tran-
gie, NSW, Australia. Further details on the selection de-
sign can be found in Arthur, et al. [1]. The first set of
animals (A-bulls) consisted of 27 young bulls born in
2005 which belonged to approximately the third gener-
ation since the start of the divergent RFI selection lines
[11]. These A-bulls were selected from the highest and
lowest phenotypes for RFI out of a tested cohort of 90
young bulls. All these animals were reared with their
mothers on pasture, weaned at about 7 months of age,
and later were reared on grazing pasture till they
reached feedlot entry weight (13 months). The RFI test
was conducted for 70 days in the Tullimba test station
using an automated feeding system which delivers and
records individual animal feed intake. Based on the per-
formance in the RFI test, 30 animals with the lowest RFI
and 30 animals with the highest RFI were chosen out of
90 for collection of liver biopsies at the end of RFI test-
ing [11]. From those animals, only 27 animals were used
in this study for the gene expression analysis. The de-
tailed procedures of the liver biopsy were described in
[11] and animals were administered by appropriate pain
relief and post-operative care, as directed by the veterin-
ary surgeon. After 2 weeks of the biopsy, the animals
were returned back to Trangie Agricultural Research
Centre for breeding or used for other research projects.
The second set of animals were 47 young bulls (D-
bulls) which were born in 2008 and were progeny of A-
bulls. The D-bulls calves were reared with their mothers
on pasture till weaning (~ 230 day). After weaning, the
young D-bulls were reared on grazing pasture until they

Page 12 of 16

top 25 high RFI and bottom 22 low RFI young bulls
were selected to be tested for RFI at Trangie. The selec-
tion of top and bottom RFI groups were based on RFI_
EBV extracted from BREEDPLAN in May 2009. Tissue
biopsies were collected from the Semitendinosus muscle
at the end of the RFI test [81].

The third cohort of 25 steers (H-steers) and 27 heifers
(H-heifers) were one further generation down of the se-
lection line and were progeny of D-bulls and born in
2012. The male calves were castrated at 4 months of age.
The young male and female calves were reared with
their mothers on pasture until weaning (~ 230 day).
After weaning, 32 heifers and 32 steers were transferred
to the NSW DPI Agricultural Research and Advisory
Station (Glen Innes, NSW, Australia) and grown on na-
tive pastures until they reached feedlot entry weight of
approximately 400 kg BW (~ 560 days). Before the RFI
test, animals were given a 2 week period of adaptation to
the feedlot ration. The RFI was measured with an auto-
mated recording system for 70 days. During this period,
animals had ad libitum access to a pelleted diet which
75% grain, 10% sorghum hay, and 5% protein pellets,
plus monensin, vitamins, and mineral supplement. This
diet had an average energy content of 10.5M]
metabolizable energy (ME) per kilogram dry matter and
15 to 17% crude protein. Straw was provided at an aver-
age of 0.5kg per animal per day. The animals were
transferred to a respiration chamber facility at University
of New England with the same diet for RFI testing. Liver
tissue was collected by biopsies at the second week after
the end of RFI testing [11, 82]. In addition, peripheral
venous blood samples were extracted from the tail (coc-
cygeal) vein of cattle and it was directly placed into the
PAXgene Blood RNA Tubes (Qiagen, BD, cat. no.
762165). The collection tubes were gently inverted 10
times, stored at 4 °C, and transferred to — 20 °C for long
term storage.

Phenotypic traits

The average daily gain, net feed intake, average daily
feed intake and metabolic mid-test weight (MMWT)
were recorded for all the 126 animals. RFI was calculated
for each animal based on a linear regression model of
feed intake on metabolic mid-test live weight, ADG and

reached feedlot entry weight (around 13 months). The fitting contemporary groups as fixed effect [1]. The
Table 6 Number of samples used in the GWAS and GSA analyses and summary statistics for RFI

Dataset (analysis) N Mean SD Min Max
Genotyped Steers (GWAS) 2190 -2.11 1.66 -93 42
Bull liver (A-bulls: GSA) 27 0.16 0.99 -143 1.89
Bull muscle (D-bulls: GSA) 47 -0.02 0.96 -1.96 262
Heifers & Steers blood-liver (H-cohort: GSA) 52 -0.004 0.81 -1.84 187

SD: standard deviation, Min: minimum value, Max: maximum value, GSA: gene significantly associated, GWAS: genome-wide association studies
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Table 7 Alignment summary of reads to the B. taurus reference genome (UMD3.1 Ensembl)

Dataset Input reads Pair reads Mapped Mapping
Total Average Min Max Total Average Min Max rate
A_Liver 199,721,632 7,397,097 3,968,542 12,494,809 167,142,561 6,190,465 3,123,525 11,360,856 82%
D_Muscle 317,358,653 6,752,312 4,039,955 9,423,044 285,957,850 6,084,210 3,686,141 8,062,681 89%
H_Liver 579,132,020 10,724,667 5,173,045 11,536,836 529,820,963 10,188,865 9,397,174 10,820,527 91%
H_Blood 538,841,497 11,225,865 8,976,989 11,547,203 462,519,935 9,635,832 7,610,221 10,495,347 85%
mean and standard deviation for each dataset used in counts with the trimmed mean of M-values

gene expression analysis is shown in Table 6. The aver-
age RFI of the samples with RNA sequences were
centred close to zero and ranged from — 1.96 to 2.62.

RNA extraction and library preparation

Total RNA was isolated from liver and muscle tissue
using TRI Reagent (Ambion, Applied Biosystem, Aust-
ing, TX, USA) and PAXgene Blood RNA Kit (Qiagen
BD, cat. no. 762165) was used for blood samples accord-
ing to the manufacturer’s instructions. The quantity of
the RNA was determined by spectrophotometer Nano-
drop ND-1000 (Nanodrop Technologies) and by electro-
phoresis on 1% agarose gel. We assessed the integrity of
the RNA on an Angilent 2100 Bioanalyzer (Agilent
Technologies, CA, USA). All samples had an RNA integ-
rity number (RIN) larger than 7. RNA samples were
purified using RNeasy mini columns with DNase I (Qia-
gen). RNA-seq libraries were prepared using the TruSeq
RNA sample preparation kit (Illumina) according to the
manufacturer’s protocol. The RNA-seq libraries for A-
bulls and D-bulls used the polyadenylated fraction of
RNA from each animal by using modified protocol of
[llumina sample preparation for RNA-Seq protocol (Illu-
mina Inc) at AgriBio (Biosciences Research Centre, Bun-
doora, Victoria). The RNA-seq libraries for H-steers and
H-heifers were prepared by Beijing Genomics Institute
(Shengzhgen, China). RNA-seq libraries were sequenced
on the HiSeq2000 sequencer (Illumina) in a 101-cycle
paired end run. One hundred base paired end reads were
called with CASAVA v1.8 and output in fastq format.

RNA-seq analysis

The software FastQC v0.11.5 (http://www.bioinformat-
ics.babraham.ac.uk/projects/ fastqc/) was used to assess
the quality of the RNA sequences, while Trimmomatic
v0.36 [83] was used in the pre-processing step to remove
the low-quality reads and adaptors. The software
TopHat 2.0.5 was used with default parameters [84]
mapped the cleaned reads to the bovine reference gen-
ome (Bos taurus, Ensembl UMD3.1) and HTSeq v0.6.1
[85] was used to assemble the reads. The mapping sum-
mary for all datasets is shown in (Table 7). The following
steps where done in R software [86]. We filtered the
genes with no expression and normalized the gene

normalization (TMM) using the R package edgeR v3.18.1
[87].

Linear regressions for RFI on the log, copies per mil-
lion (Icpm) were performed separately for each dataset
(A-bulls_liver, bulls_muscle, H-heifers_blood, H-steers_
blood, H-heifers_liver, and H-steers_liver) to find the
genes significantly associated (GSA p <0.05) with RFI
from the set of genes that were within a 2 Mb window
from the significant QTL found in the GWAS analysis.
Additionally, we used expression from all the genes in
the genome to select with p <0.001 GSA genes (GSA .
0.001)- Based on the sign of the regression coefficient, a
positive value indicated that the gene is up-regulated
showing high expression, while a negative value indicates
less gene expression abundance (down-regulated) with
higher values for RFI (less efficient animals).
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