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Background: Cross-species analysis of protein-protein interaction (PPI) networks provides an effective means of
detecting conserved interaction patterns. Identifying such conserved substructures between PPI networks of different
species increases our understanding of the principles deriving evolution of cellular organizations and their functions
in a system level. In recent years, network alignment techniques have been applied to genome-scale PPI networks to
predict evolutionary conserved modules. Although a wide variety of network alignment algorithms have been
introduced, developing a scalable local network alignment algorithm with high accuracy is still challenging.

Results: We present a novel pairwise local network alignment algorithm, called LePrimAlign, to predict conserved
modules between PPl networks of three different species. The proposed algorithm exploits the results of a pairwise
global alignment algorithm with many-to-many node mapping. It also applies the concept of graph entropy to detect
initial cluster pairs from two networks. Finally, the initial clusters are expanded to increase the local alignment score
that is formulated by a combination of intra-network and inter-network scores. The performance comparison with
state-of-the-art approaches demonstrates that the proposed algorithm outperforms in terms of accuracy of identified

Conclusion: The proposed method produces local network alignment of higher accuracy in predicting conserved
modules even with large biological networks at a reduced computational cost.

Keywords: Network alignment, Local network alignment, PPI networks, Protein-protein interactions, Conserved

Background

The genome-wide study of proteins has considered the
whole set of relationships between them on a system level
as they form a complex network of interactions. A graph-
theoretic model is commonly used to represent a set of
protein-protein interactions (PPIs). A PPI network is a
graph G = (V,E) where V is a set of labeled nodes
representing proteins and E is a set of edges representing
interactions between proteins.
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Recent research in this area has focused on systematic
comparison of PPI networks of different organisms. This
type of computational analysis is called network align-
ment. The network alignment problem includes finding
the entire mapping of nodes and conserved edges between
the mapped node pairs within two or more networks.
This problem can be applied to PPI networks because
interactions between proteins are ideally conserved across
species. Identifying conserved interaction patterns pro-
vides a significant insight into the principles deriving
evolution of cellular organizations and their functions [1].

Network alignment is a computationally NP-hard
problem owing to NP-completeness of the underlying
subgraph isomorphism problem [2]. Hence, heuristic
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approaches for solving the network alignment problem
should be sought. Various network alignment algorithms
[3, 4] have been proposed to approximate solutions
heuristically. The existing algorithms can be classified into
pairwise and multiple network alignments according to
the number of networks to be aligned. Pairwise network
alignment aligns two networks, whereas multiple network
alignment aligns three or more networks simultaneously.

The network alignment algorithms can also be clas-
sified into local and global network alignments based
on the target region of interests. Global network align-
ment deals with aligning entire networks and finding the
maximal set of mapped node pairs. Local network align-
ment, on the other hand, searches for highly similar sub-
networks that likely represent conserved substructures.
From a biological perspective, global network alignment
seeks a comprehensive functional mapping of proteins
between species while local network alignment identifies
evolutionary conserved modules or protein complexes.
Sometimes, local alignment is considered as many-to-
many node mapping such that a node from one network
can be aligned to multiple nodes from the other network,
whereas global alignment as one-to-one node mapping
with pairing all nodes from the smaller network. However,
we have observed that some global alignment algorithms
[5-7] produce many-to-many node mapping and do not
connect all nodes from the smaller network.

One of the earliest global alignment algorithms IsoRank
[8] estimates the node correspondence using a modifica-
tion of the PageRank algorithm [9], where the basic idea
is that two proteins have high probability to be aligned
if their neighbors are matched well. IsoRankN [10] is
an extension of IsoRank to align multiple PPI networks
by using a spectral clustering method called PageRank-
Nibble [11]. Both IsoRank and IsoRankN are relatively
time consuming and require a large amount of memory
as the network size increases. SMETANA [5] and CUFID
[12] perform a Markov random walk in interconnected
networks to compute steady-state distribution. CUFID
applies a bipartite matching to obtain one-to-one node
mapping, whereas SMETANA allows many-to-many node
mapping. PrimAlign [7] models the interconnected PPI
network pair as a Markov chain that is iteratively tran-
sited until convergence. This model is combined with the
principles of PageRank and sparse computation. Several
recent global alignment algorithms such as MANGNA
[13], MAGNA++ [14], and SANA [15] use random search
algorithms to optimize an objective function. MAGNA
optimizes an edge conservation measure using a genetic
algorithm. MAGNA++ maximizes both edge conserva-
tion and node conservation measures. SANA optimizes
an edge conservation measure called the Symmetric Sub-
structure Score (S3) using simulated annealing. Mod-
uleAlign [16] computes an alignment score by combining
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the homology and topology scores, and then iteratively
selects the highest-scoring protein pairs by an optimal
bipartite matching. PROPER [17] employs the percolation
graph matching to align input networks using the network
structures and the seeds generated by sequence similar-
ities. Fuse [18] is a multiple global network alignment
algorithm that computes protein similarity scores using
the non-negative matrix tri-factorization method to pre-
dict associations between proteins whose homology and
functional similarity are supported by all networks.

PathBLAST [19], one of the earliest local network align-
ment tools, identifies conserved pathways by pairing inter-
actions between orthologous proteins. It takes a pathway
in a query, aligns it to a PPI network, and outputs all
matching paths from the network. NetworkBLAST [20]
is an upgraded version of PathBLAST which aligns two
networks by searching for highly similar subnetworks
and extends them in a greedy fashion. A recent pair-
wise local alignment method, AlignMCL [21] builds a
weighted alignment graph by merging two networks based
on orthologous protein pairs and weighting the edges
by reliability of alternative paths. Similar sub-networks
are identified by performing Markov Clustering in the
alignment graph. LocalAli [22] is another local network
alignment tool that can identify functionally conserved
modules in multiple networks. It constructs evolution his-
tory of the modules based on the maximum parsimony
evolutionary model and identifies the conserved mod-
ules which have been evolved from a common ancestral
module through a series of evolutionary events.

In this paper, we propose a new pairwise local network
alignment method called LePrimAlign - Local Entropy-
based PageRank-inspired Markovian Alignment which
uses graph-theoretic principles and the results of a many-
to-many global network alignment algorithm to identify
a set of conserved substructures between two PPI net-
works. To compare the performance of this approach with
state-of-the-art local network alignment methods such as
NetworkBLAST, AlignMCL and LocalAli, we have used
the human, yeast and fruit-fly PPI networks in a genomic
scale.

Result

LePrimAlign

The proposed pairwise local network alignment algo-
rithm, LePrimAlign, properly integrates a powerful global
alignment algorithm with the graph-theoretic concept
and the optimization process of local alignment by clus-
ter expansion to identify conserved modules. Figure 1
exhibits the flow chart showing the entire process of LeP-
rimAlign. The proposed algorithm performs PrimAlign as
preprocessing. According to the global alignment scores
of protein pairs between two networks, it selects the seed
node pairs and forms the pairs of initial clusters based
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Fig. 1 The overall flow diagram of LePrimAlign The proposed LePrimAlign algorithm takes two weighted PPI networks and BLAST scores of
inter-network protein pairs as input, implements global network alignment PrimAlign as preprocessing, normalizes the PrimAlign scores, and
iteratively performs four main steps for local network alignment: (1) seed node selection, (2) initial cluster formation, (3) cluster expansion, and (4)

on the concept of Graph Entropy. Each cluster pair is
expanded to optimize the local network alignment scores
in a combination of intra-network and inter-network
scores. The set of aligned cluster pairs is finally returned
by this algorithm as output. The theoretical details of
LePrimAlign will be described in the Method section.

Data acquisition

In this study, the PPI networks of human (Homo
sapiens), yeast (Saccharomyces cerevisiae) and fruit fly
(Drosophila melanogaster) were used to evaluate the
proposed approach as they are well-explored. The up-
to-date genome-scale PPI data have been downloaded
from BioGRID [23] and filtered for physical interac-
tions. The interacting proteins were paired with genes
that they are produced by, and maintained and treated
as gene-to-gene interactions. The PPI networks obtained
contain over 269,000 interactions for human with more
than 15,800 unique genes, over 88,000 interactions
for yeast with almost 5,800 unique genes, and over
60,000 interactions for fruit fly with more than 9,260
unique genes.

To weight the edges in each PPI network, we used
semantic similarity (SS). We assumed that the higher
semantic similarity two proteins are, the more confident
an interaction between them is. We used simGIC [24] to
measure the semantic similarity between proteins within
each PPI network. The ontology and its annotation files
were downloaded from the GO database [25].

The sequence similarity can be either BLAST bit-score
or BLAST e-value. We have used the data set bundled
with PrimAlign [7] for the BLAST bit-score and BLAST
e-value. This file contains the sequence similarity scores
over 55,000 human-yeast gene pairs, over 39,000 human-
fruit fly gene pairs, and around 8,800 yeast-fruit fly
gene pairs.

The protein complex data sets that have been deter-
mined by small-scale and large-scale experiments are
helpful for evaluating accuracy of the modules aligned by
local network alignment algorithms. A total of 2,576 dis-
tinct protein complexes for human were obtained from
CORUM [26] and PCDq [27]. For yeast, we used 734
protein complexes from CYC2008 [28]. For fruit fly, we
considered 556 protein complexes from the DPiM data
set [29].

Experimental setup
We have compared the performance of the proposed local
network alignment algorithm with NetworkBLAST [20],
AlignMCL [21], and LocalAli [22]. Since LocalAli is a mul-
tiple network alignment method and the others are pair-
wise network alignment methods, we have aligned only
two PPI networks at a time for LocalAli. For AlignMCL
and LePrimAlign, we have used -log of BLAST e-value for
sequence similarity while BLAST bit-scores were used for
NetworkBLAST and LocalAli.

The evaluation metrics described in the Method section
were used to compare the performance. LePrimAlign has
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three user-configurable parameters: the threshold 6 of
global alignment scores for selecting seed pairs as shown
in Fig. 2, the gap penalty B in Formula (12), and the local
alignment scoring parameter y in Formula (14). From our
experiments, we have observed that g is insensitive to pre-
diction accuracy and alignment quality. We thus set 8 to
a default value of 1.0 for all the tasks. We have imple-
mented LePrimAlign by changing the parameter values of
y and 0. The comprehensive alignment results are shown
in Additional Files 1, 2 and 3. We finally set y to 0.25
for all the tasks with any two PPI networks. The thresh-
old 6 was set to 1 for alignment between human and
yeast networks and between human and fruit fly net-
works. For the yeast and fruit fly pair, a very small number
of clusters were produced with 6 = 1 due to a smaller
number of candidate seed nodes than the other pairs of
PPI networks (i.e., a smaller number of known orthologs),
so we used a lower threshold & = 0.1 for this pair of
networks.

For NetworkBLAST, AlignMCL, and LocalAli, we have
used default parameter values. For NetworkBLAST, the
probability of an interaction within a complex was set to
0.9, and the e-value threshold for sequence similarity was
le —30. AlignMCL requires only one parameter, the infla-
tion parameter to implement Markov Clustering. We used
2.8 for this inflation parameter as default. LocalAli asks
to set up many parameter values. The first and second
impact factors of the evolutionary rate were set to 0.2 and
2.0, respectively. The score threshold of the sub-networks
to be qualified was 0.2 with the seed size of 2. The mini-
mal and maximal numbers of extension were set to 3 and
13, respectively.
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Comparison with known modules

Table 1 shows the numbers of clusters generated by
four local network alignment algorithms for three differ-
ent pairs of PPI networks. NetworkBLAST has delivered
unusual results. For large, complex networks such as the
human-yeast PPI network pair, NetworkBLAST produced
an extremely large number of clusters whereas it produced
a very small number of clusters for smaller networks such
as the yeast-fruit fly network pair. This indicates Network-
BLAST is very sensitive to topological complexity and the
amount of interconnections of input networks. However,
LePrimAlign produced relatively consistent numbers of
clusters for any pairs of PPI networks although these num-
bers are smaller than the numbers of clusters produced by
AlignMCL and LocalAli.

Table 1 also shows the average f-scores of the clus-
ters compared to known protein complexes. LePrimA-
lign and NetworkBLAST achieved higher average f-scores
for all the pairs of PPI networks than AlignMCL and
LocalAli. AlignMCL could generate a relatively large num-
ber of clusters but had lower accuracy of predicted pro-
tein complexes than NetworkBLAST and LePrimAlign.
LocalAli had more stable results with nearly the same
number of clusters and similar accuracy across all net-
work pairs. However, LocalAli had the lowest f-scores
among its competitors. LePrimAlign had higher accu-
racy than NetworkBLAST when aligning the human and
fruit fly PPI networks whereas NetworkBLAST was bet-
ter than LePrimAlign for the yeast and fruit fly networks.
In LePrimAlign, the threshold 6 value could be leveraged
for increasing the number of clusters or improving their
accuracy, as shown in Additional Files 1, 2 and 3. A high

Sglobal (Va1:Ve1) = 6

(@)

Fig. 2 A schematic view of (a) a match and (b) a gap between two clusters in different PPl networks In this example, 6 denotes the
PrimAlign score threshold to select the node pairs as seeds for local network alignment. A match represents an edge in one network directly
conserved in the other whereas a gap represents an edge in one network indirectly conserved in the other
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Table 1 Comparison of local network alignment results of three previous algorithms and the proposed method and their f-scores as

prediction accuracy of conserved protein complexes

Human-yeast network alignment

Human-fruit fly network alignment

Yeast-fruit fly network alignment

Num. of clusters f-score Num. of clusters f-score Num. of clusters f-score
Algorithms Human Yeast Human Yeast Human Fruitfly Human Fruitfly Yeast Fruitfly Yeast Fruitfly
NetworkBlast 1626 1695 0431 0428 1162 925 0348 0.174 70 65 0411 0315
AlignMCL 926 838 0.285 0285 683 681 0279 0.161 309 309 0279 0176
LocalAli 400 400 0.164 0.172 400 400 0.170 0.121 384 384 0.171 0.133
LePrimAlign 180 175 0418 0.441 201 179 0430 0.253 110 105 0.352 0.235

Three different pairs of PPI networks have been aligned: the human and yeast PPI network pair, the human and fruit fly PPl network pair, and the yeast and fruit fly PPI

network pair

value of 6 results in a small number of clusters but high
accuracy, whereas a low value of 0 causes a large number
of clusters but low accuracy.

Alignment quality

Table 2 shows the alignment quality comparison of four
local alignment algorithms for three different pairs of PPI
networks in terms of the average inter-species semantic
similarity (ISS), the average number of conserved edges
(CE), and the average number of functionally consistent
conserved edges (F-CE). These evaluation metrics are
described in detail in the Method section. Overall, LePri-
mAlign has the highest ISS. However, NetworkBLAST has
more conserved edges and more functionally consistent
conserved edges than LePrimAlign when aligning human-
yeast PPI networks although LePrimAlign has more when
aligning the other pairs of PPI networks.

In our careful observation, most of the resultant clus-
ters aligned by NetworkBLAST are highly overlapping. In
other words, they share a large number of proteins. And,
a significant amount of conserved edges occur in most of
these overlaps of clusters. For fair comparison, we have
removed highly overlapping clusters and compared again
the number of conserved edges. To identify the degree of
cluster overlaps, we have used the Jaccard index as the
ratio of common proteins out of all distinct proteins in
the clusters. Any clusters having the Jaccard index higher
than 0.4 are considered highly overlapping. Among such
clusters, only the one with the largest size is considered

in the final evaluation. On removing these highly overlap-
ping clusters, the number of clusters and the number of
conserved edges that were produced by NetworkBLAST
reduced significantly. However, the effects on the other
algorithms were not significant. As a result, LePrimAlign
has larger numbers of conserved edges and functionally
consistent conserved edges than NetworkBLAST for all
the experiments as shown in Table 3.

Runtime evaluation

To evaluate the runtime performance, we executed each
individual algorithm with default parameters on an
Intel(R) Core(TM) i5-7200U CPU with 2.50 GHz and 8
GB RAM. As shown in Table 4, AlignMCL and LocalAli
were faster than the other algorithms. However, their
performance in terms of accuracy and alignment qual-
ity was lower. The runtime of NetworkBLAST was the
worst among the four algorithms. When aligning larger
networks such as human and yeast PPI networks, Net-
workBLAST ran for almost a day to return the final result.
LePrimAlign, on the other hand, generated the result in
approximately one hour with even better accuracy.

The runtime of LePrimAlign depends on the global net-
work alignment score threshold 0, i.e., the number of
aligned cluster pairs. For the results in Table 4, we used 0
of 1 for aligning human-yeast PPI networks and human-
fly PPI networks and 0.1 for aligning yeast-fly PPI net-
works. However, as a lower value of 6 is used, its runtime
decreases rapidly.

Table 2 Comparison of local network alignment quality of three previous algorithms and the proposed method in terms of the
average inter-species semantic similarity (ISS), the average number of conserved edges (CE), and the average number of functionally

consistent conserved edges (F-CE)

Human-yeast network alignment

Human-fruit fly network alignment

Yeast-fruit fly network alignment

Algorithms ISS CE F-CE ISS CE F-CE ISS CE F-CE
NetworkBlast 0.364 30461 26.659 0177 16.301 10470 0.242 5.845 5.634
AlignMCL 0.292 2.984 2459 0.144 0.713 0492 0.185 0.280 0.241
LocalAli 0.117 2375 1.845 0.066 0.980 0.625 0.104 0.740 0.526
LePrimAlign 0.373 17.944 15.872 0.198 22.787 17470 0.235 13.884 13.661
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Table 3 Comparison of local network alignment results and alignment quality, the average numbers of conserved edges (CE) and
functionally consistent conserved edges (F-CE), after removing highly overlapping clusters

Human-yeast network alignment

Human-fruit fly network alignment

Yeast-fruit fly network alignment

Num. of clusters

Num. of clusters

Num. of clusters

Algorithms F-CE CE F-CE CE F-CE
Human  Yeast Human  Fruitfly Yeast  Fruitfly

NetworkBlast 272 289 15.493 13.768 164 158 12.408 8.663 35 34 4.278 4.056

AlignMCL 826 823 3.025 2493 681 679 3.025 2493 307 307 0.280 0.244

LocalAli 400 400 2375 1.845 400 400 0.980 0.625 384 384 0.740 0.526

LePrimAlign 161 160 17.469 15.216 201 179 22.787 17.470 110 105 13.884 13.661

Validation of seed selection

The proposed approach is a mixture of network alignment
and graph clustering techniques. The graph clustering
that was adopted in this approach follows the process
of selecting seeds and expanding them to detect locally
optimized clusters which match biologically significant
functional modules. Such graph clustering process can
have the best performance when the selected seed nodes
are functionally core proteins in a PPI network.

We evaluated functional essentiality of the seed nodes
mapped between networks, which were selected by the
proposed algorithm. We used the sets of functionally
essential genes of yeast from the DEG [30] and MIPS [31]
databases. These genes have been confirmed by gene dis-
ruption experiments. We measured (1) the ratio of essen-
tial genes that were selected as seed nodes in LePrimAlign
(called a true positive rate). This result was compared
to (2) the ratio of essential genes to a set of intercon-
nected genes between networks in the original input data
(considered putative orthologs). For fair comparison, we
randomly selected the same number of interconnected
genes as the seed nodes in LePrimAlign. The essentiality
of the seed nodes was also compared to (3) the ratio of
essential genes to a set of nodes randomly selected in the
entire PPI network. Same to above, we selected the same
number of nodes as the seed nodes in LePrimAlign.

Table 5 shows the three evaluation results described
above with the two different sets of essential genes of
yeast. The ratios of essential genes to the randomly
selected nodes in the entire yeast PPI network were
30% and 28%. When we considered only the yeast genes

Table 4 Runtime comparison in seconds

interconnected with genes in the other species by high
sequence similarity (i.e., the genes interconnected before
preprocessing of LePrimAlign), the ratios of essential
genes increased to 44% and 42%. When we used only
the yeast genes that were mapped by global alignment
scores greater than 6 after PrimAlign implementation
(i.e., the seed nodes in LePrimAlign after preprocess-
ing), the ratios of essential genes even more increased to
59% and 57%. These results justify that the preprocessing
step using the global alignment would enhance func-
tional module prediction accuracy of the proposed local
alignment.

Discussion

Our experiments have demonstrated that the proposed
LePrimAlign algorithm predicts conserved protein com-
plexes more accurately and generates higher-quality align-
ment for any PPI network pairs than three prevalent
local network alignment algorithms. Although Network-
BLAST produces accurate clusters, it has two major draw-
backs. First, NetworkBLAST is not scalable with very
large networks. When aligning genome-wide PPI net-
works of human and yeast, it ran over 24 hours to receive
a complete result. Apart from this computational issue,
NetworkBLAST produces a large number of highly over-
lapping clusters. Hence, additional filtering is required on
the output set. AlignMCL and LocalAli are very efficient
in terms of runtime; however, their prediction of pro-
tein complexes is inaccurate. Their average inter-species
semantic similarity between aligned clusters is also com-
paratively low.

Human-yeast networks

Human-fly networks Yeast-fly networks

NetworkBLAST 93321
AlignMCL 975
LocalAli 193
LePrimAlign 4101

12728 567
325 34

206 112
2522 830

For the proposed method LePrimAlign, the PrimAlign score threshold 6 of 1 was used for aligning human-yeast PPl networks and human-fly PPI networks and 0.1 was used

for aligning yeast-fly PPl networks



Maskey and Cho BMC Genomics 2019, 20(Suppl 9):964

Page 7 of 12

Table 5 The ratios of essential genes to the seed nodes selected in the proposed local network alignment (after preprocessing), the
ratio of essential genes to the genes interconnected between networks (before preprocessing), and the ratio of essential genes to

randomly selected nodes in a PPl network

essential gene seed nodes selected

interconnected nodes

random nodes in a network

data set after preprocessing before preprocessing
DEG data set 0.586 0.445 0.305
MIPS data set 0.566 0420 0.278

The sets of essential genes were obtained from DEG and MIPS

LePrimAlign, on the other hand, generates higher-
quality local network alignment at a reduced computa-
tional cost. This algorithm requires several parameters
that a user needs to specify: the threshold of global align-
ment scores 6, the gap penalty 8, and the scoring param-
eter y. Out of these parameters, the number of aligned
clusters, prediction accuracy, and runtime mostly depend
on 6. Similar to PrimAlign, a higher value of 6 (e.g., 6 >
1.5) results in higher accuracy but fewer clusters. A higher
threshold is likely to miss some correct protein complex
alignments (i.e., more false negatives). On the other hand,
a lower value of 6 (e.g., & < 0.5) is likely to produce a
large number of clusters with relatively lower accuracy,
selecting some incorrect protein complex alignments (i.e.,
more false positives). The large number of clusters gener-
ated also means longer running time. The 6 value of 0.5 on
large networks such as the human-yeast PPI network pair
can take up to 100 minutes for achieving a complete local
alignment result.

Although LePrimAlign outperforms the previous local
network alignment algorithms, all the methods have rel-
atively low accuracy in protein complex prediction. As
shown in Table 1, all the f-scores achieved in our exper-
iment are less than 0.5. The low f-scores were caused by
very low precision. The cogent reason for such low pre-
cision would be that the ground-truth data sets include a
large amount of false negatives, i.e., actual protein com-
plexes that do not exist in the ground-truth data sets.
As ground-truth, we used 734 yeast protein complexes,
2,576 human protein complexes, and 556 fruit fly pro-
tein complexes, which were obtained from the largest
databases or were combined from multiple databases.
However, we still do not expect that these ground-
truth data sets have complete coverage of actual protein
complexes.

Although the local network alignment algorithms show
low f-scores in protein complex prediction in our experi-
ment, they still have higher accuracy than graph clustering
algorithms to predict protein complexes from a single
PPI network. For this comparison, we tested two graph
clustering algorithms, the Graph-Entropy algorithm [32]
which is based on a similar technique to LePrimAlign
and the Markov Clustering algorithm (MCL) [33] which
is the most popular and applied to the previous network
alignment algorithm AlignMCL. We used the same PPI
networks of human, yeast and fruit fly, and the same
ground-truth data sets of protein complexes that were
used for our evaluation of local network alignment algo-
rithms. Table 6 shows the f-scores of these graph cluster-
ing algorithms on each PPI network. As compared to the
f-scores in Table 1, it is apparent that LePrimAlign has
higher accuracy than the selected single-graph clustering
methods.

Conclusion
Local network alignment algorithms for biological net-
works aim to identify pairs of conserved modules. Iden-
tifying such modules helps understanding the principles
deriving evolution in a system level. Since network align-
ment identifies a comprehensive functional mapping of
proteins between species, it also provides an efficient way
of predicting functions of unknown proteins and com-
pleting functional annotations especially in less-studied
species. However, because it is a computationally NP-hard
problem, this task should be performed using heuristics
to make scalable for very large, genome-wide biological
networks.

In this paper, we have presented a novel pairwise local
network alignment algorithm based on the ideas of the
global network alignment PrimAlign, the entropy-based

Table 6 The single-graph clustering results and their f-scores in protein complex prediction by two graph clustering algorithms

human network

yeast network fruit fly network

algorithms num. of clusters f-scores num. of clusters f-scores num. of clusters f-scores
Graph-Entropy 1061 0211 223 0.170 1592 0.139
MCL 2351 0.220 580 0372 1156 0.184

These algorithms had lower f-scores than the proposed local network alignment algorithm LePrimAlign when compared to the f-scores in Table 1
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graph clustering, and optimizing the local alignment score
in a combination of intra-network and inter-network
scores. The proposed method outperformed the existing
algorithms in terms of the accuracy of predicted com-
plexes and the alignment quality. Compared to some
recent local network alignment algorithms such as Align-
MCL and LocalAli, only one limitation of LePrimAlign
might be the runtime on extremely large networks. It
takes up 100 minutes for the genome-wide PPI networks
of human and yeast with the threshold 6 of 0.5. The
current implementation of LePrimAlign runs on a single
thread only. We can improve the runtime performance by
processing the seed node pairs on multiple threads in a
parallel manner because the step of initial cluster forma-
tion and cluster expansion for each pair of seed nodes is
independent of each other.

Method

Graph entropy

Graph Entropy is a metric based on information the-
ory to assess modularity of a graph [32]. Let us consider
an undirected graph G(V,E) that is decomposed into a
set of clusters. A cluster is considered an induced sub-
graph C(V¢,Ec) on G that has dense intra-connections
and sparse interconnections. Given a cluster C(V¢, Ec),
an inner link of a node v is defined as the edge from v to
the node in V¢ and an outer link of v is defined as the
edge from v to the node not in Vc. If G is an unweighted
graph, then we can define the probability of v having inner
links as:

[Ve NN©)|
i = 1
pi(v) N (1)

where N (v) is the set of neighboring nodes of v and [N (v)|
is the total number of nodes in N(v). If G is a weighted
graph, we can define the probability of v having inner
links as:

Y wv,v)

veeVe

(V) =
pilv Z

VeN(®)

()

w, V)

where w(v,V) is the weight of the edge between v
and V. The probability of v having outer links is then
computed by

Po(v) =1—pi(v) 3)
Given a cluster C(V¢, Ec), we can define the node entropy

e(v) based on the probability distribution of its inner links
and outer links as:

e(v) = —p;(v) log, pi(v) — po(v) log, po(v) (4)
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The entropy of graph G(V,E) is then computed by the
sum of the entropy of all the nodes in G.

e(G) = Z e(v) (5)

veV

A graph with lower graph entropy indicates that the nodes
inside the current cluster have more inner links and less
outer links, and the nodes outside the cluster have more
outer links and less inner links.

PrimAlign

PrimAlign - PageRank-Inspired Markovian Alignment [7]
is a pairwise global network alignment algorithm for
many-to-many node mapping. It was built upon the idea
of modeling two interconnected networks as a Markov
chain and combining this model with the basic principles
of the original PageRank algorithm and sparse computa-
tion.

As input, PrimAlign takes two weighted PPI networks
G1 and Gy to be aligned and a list of sequence similar-
ity scores of protein pairs between the networks. Edge
weights in each PPI network represent the confidence
of the interactions. A transition matrix T is constructed
where each element of the matrix is either an edge weight
within each network or a weighted sequence similarity
score between the networks. The matrix is normalized
such that each row sums to 1.

T= TGl—>G1 TG]—)GZ (6)
TGz—)Gl TG2—>G2

where TG, G, and Tg,-.G, are the partial matrices for
transitions within each network built from edge weights.
TG,—a, and Tg,-,G, are the partial matrices for transi-
tions between the networks built from weighted sequence
similarity scores.

Once the transition matrix is constructed, the PageRank
algorithm is performed iteratively to calculate the station-
ary distribution of nodes. In each iteration, the probability
distribution is updated using Formulas (7) and (8) until
convergence.

P =apT — @p¥g+1- )" 7)
o = 2 (®)
g

where « is a damping factor; g is the column vector for
each row of T: 1 if the row has all Os and 0 otherwise;
u is the row vector of 1s; p® is the state probability
distribution vector at step t.

For each node pair, v; and v;, between two networks,
G and Gy, the global alignment score Sgiopai(v1,v2) is cal-
culated using the traversal probabilities as shown below.
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TG1—>G2[ V1, VZ]

Seiobal(V1, V2) = (P(V1)
glona 1TG,—G,[v1,1:ng,] 1

TG,—G,[v1,v2] )
” TG2~>G1 [ V2, 1: nG1] ”1

+p(2)
)

where ng, and ng, are the total number of nodes in G;
and G respectively, and n = ng, + ng,.

LePrimAlign

LePrimAlign - Local Entropy-Based PrimAlign is the
newly proposed pairwise local network alignment algo-
rithm. As shown in Fig. 1, this algorithm takes the results
of PrimAlign and applies local search for optimal con-
served modules based on a new scoring scheme.

Input

The expected inputs of this algorithm are similar to Pri-
mAlign [7]. It requires three input files. The first two files
are the weighted PPI networks of two species that are to be
aligned. Edge weights in each PPI network represent the
confidence of the interactions. For an edge weight in our
experiments, we computed the semantic similarity score
of the interacting proteins by simGIC. The third file con-
tains sequence similarity scores such as -log of BLAST
e-value between proteins from different networks.

Preprocessing

The global network alignment algorithm PrimAlign is per-
formed as preprocessing. The new scores of inter-network
node pairs are calculated by stationary-distributed transi-
tion probabilities. We finally extract the transition prob-
abilities of all connected node pairs between two PPI
networks.

Score normalization

The initial step of the main process is to normalize the
PrimAlign scores such that they strictly lie between 0 and
1, inclusive. Since a few scores are very high (i.e., greater
than 10) but majority are low (i.e., less than 1), we used log
normalization as follows:

Snorm(V1, v2) = logb(l + Sglobal("lx v2)) (10)
where
b= |—1 + max Sglohal(Vh Vj)-| (11)

vi€G,v€Gy

Initial clusters formation

The next step is to form an initial cluster on each net-
work. After preprocessing, each pair of mapped proteins
is selected as seed nodes iteratively in descending order of
their global network alignment scores until the score of a
pair falls below a threshold 6. If both seed nodes in two
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PPI networks are visited, then we pick the next pair of seed
nodes.

We have used the same process as entropy-based graph
clustering [32] for initial cluster formation. For each of
the seed nodes, an initial cluster is formed by adding the
seed node and all its neighbors. Then a neighbor with the
highest weighted degree is removed from the initial clus-
ter only if graph entropy decreases. We perform this task
iteratively in decreasing order of weighted degree until
all neighbors are processed. We finally obtain an initial
cluster having the lowest graph entropy in each network.

Clusters expansion

In this step, we expand the initial clusters to generate
putative conserved modules. At first, we calculate the
alignment score between the two initial clusters. The
alignment score is a linear combination of two different
scoring metrics, namely (a) an intra-network score and (b)
an inter-network score. For the intra-network score, we
define a match and a gap for an edge pair between two
clusters as shown in Fig. 2. A match is the case when an
edge in the first cluster is directly conserved in the sec-
ond cluster as shown in Fig. 2(a). A gap is the case when
an edge in the first cluster is indirectly conserved with an
unaligned node (i.e., the node vps in Fig. 2(b)) between
two aligned nodes in the second cluster. After identifying
the edges with match or gap between two clusters C; and
C,, we calculate the intra-network score of C; as:

1
Sintm(cb CZ) = 5 Z

|E1]
(vi,vj)€EmatchCEy

+8 Y

(vi,vj)EgapCEr

w(vi, vj)

w(vi, vj)

where Ej is the set of edges in Cj, |E;| is the size of Ej,
w(v;,v)) is the weight of the edge (v;,vj) € E1, and B isa
parameter to penalize gaps where 0 < 8 < 1.

The inter-network score is calculated by averaging the
best normalized global alignment scores of the nodes in
the first cluster that are aligned to any nodes in the second
cluster. The normalized global alignment scores used here
include the scores of all interconnected node pairs with-
out any threshold. This inter-network score of C; can be
formulated as:

1

Sinter(C1, o) = | |
1

E max Syorm (Vi, Vj) (13)
V}'ECZ
V,’ECl

where V7 is the set of nodes in C; and | V1] is the size of V7.
The final local network alignment score of C; is then a lin-
ear combination of the intra-network and inter-network
scores.
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S10cai(C1, C2) = ¥ Sinter(C1, C2) + (1 — ¥)Singra(C1, C3)
(14)

where y is a scoring parameter in the range of 0 < y <
1. It controls the contribution of intra-network and inter-
network scores.

We calculate two initial local network alignment scores,
St0cai(C1, C2) and Speq1(Ca, C1), between the aligned clus-
ters C; and Cy. Then, we iteratively add the nodes on
the outer boundary to each cluster if this node addition
increases the score. The outer boundary nodes represent
the nodes outside the cluster which have at least one link
to any node inside the cluster. The iterative node addi-
tion can be done in descending order of node degree until
both clusters cannot expand further. The nodes are added
simultaneously to each of the aligned clusters to score
S10cai(C1, C2) and Sjy.4(Cs, C1). We have considered that
an aligned cluster should have at least two proteins. If the
sizes of both clusters aligned are greater than one, the
aligned cluster pair are added to the output set, and all
nodes in these clusters are marked as visited. Then, we
select another pair of seed nodes that are not visited and
repeat the steps of initial cluster formation and cluster
expansion until all seed node pairs within the threshold
0 are selected. If at least one of the aligned clusters has
a final score less than 0.02, we have discarded the pair
in order to prevent formation of large and uneven sized
clusters.

Output

Two output files are generated by the proposed algorithm,
one for each PPI network. Each row in these files rep-
resents a pair of putative conserved clusters. Both files
contain the same number of rows; two aligned clusters are
in the same row of the two output files.

Evaluation metrics

Comparison with known modules

We have evaluated how well the solutions provided by the
local network alignment algorithms match known protein
complexes that have been confirmed by various experi-
ments. We have used f-scores for this evaluation. Suppose
we compare an output cluster C generated by a local net-
work alignment algorithm to a known protein complex P;.
Recall p (also called a true positive rate or sensitivity) is
the ratio of common proteins between C and P; to the
number of proteins in P;.

CNP
_lcnpy 5
1P
Precision 7 (also called a positive predictive value) is the
ratio of common proteins between C and P; to the number
of proteins in C.
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|C NP

The f-score is then the harmonic mean of recall and
precision.

2w p
T+p

f-score = (17)
The f-score ranges in the interval [0, 1], with 1 corre-
sponding to perfect prediction. This measure makes a
direct comparison between an output cluster and a known
protein complex without any bias towards cluster size. For
each output cluster, the best match to a protein complex
was obtained in regard to its f-score. The average f-score
of the best matches across all output clusters was used to
determine accuracy of the local network alignment result.

Inter-species semantic similarity

Semantic similarity measures can quantify the functional
similarity between genes or gene products by comparing
the ontology terms that annotate them [34]. Over the last
decade, a wide range of semantic similarity measures have
been introduced [35-37]. Most of these methods have
been tested using GO and its annotation data sets [25].

A pair of aligned clusters are expected to have simi-
lar functions as conserved modules and hence they are
likely to have high semantic similarity. As a measure of
alignment quality, we have used inter-species semantic
similarity. Let us consider a pair of aligned clusters C;
and C; of two different species. Then, the inter-species
semantic similarity (ISS) between C; and Cj is defined as:

> > S8, vp)

vi€CrvjeCy

[C1|Cal

ISS(Cy, Cy) = (18)
where SS(v;,v;) is the semantic similarity between pro-
teins v; and vj, and |C1| and |C;| are the numbers of
proteins in C; and Cj, respectively. The inter-species
semantic similarity ranges in the interval [0,1], with 1
corresponding to the highest functional similarity.

Among a variety of semantic similarity measures, we
have used simGIC [24] as it has been demonstrated to be
one of the most efficient and accurate methods to estimate
functional similarity between two proteins. The simGIC
scores also range between 0 and 1. The overall align-
ment quality of a local network alignment algorithm was
determined by the average of the inter-species semantic
similarity of all aligned cluster pairs.

Numbers of conserved edges and functionally consistent
conserved edges

A conserved edge (CE) is defined as an edge e in one
network that is directly aligned to an edge ¢ in the
other network where the two proteins linked by e have
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high sequence similarity (i.e., orthologs) with the two
proteins linked by €, respectively. The larger number
of conserved edges between aligned clusters indicates
higher accuracy in predicting conserved modules. If an
edge in one network is conserved with more than one
edge in the other network, then they are counted as dis-
tinct conserved edges. The average number of conserved
edges across all aligned cluster pairs was used to eval-
uate the alignment quality of local network alignment

algorithms.

We have also measured the average number of func-
tionally consistent conserved edges for further evaluation
of alignment quality. A functionally consistent conserved
edge (F-CE) is defined as a conserved edge e in one net-
work that is aligned to an edge ¢’ in the other network
where the two proteins linked by e have high sequence
similarity and high semantic similarity (SS) with the two
proteins linked by ¢/, respectively. As the high seman-
tic similarity condition, we have considered the simGIC

scores greater than 0.2.
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