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Abstract

Background: Soybean cyst nematode (SCN), Heterodera glycines Ichinohe, has been one of the most devastating
pathogens affecting soybean production. In the United States alone, SCN damage accounted for more than $1
billion loss annually. With a narrow genetic background of the currently available SCN-resistant commercial cultivars,
high risk of resistance breakdown can occur. The objectives of this study were to conduct a genome-wide association
study (GWAS) to identify QTL, SNP markers, and candidate genes associated with soybean leaf chlorophyll content
tolerance to SCN infection, and to carry out a genomic selection (GS) study for the chlorophyll content tolerance.

Results: A total of 172 soybean genotypes were evaluated for the effect of SCN HG Type 1.2.3.5.6.7 (race 4) on soybean
leaf chlorophyll. The soybean lines were genotyped using a total of 4089 filtered and high-quality SNPs. Results
showed that (1) a large variation in SCN tolerance based on leaf chlorophyll content indices (CCI); (2) a total of 22, 14,
and 16 SNPs associated with CCI of non-SCN-infected plants, SCN-infected plants, and reduction of CCI SCN,
respectively; (3) a new locus of chlorophyll content tolerance to SCN mapped on chromosome 3; (4) candidate
genes encoding for Leucine-rich repeat protein, plant hormone signaling molecules, and biomolecule transporters; and
(5) an average GS accuracy ranging from 0.31 to 0.46 with all SNPs and varying from 0.55 to 0.76 when GWAS-derived
SNP markers were used across five models. This study demonstrated the potential of using genome-wide selection to
breed chlorophyll-content-tolerant soybean for managing SCN.

Conclusions: In this study, soybean accessions with higher CCI under SCN infestation, and molecular markers
associated with chlorophyll content related to SCN were identified. In addition, a total of 15 candidate genes
associated with chlorophyll content tolerance to SCN in soybean were also identified. These candidate genes
will lead to a better understanding of the molecular mechanisms that control chlorophyll content tolerance
to SCN in soybean. Genomic selection analysis of chlorophyll content tolerance to SCN showed that using
significant SNPs obtained from GWAS could provide better GS accuracy.

Keywords: Genome-wide association study (GWAS), Soybean cyst nematode (SCN), Leaf chlorophyll content,
Single nucleotide polymorphism (SNP), Genomic selection (GS)
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Key message
To the best of our knowledge, this is the first report of
QTL associated with chlorophyll content tolerance to
soybean cyst nematode (SCN) in soybean.

Background
Soybean [Glycine max (L.) Merr.] is one of the most im-
portant legumes worldwide by providing oil and being a
source of vegetable protein. Developing soybean-derived
biofuel has been recently increasing, with an estimated
value exceeding $35 billion in the United States (www.
soystats.com). Soybean cyst nematode (SCN), Heterodera
glycines Ichinohe, is an important pest with total annual
yield losses about $1.5 billion in the U.S. alone [1]. The
SCN is an obligate endoparasite, which feeds on soybean
roots, depletes carbon of soybean plants and results in
yield losses [2]. One pathway of SCN damage to soybean
is induction or enhancement of nutritional deficiency of
soybean such as iron, potassium, and/or nitrogen defi-
ciencies that result in chlorophyll content reduction or
in severe cases the typical chlorosis symptom [3, 4].
Iron-deficiency chlorosis (IDC) of soybean, in particular,
is common in the North Central region, the major soy-
bean production region in the USA. It occurs in high pH
soil, but many biotic and abiotic factors affect its occur-
rence [5–8]. The SCN is present in most soybean fields
in the region, and high pH also favors reproduction of
SCN and its damage to soybean plants [9]. Therefore
managing SCN and nutritional deficiencies is important
for soybean productivity in many fields in the North
Central USA and some other regions in the world.
Use of SCN-resistant soybean cultivars and crop rota-

tion involving a non-host crop is the best way to manage
SCN [10, 11]. Development of new SCN-resistant soy-
bean cultivars requires a better understanding of the
genetic mechanisms underlying SCN resistance. To date,
at least 216 SCN-resistant QTL have been reported
(www.soybase.org). A large number of those QTL have
not been fully investigated [12]. Among the QTL confer-
ring resistance to SCN, two loci, rhg1 and Rhg4, which
are located on chromosomes 18 and 8, respectively, have
been commonly used to deploy SCN resistance in soy-
bean germplasm [13]. Both rhg1 and Rhg4 are required
in the soybean cultivar ‘Forest’ to exhibit resistance to
SCN, with Rhg4 being dominant [14]. This resistance
has been known as Peking-type resistance because the
source of resistance was from Peking. In contrast, the re-
sistance in cultivars with PI 88788 source requires only
rhg1, and the resistance is known as PI 88788-type [15].
Some studies of the genetic mechanism between the

two aforementioned SCN-resistant loci have been re-
ported. A gene mapped at the Rhg4 locus and conferring
SCN resistance has been cloned [16]. This gene encodes
for a serine hydroxymethyltransferase [16]. The SCN-

resistant gene within the Rhg4 locus was derived from
an artificial selection occurring during soybean domesti-
cation [17]. Resistance to SCN conferred by the rhg1
locus has been associated to copy number variation and
DNA methylation, which can enhance the expression of
SCN resistance genes within that locus [18]. Three genes
in the rhg 1 locus encoding an amino acid transporter,
an α-SNAP protein, a WI12 (wound-inducible domain)
protein contribute to the SCN resistance [19, 20].
The utilization of molecular markers through

marker-assisted selection (MAS) in soybean breeding
programs has been proven to accelerate the develop-
ment of disease-resistant cultivars [21]. Recently, tools
such as genome-wide association mapping (GWAS)
and genomic selection (GS) have increasingly become
popular in efforts towards uncovering the genetic
basis of traits of interest in agriculture and identifying
important new loci. GWAS has been used to identify
new markers and loci associated with resistance to
SCN. A total of 6 SSR markers associated with SCN
resistance were identified in a set of 159 soybean
lines [22]. GWAS was conducted on a total of 282
soybean genotypes to identify SNP markers associated
with resistance to SCN HG type 0 [12]. Out of the
1536 SNPs used, a total of 7 SNP markers were asso-
ciated with SCN resistance. Most of those significant
SNP markers were located in the rhg1 locus. In
addition, two genes, FGAM1 and Glyma18g46201,
were located in the vicinity of two significant SNPs.
A total of 19 SNP markers were reported to be asso-
ciated with resistance to SCN HG type 0 and HG
type 1.2.3.5.7 in an association panel consisting of
440 soybean genotypes, of which, three were mapped
to loci that have not yet been reported [23]. A total
of 553 soybean genotypes were evaluated for resist-
ance to SCN HG type 0 and GWAS allowed for the
discovery of 8 new loci associated with SCN on this
association panel [24].
Genomic selection has been frequently used to achieve

faster genetic gain in plant breeding [25]. Genomic se-
lection has often been proven to have superior features
over the traditional MAS when dealing with complex
traits [12]. In the earliest genomic selection study on re-
sistance to SCN [12], genomic selection accuracy for the
SCN resistance was in the range of 0.59 to 0.67.
The objectives of this study were (i) to conduct a

genome-wide association study to identify QTL asso-
ciated with leaf chlorophyll content in soybean in
SCN infested and non-infested soils, and the QTL as-
sociated with reduction of chlorophyll content by
SCN; (ii) identify SNP markers and candidate genes
associated with the traits; (iii) to carry out a genomic
selection study for tolerance of soybean chlorophyll
content to SCN infection.

Ravelombola et al. BMC Genomics          (2019) 20:904 Page 2 of 18

http://www.soystats.com
http://www.soystats.com
http://www.soybase.org


Results
Chlorophyll content phenotyping associated with SCN
Soybean leaf chlorophyll content (CCI) in non-SCN-
infestation recorded at 8 weeks after planting was signifi-
cantly different among the genotypes (F-value = 11.17, p-
value< 0.0001) (Table 1). The CCI was approximately
normally distributed (Fig. 1). The genotypes having the
highest CCI on non-SCN-infested soils were MN0082SP
(48.3), GRANDE (44.1), MN0603SP (43.9), AGASSIZ
(43.5), M98240104 (43.4), MN1011CN (43.3), MN0502
(43.0), MN1106CN (43.0), CHICO (42.7), and WALSH
(42.6) (Additional file 1: Table S1). Those having the
lowest CCI were HARK (31.3), MN1008SP (31.2), VIN-
TON81 (30.8), M97205096 (30.5), KATO (30.2),
PI372403A (29.8), M95118009 (29.3), PI437228 (24.4),
PI257428 (22.7), and NORMAN (22.6) (Additional file 1:
Table S1).
The distribution of CCI of soybean in the SCN-

infested soil was nearly normal (Fig. 1). Significant dif-
ferences in CCI in the SCN-infected plants were found
among the genotypes (F-value = 9.43, p-value< 0.0001)
(Table 1). The genotypes exhibiting high CCI under
SCN infestation were MN1011CN (41.5), M98134022
(41.2), MN1106CN (40.4), M98240104 (40.3), AGASSIZ
(40.0), GRANDE (39.1), LAMBERT (38.2), SWIFT
(38.1), CHICO (38.0), and MN0502 (37.5) (Additional
file 1: Table S1). The lowest CCI under SCN infestation
was found for the genotypes PI257428 (19.2),
MN1607SP (18.9), PI437267 (17.3), MN1307SP (15.7),
MN1406SP (15.2), MN1008SP (15.2), PORTAGE (14.9),
MN1603SP (14.0), NORMAN (9.1), and PI437228 (8.1)
(Additional file 1: Table S1). Of the top 10 genotypes
having the highest CCI under non-SCN infestation, 7
(MN1011CN, MN1106CN, M98240104, AGASSIZ,
GRANDE, CHICO, and MN0502) had the highest CCI
when grown in SCN-infested soils. Of the 10 genotypes
grown in SCN free soils and having the lowest CCI, 4
(PI257428, MN1008SP, NORMAN, and PI437228) still
showed the lowest CCI when grown in SCN-infested
soils.
Tolerance to SCN based on CCI was assessed by com-

puting the percentage reduction in CCI due to SCN in-
fection. Percentage reduction in CCI by SCN was

approximately normally distributed (Fig. 1). On average,
CCI was 36.0 in non-infested soil, and 30.1 in the SCN-
infested soil, a 6.3% reduction. ANOVA showed signifi-
cant differences in CCI reduction by SCN among the
soybean genotypes (F-value = 4.26, p-value< 0.0001)
(Table 1). CCI was almost not affected by SCN for the ge-
notypes M99209070 (0.51%), M99286050 (0.58%), DWIGHT
(0.88%), CHIPPEWA64 (1.14%), MN0203SP (1.86%),
MN0201 (1.89%), MN0205SP (2.26%), M98134022 (2.32%),
BURLISON (2.56%), and M99337034 (2.57%) (Additional file
1: Table S1), indicating that the leaf chlorophyll content of
these genotypes was not sensitive to SCN infection. CCI of
the genotypes PI437228 (66.87%), NORMAN (60.00%),
MN1603SP (57.47%), PORTAGE (57.04%), MN1307SP
(54.59%), MN1406SP (54.19%), PI437267 (52.66%),
MN1008SP (51.40%), PI437994 (44.97%), and MN1007SP
(44.26%) (Additional file 1: Table S1) were the most affected
by SCN, suggesting that the leaf chlorophyll content of these
genotypes could be highly sensitive to SCN infection. Pear-
son’s correlation coefficient between reduction in CCI and
CCI without SCN was − 0.24. However, the correlation be-
tween reduction in CCI and CCI with SCN was − 0.85.

SNP profile
A total of 4089 high-quality SNPs were used for
genome-wide association analysis. The average SNP
number per chromosome was in the range of 144 to 269
SNPs, with an average of 204. Chromosome 11 with 144
SNPs had the lowest number of SNPs, whereas chromo-
some 18 with 269 SNPs had the highest number of SNPs
(Table 2). The average distance between two SNPs per
chromosome varied from 119 kb to 352 kb, with an aver-
age of 251 kb. The shortest average distance between
SNPs was found on chromosome 15, whereas the lon-
gest one was on chromosome 11 (Table 2). Average
minor allele frequency (MAF) per chromosome ranged
between 16.14 and 24.80%, with an average of 21.57%
(Table 2). Percentage of heterozygous SNPs per chromo-
some was in the range of 7.57 to 10.76%, and averaging
9.30% (Table 2). Percentage of missing SNP per chromo-
some varied from 4.16 to 5.60%, with an average of
4.96% (Table 2).

Table 1 ANOVA for leaf chlorophyll content of plants without SCN, plants infested with SCN, and decrease in chlorophyll content
due to SCN

Traits Source DF Sum of Squares Mean Square F Value Pr > F

Without SCN Genotype 171 10,460.76 63.02 11.17 <.0001

Error 516 2939.98 5.64

SCN-infested Genotype 171 23,423.78 141.11 9.43 <.0001

Error 516 7791.98 14.96

Decrease in chlorophyll (%) Genotype 171 110,482.93 665.56 4.26 <.0001

Error 516 81,465.40 156.36
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Genome-wide association study (GWAS)
Genome-wide association study was conducted to identify
SNPs associated with CCI under non-SCN infection, CCI in
SCN-infected plants, and reduction in CCI by SCN. The
number of significant SNPs varied among those aforemen-
tioned traits. A total of 22 SNPs were found to be signifi-
cantly associated with CCI under non-infested condition.
These SNPs were located on chromosomes 4, 5, 6, 7, 10, 11,
12, 13, 19, and 20 (Table 3). Of the 22 SNPs, five were found
on chromosome 11 and 4 mapped on chromosome 6
(Fig. 2a). The QQ-plot showed that the model used to assess
the SNPs was robust (Fig. 2b). Among the 22 SNPs associ-
ated with CCI for the non-infested plants, LOD varied from
2.51 to 8.63, with an average of 4.32 (Table 3). The SNPs
having the highest LOD values were Gm06_16,792,113_T_C
(8.63), Gm20_1,621,036_T_C (7.90), Gm19_48,074,289_A_C
(6.35), Gm06_11,948,808_G_A (6.16), Gm06_47,439,414_C_
T (5.80), Gm20_33,580,029_C_T (5.70), Gm05_40,299,923_
A_G (5.65) (Table 3). Most of these high LOD value SNPs
(LOD> 6) were located on chromosome 6 indicative of sig-
nificant QTL associated with plant chlorophyll on this
chromosome.
Results showed a total of 14 SNPs significantly associ-

ated with leaf chlorophyll content for SCN-infested plants.
These SNPs were found on chromosomes 2, 3, 5, 6, 7, 10,
13, 14, 15, 18, and 19. Of the 14 SNPs, 3 were mapped on
chromosome 19 and 2 were identified on chromosome 2
(Fig. 2c). The QQ-plot suggested that the model used for

identifying SNPs was reasonable (Fig. 2d). LOD values
pertaining to those 14 SNPs were in the range of 2.52 to
9.01, with an average of 4.29 (Table 3). SNPs having the
highest LOD values were Gm06_50,593,128_T_G (9.01),
Gm15_43,797,502_G_T (5.94), Gm18_1,620,585_T_C
(5.15), Gm19_39,863,286_G_T (5.02), Gm02_2,246,479_
A_G (4.82) (Table 3), which were located on chromo-
somes 6, 15, 18, 19, and 2 (Fig. 2c).
A total of 16 SNPs were found to be associated with

reduction in CCI due to SCN. Those SNPs were located
on chromosomes 2, 3, 4, 6, 7, 8, 9, 13, 15, and 18 (Fig.
2e). Of the 16 SNPs, 4 were found on chromosome 8,
suggesting significant QTL associated with tolerance to
SCN in this region, based upon the reduction in CCI.
The QQ-plot (Fig. 2f) indicated the robustness of the
model used for GWAS. For the 16 SNPs, LOD values
varied from 2.50 to 10.33, with an average of 4.49 (Table
3). The SNPs with the highest LOD values were Gm13_
39,378,998_G_A (10.33), Gm06_50,593,128_T_G (7.22),
Gm07_35,908,169_T_C (6.37), Gm08_11,501,419_A_C
(5.70), Gm04_5,172,181_A_G (5.50), and Gm06_16,315,
206_A_G (5.26) (Table 3), which were found on chro-
mosomes 13, 6, 7, 8, 4, and 6, respectively. Two of the
most significant SNPs were located on chromosome 6,
indicating probable QTL affecting SCN on this region.
An overlapping significant SNP, Gm19_48,074,289_A_

C, was found to be associated with both leaf chlorophyll
content for non-SCN-infested and SCN-infested plants

Fig. 1 Combined violin-boxplots representing the probability density function of leaf chlorophyll content indices for plants grown in SCN-infested
soils (yellow), plants grown in soils without SCN (green), and percentage reduction in leaf chlorophyll content indices due to SCN
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(Table 3). Three overlapping significant SNPs, Gm06_50,
593,128_T_G, Gm13_39,378,998_G_A, and Gm15_43,
797,502_G_T, were also identified for leaf chlorophyll
content of plants grown in soils with SCN and the re-
duction in CCI (Table 3), indicating these SNP markers
may not be related to SCN tolerance. However, no over-
lapping SNPs were identified for the traits leaf chloro-
phyll content under non-SCN infestation and reduction
in CCI due to SCN, suggesting that these SNP markers
were associated with SCN tolerance.

Candidate genes
Genes within the 10 kb-genomic region flanking a signifi-
cant SNP were taken into a consideration. Of the 22 SNPs
significantly associated with leaf chlorophyll content
under non-SCN infestation, 20 harbored genes within the
10 kb-flanking region (Table 3). Functional annotations
pertaining to these candidate genes consisted of mem-
brane proteins, kinase, phosphatase, biomolecule transfer-
ase, transporters, and transcription factors. The genomic
region containing the significant SNP, Gm07_3,990,308_
A_G, contained the gene Glyma.07 g047600, which
encoded for a chlorophyll A-B binding protein and was

directly involved in the chlorophyll pathway, which was
indicative of the robustness and reliability of the SNPs re-
ported in this current investigation (Table 3). In addition,
the protein, 4-alpha-glucanotransferase, encoded by
Glyma.06 g146400 and widely found in photosynthetic
leaves was also identified. Genes located within the 10-kb
genomic region of the most significant SNPs, Gm06_16,
792,113_T_C, Gm20_1,621,036_T_C, Gm19_48,074,289_
A_C, Gm06_11,948,808_G_A, Gm06_47,439,414_C_T,
and Gm20_33,580,029_C_T, were Glyma.06 g191200,
Glyma.20 g017100, Glyma.19 g229800, Glyma.06 g146400,
Glyma.06 g285800, and Glyma.20 g092200, which encoded
for IQ-domain, sulfate transporter, importin, 4-alpha-
glucanotransferase, vascular plant one zinc finger protein,
and 40S ribosomal protein (Table 3).
A total of 13 candidate genes associated with leaf

chlorophyll content for the SCN-infected plants were
identified (Table 3). Of the 13 reported candidate
genes, 10 had functional annotations and 2 encoded
for proteins with unknown functions. These candidate
genes were involved in biomolecule transporters such
as importin, transcription factors such as sequence-
specific DNA binding transcription factors, and plant

Table 2 Distribution of SNPs obtained from the Soy6K SNP Infinium Chips, average distance between SNPs within each
chromosome, average minor allele frequency, average percentage of heterozygous SNP, and average percentage of missing data
per SNP

Chromosome SNP_ Number Average_distance_betweenSNP (kb) MAF(%)a H(%)b Missing(%)c

1 159 352 19.17 9.21 4.79

2 254 223 23.51 9.72 5.30

3 194 267 22.65 9.40 5.15

4 190 286 24.25 9.43 5.09

5 194 239 23.38 10.02 5.10

6 205 275 19.96 9.23 4.38

7 215 189 16.72 8.39 4.67

8 225 208 21.98 8.21 4.57

9 191 274 24.80 8.93 5.03

10 216 280 23.78 9.57 5.37

11 144 266 16.14 7.57 4.16

12 174 256 21.48 8.52 4.79

13 262 201 21.01 9.64 4.86

14 196 302 21.91 9.80 4.59

15 235 119 24.24 10.76 5.60

16 165 227 22.76 9.43 5.35

17 197 235 22.44 10.23 5.13

18 269 291 18.81 8.91 4.93

19 200 279 21.23 8.58 5.02

20 204 260 21.24 10.50 5.27
aMinor Allele Frequency (MAF)
bAverage percentage of heterozygous SNP
cAverage percentage of missing SNP data
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Table 3 Significant SNPs associated with leaf chlorophyll content for plants without SCN infestation, leaf chlorophyll content for
SCN-infested plants, decrease in leaf chlorophyll content due to SCN, genes within 10 kb genomic region harboring the SNPs, and
functional annotation of the genes

Trait SNP_ID Chromosome Position
(bp)

MAF
(%)

LOD
(−log10(p-
value))a

Gene nameb Functional annotation

Leaf chlorophyll content
undernon-SCN infestation

Gm04_2,574,
201_T_G

4 2,574,
201

14.11 2.54 Glyma.04
g032100

Predicted membrane protein

Gm04_7,672,
403_A_G

4 7,672,
403

39.88 3.99 Glyma.04
g088800

Serine/threonine protein kinase

Gm05_40,299,
923_A_G

5 40,299,
923

7.1 5.65 Glyma.05
g224000

Aspartyl/lysyl-trna synthetase

Gm06_11,948,
808_G_A

6 11,948,
808

31.25 6.16 Glyma.06
g146400

4-alpha-glucanotransferase

Gm06_16,792,
113_T_C

6 16,792,
113

6.62 8.63 Glyma.06
g191200

IQ-domain 31

Gm06_43,980,
786_G_A

6 43,980,
786

6.02 3.31 NAc NA

Gm06_47,439,
414_C_T

6 47,439,
414

35.58 5.80 Glyma.06
g285800

Vascular plant one zinc finger protein

Gm07_3,953,
270_T_C

7 3,953,
270

38.51 2.57 Glyma.07
g047100

Calcineurin-like metallo-
phosphoesterase superfamily protein

Gm07_3,990,
308_A_G

7 3,990,
308

37.42 2.52 Glyma.07
g047600

Chlorophyll A-B binding protein

Gm10_4,458,
104_G_A

10 4,458,
104

30.62 2.51 Glyma.10
g049600

ROP interactive partner 3

Gm10_41,610,
215_C_T

10 41,610,
215

17.58 4.88 Glyma.10
g183000

Phytoene dehydrogenase

Gm11_3,641,
716_A_C

11 3,641,
716

26.41 2.87 Glyma.11
g048600

Formin-related

Gm11_4,702,
578_C_A

11 4,702,
578

25.95 2.89 Glyma.11
g062300

Homeobox protein transcription
factors

Gm11_15,558,
504_T_C

11 15,558,
504

21.81 4.21 Glyma.11
g164300

Serine/threonine protein
phosphatase

Gm11_37,978,
746_G_T

11 37,978,
746

11.11 3.82 NA NA

Gm11_38,183,
607_G_A

11 38,183,
607

13.09 3.04 LOC106795218 NA

Gm12_1,460,
019_T_C

12 1,460,
019

12.65 3.68 Glyma.12
g020500

2-C-methyl-D-erythritol 4-phosphate
cytidylyltransferase

Gm13_38,032,
737_G_A

13 38,032,
737

38.6 3.40 Glyma.13
g279200

Asparagine synthetase

Gm19_42,195,
616_G_A

19 42,195,
616

28.05 2.72 Glyma.19
g161200

Uridine kinase

Gm19_48,074,
289_A_C

19 48,074,
289

40 6.35 Glyma.19
g229800

Karyopherin (importin) alpha

Gm20_1,621,
036_T_C

20 1,621,
036

26.06 7.90 Glyma.20
g017100

Sulfate transporter

Gm20_33,580,
029_C_T

20 33,580,
029

16.97 5.70 Glyma.20
g092200

40S ribosomal protein

Leaf chlorophyll conent for
SCN-infested plants

Gm02_207,
506_A_G

2 207,506 4.76 3.09 Glyma.02
g001700

Protein of unknown function

Gm02_2,246,
479_A_G

2 2,246,
479

33.33 4.82 Glyma.02
g025200

Protein of unknown function

Gm03_36,634,
361_G_A

3 36,634,
361

5.36 2.64 Glyma.03
g151400

NA
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Table 3 Significant SNPs associated with leaf chlorophyll content for plants without SCN infestation, leaf chlorophyll content for
SCN-infested plants, decrease in leaf chlorophyll content due to SCN, genes within 10 kb genomic region harboring the SNPs, and
functional annotation of the genes (Continued)

Trait SNP_ID Chromosome Position
(bp)

MAF
(%)

LOD
(−log10(p-
value))a

Gene nameb Functional annotation

Gm05_39,995,
603_C_T

5 39,995,
603

7.74 4.27 Glyma.05
g220300

Formin binding protein and related
proteins

Gm06_50,593,
128_T_G

6 50,593,
128

22.84 9.01 Glyma.06
g317100

Predicted transporter

Gm07_11,956,
773_T_C

7 11,956,
773

34.18 2.54 Glyma.07
g114300

Ethylene-responsive element binding
factor 13

Gm10_6,196,
864_T_G

10 6,196,
864

34.18 4.13 Glyma.10
g064900

Sequence-specific DNA binding
transcription factors

Gm13_39,378,
998_G_A

13 39,378,
998

5.81 3.97 Glyma.13
g294200

Putative signaling peptide similar to
TAX1

Gm14_49,357,
738_A_G

14 49,357,
738

6.55 2.52 NA NA

Gm15_43,797,
502_G_T

15 43,797,
502

23.75 5.94 Glyma.15
g233100

Leucine-rich repeat-containing
protein

Gm18_1,620,
585_T_C

18 1,620,
585

9.2 5.15 Glyma.18
g022100

BTB/POZ domain-containing protein

Gm19_38,917,
571_A_G

19 38,917,
571

19.02 2.60 Glyma.19
g129700

F-box family protein

Gm19_39,863,
286_G_T

19 39,863,
286

24.69 5.02 Glyma.19
g137300

Det1 complexing ubiquitin ligase

Gm19_48,074,
289_A_C

19 48,074,
289

40 4.39 Glyma.19
g229800

Karyopherin (importin) alpha

Decrease in chlorophyll
content

Gm02_6,340,
233_C_A

2 6,340,
233

4.19 2.83 Glyma.02
g072300

Methyltransferase-like protein

Gm03_3,334,
303_C_A

3 3,334,
303

35.03 4.47 Glyma.03
g029900

Cytochrome P450

Gm03_39,574,
966_T_C

3 39,574,
966

27.85 2.67 Glyma.03
g183700

NA

Gm04_5,172,
181_A_G

4 5,172,
181

23.27 5.50 Glyma.04
g062600

NA

Gm06_16,315,
206_A_G

6 16,315,
206

39.26 5.26 Glyma.06
g187300

Lipase (class 3)

Gm06_50,593,
128_T_G

6 50,593,
128

22.84 7.22 Glyma.06
g317100

Predicted transporter

Gm07_35,908,
169_T_C

7 35,908,
169

17.5 6.37 Glyma.07
g191600

Secretory carrier membrane protein

Gm08_9,848,
168_T_C

8 9,848,
168

4.71 2.69 Glyma.08
g127700

Phosphatidylinositol-4-phosphate 5-
kinase

Gm08_10,116,
360_C_T

8 10,116,
360

5.32 2.75 Glyma.08
g132000

Protein of unknown function

Gm08_11,501,
419_A_C

8 11,501,
419

5.36 5.70 Glyma.08
g149800

Iron/ascorbate family
oxidoreductases

Gm08_43,787,
988_G_A

8 43,787,
988

12.05 2.60 Glyma.08
g318600

NA

Gm09_6,664,
095_T_C

9 6,664,
095

38.22 2.50 LOC106794327 NA

Gm13_5,211,
326_T_C

13 5,211,
326

12.12 2.90 NA NA

Gm13_39,378,
998_G_A

13 39,378,
998

5.81 10.33 Glyma.13
g294200

Putative signaling peptide similar to
TAX1
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hormones-induced genes such as ethylene-responsive
element binding factor. Candidate genes encoding for
a leucine-rich repeat protein have been also identified.
The 10-kb flanking regions of the most significant
SNPs, Gm06_50,593,128_T_G, Gm15_43,797,502_G_T,
Gm18_1,620,585_T_C, and Gm19_39,863,286_G_T,

harbored genes such as Glyma.06 g317100, Glyma.15
g233100, Glyma.18 g022100, and Glyma.19 g137300,
which encoded for biomolecule transporter, leucine-
rich repeat-containing protein, BTB/POZ domain-
containing protein, and Det1 complexing ubiquitin
ligase, respectively (Table 3).

Table 3 Significant SNPs associated with leaf chlorophyll content for plants without SCN infestation, leaf chlorophyll content for
SCN-infested plants, decrease in leaf chlorophyll content due to SCN, genes within 10 kb genomic region harboring the SNPs, and
functional annotation of the genes (Continued)

Trait SNP_ID Chromosome Position
(bp)

MAF
(%)

LOD
(−log10(p-
value))a

Gene nameb Functional annotation

Gm15_43,797,
502_G_T

15 43,797,
502

23.75 4.79 Glyma.15
g233100

Leucine-rich repeat-containing
protein

Gm18_1,427,
298_G_T

18 1,427,
298

5.29 3.29 Glyma.18
g019300

Copper transport protein ATOX1-
related

ap-value associated to each SNP was obtained using the FarmCPU model
bGene name was retrieved from Soybase using the Glycine max genome version Glyma.Wm82.a2 (Gmax2.0)
cInformation was not available

Fig. 2 Graphs showing Manhattan plots and QQ-plots for leaf chlorophyll content indices (CCI) of plants non-infected by SCN, CCI plants infected
by SCN, and reduction in CCI by SCN. a Manhattan plot for CCI of plants without SCN, b QQ-plot for CCI of the non-infected plants, c Manhattan
plot for CCI of the SCN-infected plants, d QQ-plot for CCI of the SCN-infected plants, e Manhattan plot for reduction in CCI by SCN, and (f): QQ-
plot for reduction in CCI
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Results suggested a total of 15 candidate genes associated
with chlorophyll content tolerance to SCN in soybean. Of
the 15 candidate genes, 11 had functional annotations as re-
ported in Table 3. Two genes, Glyma.13 g294200 and
Glyma.15 g233100 encoding for a putative signaling peptide
similar to TAX1 and a leucine-rich repeat-containing pro-
tein, respectively, were overlapping between CCI of SCN-
infected plants and reduction in ICC. Most of the reported
candidate genes encoded for molecule transporters within
and between plant cells such as Glyma.06 g317100,
Glyma.07 g191600, and Glyma.13 g294200. Candidate genes
found within the most significant genomic regions contain-
ing the SNPs Gm13_39,378,998_G_A, Gm06_50,593,128_T_
G, Gm07_35,908,169_T_C, Gm08_11,501,419_A_C, and
Gm06_16,315,206_A_G were Glyma.13 g294200, Glyma.06
g317100, Glyma.07 g191600, Glyma.08 g149800, and Glyma.
06 g187300, encoded for a putative signaling peptide similar
to TAX1, protein transporter, secretory carrier membrane
protein, Iron/ascorbate family oxidoreductases, and lipase
(class 3) (Table 3).

Marker-assisted selection accuracy and selection
efficiency
SNP selection accuracy and efficiency pertaining to the
significant SNPs were calculated for CCI under non-
SCN infestation, CCI under SCN infestation, and reduc-
tion in CCI by SCN. For the plants under non-SCN in-
festation, selection accuracy varied from 35.94 to
87.80%, with an average of 55.40% (Table 4). The highest
selection accuracy was found for the SNP Gm19_48,074,
289_A_C (87.80%), whereas the SNP Gm20_1,621,036_
T_C had the lowest selection accuracy (35.94%) (Table
4). Selection efficiency ranged from 25.56 to 54.55%,
with an average of 35.71% (Table 4). The SNP Gm19_48,
074,289_A_C (54.55%) had the highest selection effi-
ciency. The lowest selection efficiency was found for the
SNP Gm20_1,621,036_T_C (25.56%). Favorable alleles
for the most significant SNPs Gm06_16,792,113_T_C,
Gm20_1,621,036_T_C, Gm19_48,074,289_A_C, Gm06_
11,948,808_G_A, and Gm06_47,439,414_C_T were T, T,
C, G, and T, respectively (Table 4).

Table 4 Marker-assisted selection accuracy and efficiency for the significant SNPs associated with leaf chlorophyll content under
non-SCN infestation

Selection_accuracy_(%)a Selection_efficiency_(%)b Favorable_allelec

Gm04_2,574,201_T_G 44.32 30.23 G

Gm04_7,672,403_A_G 64.10 38.46 A

Gm05_40,299,923_A_G 50.00 33.77 G

Gm06_11,948,808_G_A 45.76 31.76 G

Gm06_16,792,113_T_C 43.88 28.10 T

Gm06_43,980,786_G_A 45.54 30.87 G

Gm06_47,439,414_C_T 49.02 32.05 T

Gm07_3,953,270_T_C 56.25 34.18 T

Gm07_3,990,308_A_G 56.00 34.15 A

Gm10_4,458,104_G_A 77.78 42.86 A

Gm10_41,610,215_C_T 50.65 33.91 T

Gm11_3,641,716_A_C 48.53 31.43 C

Gm11_4,702,578_C_A 41.18 27.18 A

Gm11_15,558,504_T_C 66.67 42.31 T

Gm11_37,978,746_G_T 56.98 37.40 G

Gm11_38,183,607_G_A 58.62 39.53 G

Gm12_1,460,019_T_C 49.00 34.75 T

Gm13_38,032,737_G_A 71.79 45.90 A

Gm19_42,195,616_G_A 62.90 39.80 G

Gm19_48,074,289_A_C 87.80 54.55 C

Gm20_1,621,036_T_C 35.94 25.56 T

Gm20_33,580,029_C_T 56.00 36.84 C
aSelection accuracy = 100*[(Number of genotypes having high leaf chlorophyll content with the favorable SNP allele)/(Number of genotypes having high leaf
chlorophyll content with the favorable SNP allele + Number of genotypes having low leaf chlorophyll content with the favorable SNP allele)
bSelection efficiency = 100*[(Number of genotypes having high leaf chlorophyll content with the favorable SNP allele)/(Total number of genotypes having the
favorable SNP allele)]
cFavorable allele corresponds to the allele with the highest frequency in the top 57 genotypes having the highest chlorophyll content under non-SCN infestation
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Significant SNPs associated with CCI under SCN in-
festation exhibited a large variation in selection accuracy
and selection efficiency. Selection accuracy was in the
range of 41.18 to 85.11%, with an average of 56.01%
(Table 5). Among the significant SNPs, the highest selec-
tion accuracy was recorded for Gm19_48,074,289_A_C
(85.11%), whereas the lowest one was found for Gm18_
1,620,585_T_C (41.18%) (Table 5). Selection efficiency
varied from 26.72 to 60.61%, with an average of 38.24%.
The SNP Gm19_48,074,289_A_C (60.61%) had the high-
est selection efficiency, whereas the SNP Gm18_1,620,
585_T_C (26.72%) exhibited the lowest selection effi-
ciency. Favorable alleles for the most significant SNPs,
Gm06_50,593,128_T_G, Gm15_43,797,502_G_T, Gm18_
1,620,585_T_C, Gm19_39,863,286_G_T, and Gm02_2,
246,479_A_G associated with CCI under SCN infest-
ation were T, T, T, G, and G respectively (Table 5).
Overall, selection efficiency and accuracy of the SNPs

associated with reduction in CCI were lower than those
of the SNPs associated with CCI for the non-SCN-
infected plants and SCN-infected plants. For the reduc-
tion in CCI, selection accuracy was in the range of 44.07
and 68.48%, with an average of 54.56% (Table 6). The
SNP Gm15_43,797,502_G_T had the highest selection
accuracy (68.18%), whereas the SNP Gm03_3,334,303_
C_A showed the lowest selection accuracy (44.07%).
SNP selection efficiency varied from 29.55 to 45.45%,
with an average of 35.75% (Table 6). The SNP with the
highest selection efficiency was Gm15_43,797,502_G_T
(45.45%), whereas the one with the lowest selection

efficiency was Gm03_3,334,303_C_A (29.55%). Favorable
alleles corresponding to the most significant SNPs
Gm13_39,378,998_G_A, Gm06_50,593,128_T_G, Gm07
_35,908,169_T_C, Gm08_11,501,419_A_C, and Gm04_5,
172,181_A_G were G, T, C, A, and A (Table 6).

Genomic selection (GS)
Genomic selection for CCI of non-SCN-infected plants,
CCI of the SCN-infested plants, and reduction in CCI by
SCN was conducted using 5 different statistical models.
For the plants without SCN infection, average GS accur-
acy was 0.33, 0.23, 0.32, 0.38, and 0.28 for rrBLUP,
gBLUP, Bayesian LASSO (BLR), Random Forest (RF),
and Support Vector Machines (SVMs), respectively,
when all 4089 SNPs were included in the models (Add-
itional file 2: Table S2). Increase in GS accuracy was
identified using GWAS-derived SNP markers for most
of the statistical models expect rrBLUP. The highest in-
crease was found when gBLUP was used (Fig. 3). When
only significant SNPs were incorporated into the GS
models, the Bayesian LASSO model provided the highest
average GS accuracy (0.74), whereas the lowest one was
recorded when rrBLUP was used (0.31), indicative of the
GS accuracy being both SNP type and GS model-
sensitive.
For CCI under SCN infestation, GS accuracy was 0.45,

0.41, 0.47, 0.51, and 0.44 for rrBLUP, gBLUP, BLR, RF,
and SVMs (Additional file 2: Table S2), respectively,
when all SNPs were used to estimate the genomic esti-
mated breeding values (GEBVs). In contrast to the

Table 5 Marker-assisted selection accuracy and efficiency for the significant SNPs associated with leaf chlorophyll content under
SCN infestation

Selection_accuracy_(%)a Selection_efficiency_(%)b Favorable_allelec

Gm02_207,506_A_G 48.08 32.26 A

Gm02_2,246,479_A_G 66.67 42.50 G

Gm03_36,634,361_G_A 50.49 33.77 G

Gm05_39,995,603_C_T 51.02 33.56 C

Gm06_50,593,128_T_G 60.29 39.42 T

Gm07_11,956,773_T_C 50.00 34.02 C

Gm10_6,196,864_T_G 63.16 41.38 G

Gm13_39,378,998_G_A 54.37 35.44 G

Gm14_49,357,738_A_G 46.00 30.87 A

Gm15_43,797,502_G_T 68.18 45.45 T

Gm18_1,620,585_T_C 41.18 26.72 T

Gm19_38,917,571_A_G 53.85 34.43 A

Gm19_39,863,286_G_T 45.71 45.00 G

Gm19_48,074,289_A_C 85.11 60.61 C
aSelection accuracy = 100*[(Number of genotypes having high leaf chlorophyll content with the favorable SNP allele)/(Number of genotypes having high leaf
chlorophyll content with the favorable SNP allele + Number of genotypes having low leaf chlorophyll content with the favorable SNP allele)
bSelection efficienty = 100*[(Number of genotypes having high leaf chlorophyll content with the favorable SNP allele)/(Total number of genotypes having the
favorable SNP allele)]
cFavorable allele corresponds to the allele with the highest frequency in the top 57 genotypes having the highest chlorophyll content under SCN infestation
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Table 6 Marker-assisted selection accuracy and efficiency for the significant SNPs associated with decrease in leaf chlorophyll
content under SCN infestation

Selection_accuracy_(%)a Selection_efficiency_(%)b Favorable_allelec

Gm02_6,340,233_C_A 53.40 35.03 C

Gm03_3,334,303_C_A 44.07 29.55 A

Gm03_39,574,966_T_C 60.71 37.36 C

Gm04_5,172,181_A_G 61.54 41.67 A

Gm06_16,315,206_A_G 57.14 37.33 A

Gm06_50,593,128_T_G 60.29 39.42 T

Gm07_35,908,169_T_C 57.33 35.54 C

Gm08_9,848,168_T_C 50.96 33.13 T

Gm08_10,116,360_C_T 51.46 33.54 C

Gm08_11,501,419_A_C 50.00 33.54 A

Gm08_43,787,988_G_A 55.68 35.77 G

Gm09_6,664,095_T_C 47.06 31.17 C

Gm13_5,211,326_T_C 47.37 33.33 C

Gm13_39,378,998_G_A 54.37 35.44 G

Gm15_43,797,502_G_T 68.18 45.45 T

Gm18_1,427,298_G_T 53.33 34.78 G
aSelection accuracy = 100*[(Number of genotypes having the lowest decrease in leaf chlorophyll content with the favorable SNP allele)/(Number of genotypes
having the lowest decrease in leaf chlorophyll content with the favorable SNP allele + Number of genotypes having the highest leaf chlorophyll content with the
favorable SNP allele)
bSelection efficienty = 100*[(Number of genotypes having the lowest decrease in leaf chlorophyll content with the favorable SNP allele)/(Total number of
genotypes having the favorable SNP allele)]
cFavorable allele corresponds to the allele with the highest frequency in the top 57 genotypes having the decrease in leaf chlorophyll content under
SCN infestation

Fig. 3 Genomic selection accuracy under 5 GS models for leaf chlorophyll content indices for plants without SCN infection
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results found for CCI under non-SCN infestation, GS in-
creased by at least 39% when significant SNPs obtained
from GWAS were used. Interestingly, the highest in-
crease was found when rrBLUP was used (Fig. 4), and
GS accuracy was the highest under the rrBLUP model
(0.83), the second highest GS accuracy was provided by
the Bayesian LASSO model (0.81), whereas SVMs
showed the lowest GS accuracy (0.70). These results sug-
gested that using significant SNPs obtained from GWAS
could provide a better GS accuracy.
GS accuracy for reduction in CCI by SCN was estab-

lished. When all SNPs were used, the RF model exhib-
ited the highest GS accuracy (0.41), whereas the lowest
one was found under both rrBLUP and BLR (Additional
file 2: Table S2). Significant increase in GS accuracy was
found when only significant SNPs were considered
(Fig. 5), which was similar to what was found for the
two aforementioned traits. By only using GWAS-derived
SNPs, GS accuracy was 0.79, 0.59, 0.77, 0.61, and 0.62
for rrBLUP, gBLUP, BLR, RF, and SVMs, respectively
(Additional file 2: Table S2).

Discussion
SCN resistance has been evaluated based on female (cyst)
counts as measurements of SCN reproduction in soybean-
infected plants. In this investigation, we evaluated toler-
ance of soybean to SCN based on leaf chlorophyll content.
One pathway of SCN damage to soybean is reduction of
chlorophyll content and induction of chlorotic symptoms
[4]. However the molecular mechanisms involved in

reduction of chlorophyll content and induction of chlor-
osis by SCN infection have not been studied. As far as we
know, this investigation represents the first study of QTL
associated with soybean chlorophyll content tolerance to
SCN. Leaf chlorophyll content-based phenotyping strategy
for SCN infection evaluation would allow for potential dis-
covery of new loci associated with SCN tolerance, there-
fore making the genetic background broader for managing
SCN, especially in the situation of the increasing SCN
virulence. However, soybean tolerance to SCN should be
based on yield response, and chlorophyll content can be
one of factors contributing to soybean yield response [26].
Additional studies would definitely be required to estab-
lish a possible link between yield loss and reduction in
chlorophyll under SCN infestation.
GWAS was performed in efforts to identify new loci

conferring tolerance of soybean to SCN based on the as-
sessment of reduction in leaf chlorophyll content, thus
contributing to diversifying genes for SCN management.
The use of GWAS to discover loci associated with SCN
resistance has been shown to be promising in other
studies [12, 22–24]. All previously reported GWAS in-
vestigations relied on mature female count to assess re-
sistance to SCN and SNPs were associated with the
female count. In this report, a total of 14 and 16 SNPs
were found to be associated with CCI under SCN infest-
ation and reduction in CCI by SCN infection, respect-
ively. The significant SNP, Gm18_1,620,585_T_C, found
on chromosome 18 and associated with CCI under SCN
infestation was located at 88 Kbp upstream of the rhg1

Fig. 4 Genomic selection accuracy under 5 GS models for leaf chlorophyll content indices of the SCN-infected plants
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locus. In addition, the SNP Gm18_1,427,298_G_T
mapped on chromosome 18 and significantly associated
with a reduction of CCI was located at 281 Kbp up-
stream from the rhg1 locus. These results indicate that
this panel carries PI 88788 SCN-type resistance. Similar
results were reported [12] stating that SNP markers lo-
cated at even about 1Mb from the rhg1 locus were still
in high LD with that SCN-resistant locus. In addition, a
SNP marker located at 23 Kbp from Gm18_1,620,585_
T_C and being tightly linked with the rhg1 locus was re-
ported [23]. Therefore, the two aforementioned SNPs
which were found at a distance less than 300 Kbp from
the rhg 1 locus could be used in marker-assisted selec-
tion for SCN resistance. This finding suggested that
assessing soybean tolerance to SCN based on chlorophyll
reduction could provide useful result for selecting SCN-
tolerant genotypes. Most of the significant SNPs associ-
ated with both CCI under SCN and reduction of CCI by
SCN were found within previously reported SCN-
resistant QTL and loci [12, 23, 24, 27–31]. In addition,
the results suggested three new loci associated with
chlorophyll content tolerance to SCN, of which, two
were found on chromosome 3 and associated with the
SNPs Gm03_3,334,303_C_A and Gm03_39,574,966_T_
C, and the third one was mapped on chromosome 6 and
associated with the SNP Gm06_50,593,128_T_G. The
discovery of these new loci would permit for diversifying
SCN-tolerance genes for SCN management.
Selection efficiency and accuracy were computed for

the most significant SNPs associated with CCI under

non-SCN infestation, CCI for the SCN-infected plants,
and reduction in CCI as reported in Tables 4, 5, and 6.
The use of SNP selection and accuracy has been
highlighted in other GWAS-related reports [32, 33].
SNP selection accuracy and efficiency varied from
medium to high in this study. This suggested that the
significant SNPs identified from this investigation can be
used for further marker-assisted selection for enhancing
soybean resistance/tolerance to SCN.
Candidate genes found within a 10-kb region harbor-

ing significant SNPs have been established in Table 3.
Candidate genes associated with CCI under non-SCN
infestation encoded for proteins that were relevant to
chlorophyll pathway. Functional annotation of the iden-
tified candidate genes consisted of chlorophyll A-B bind-
ing protein and 4-alpha-glucanotransferase found in
photosynthetic leaves [34]. Proteins involved in plant de-
velopment such as ROP interactive partner [35], formin-
related [36], homeobox transcription factor [37], and uri-
dine kinase [38] were identified as well. In addition,
genes encoding for proteins associated with plant nutri-
tion such as asparagine synthetase [39] and sulfate trans-
porter [40] were found. The results were indicative of
the robustness of the significant SNPs reported in this
study since they permitted the discovery of candidate
genes relevant to chlorophyll pathway and plant nutri-
tion uptake under non-SCN infestation.
The genomic region harboring the overlapping SNP

(Gm19_48,074,289_A_C), which was associated with
both CCI under non-SCN infestation and SCN-

Fig. 5 Genomic selection accuracy under 5 GS models for reduction in leaf chlorophyll content indices by SCN
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infestation, enclosed a gene encoding for an importin,
which was responsible for biomolecule trafficking within
plant cells [41]. This gene could impact the flow of nu-
trients during plant development even under plant stress
such as SCN infection. In addition, an overlapping
candidate gene encoding for a leucine-rich repeat-
containing protein (Table 3) was reported to enhance
both leaf chlorophyll content under SCN infestation and
tolerance to SCN in leaf chlorophyll content. Leucine-
rich repeat protein has been widely shown to be involved
in plant resistance mechanism to pathogen attack [36].
Further investigations are required to validate the func-
tion of this gene and its involvement in SCN tolerance
in soybean. In addition, a signaling peptide was found to
be associated with chlorophyll content tolerance to SCN.
Signaling peptides have been reported to be involved in
plant development [42], suggesting that this gene could
enhance plant survival under stress of SCN infestation.
Protein transporters and membrane proteins were widely
found to be involved in chlorophyll content tolerance to
SCN in this study. These proteins enhance the flow of
biomolecules and nutrients within and between cells
[41], thus permitting plant survival under SCN infection.
Moreover, proteins associated with plant hormone sig-
naling such as ethylene-responsive element binding fac-
tor 13, BTB/POZ domain-containing protein, and F-box
family protein were identified. These signaling proteins
have been demonstrated to be directly involved in plant
defense against pathogens [43].
The new locus found on chromosome 3 harbors a

gene encoding cytochrome P450, which has been shown
to contribute to both plant development and defense
under pathogen attack [44]. Further analysis is needed to
confirm the involvement of this gene in resistance/toler-
ance to SCN. A lipase (class 3) was also found on
chromosome 6. Lipases have been demonstrated to assist
with plant defense mechanism against pathogen [45]. In
addition, a methyltransferase-like protein gene was iden-
tified in a genomic region belonging to chromosome 2,
which was in the vicinity of a significant SNP (Gm03_3,
334,303_C_A) associated with chlorophyll content toler-
ance to SCN. This protein modulates gene expression
[44]. Additional studies are required to understand the
involvement of this methyltransferase gene in enhancing
chlorophyll content tolerance to SCN in soybean plants.
Genomic selection has recently become more and

more popular in modern and large-scale crop breeding
programs. Previous studies highlighted that GS allowed
for a more robust prediction of genotypic values com-
pared to QTL [46]. In addition, GS has been proven to
be more powerful compared to Marker-Assisted Selec-
tion (MAS) when dealing with traits controlled by genes
having small effects [47]. However, little has been done
with respect to investigating GS accuracy for SCN

resistance/tolerance. In this study, average GS accuracy
among different GS models was 0.31, 0.46, and 0.35 for
CCI under non-SCN infestation, CCI in the SCN-
infected plants, and reduction of CCI by SCN when all
marker sets were used. When GWAS-derived SNPs was
used, average GS accuracy was 0.55, 0.76, and 0.68 for
the three aforementioned traits. A GS accuracy aver-
aging 0.46 for SCN resistance based on SCN female
count and using different GS models was previously re-
ported [12]. The results from the GS involving CCI was
in agreement with that of found by previous investiga-
tions [12] despite the fact that two different phenotypes,
leaf chlorophyll content and female count, were used. In
addition, GS accuracy involving linear models (rrBLUP,
gBLUP, RF) performed almost similarly as those using
more sophisticated approach (Bayesian LASSO) and ma-
chine learning strategy (Additional file 2: Table S2).
Similar findings were reported [12].

Conclusions
A total of 172 soybean genotypes were evaluated for the
effect of SCN HG Type 1.2.3.5.6.7 (race 4) on soybean
leaf chlorophyll content in the greenhouse. The leaf
chlorophyll content indices (CCI) were used as the
phenotypic data and 4089 filtered and high-quality SNPs
obtained from the Soy6K SNP Infinium Chips as the
genotypic data for the GWAS and GS analysis. A total of
22, 14, and 16 SNP markers were associated with CCI of
non-SCN-infected plants, SCN-infected plants, and re-
duction of CCI by SCN, respectively. The average GS ac-
curacy ranged from 0.31 to 0.46 with all SNPs and
varied from 0.55 to 0.76 when GWAS-derived SNP
markers were used across five GS models. The SNP
markers from this study could be used to improve the
soybean leaf chlorophyll content tolerance to SCN infec-
tion through MAS and GS. Further study is needed to
investigate the translation of a reduction in chlorophyll
content to yield loss under SCN infestation.

Methods
Plant materials and phenotyping
A total of 172 soybean genotypes were used for this
study (Additional file 1: Table S1). This panel of lines
was part of the panel of 282 lines selected by Bao from
the University of Minnesota soybean breeding program
using PediTree for the previous study of association
mapping (AM) and genomic selection (GS) of SCN re-
sistance by Bao et al. (2015) [12]. Most of the lines were
susceptible to SCN in terms of SCN female counts of
HG Type 0 (race 3), but there were six resistant, six
moderately resistant, and four moderately susceptible
lines (Additional file 1: Table S1). The few resistant lines
contained SCN resistance genes from PI 88788 [12]. The
plant materials listed in the Additional file 1: Table S1
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are preserved in the soybean breeding program in the
University of Minnesota, and the lines with PI numbers
are available in the United States Department of Agricul-
ture Germplasm Resources Information Network (USDA
GRIN).
The phenotyping experiment was conducted in the

greenhouse at the University of Minnesota St. Paul cam-
pus. A soil without SCN infestation was collected from a
soybean field. The soil was mixed and divided to four
lots. For each replicate, a lot of soil was further thor-
oughly mixed, and then divided to 1-kg lots that were
placed in 1-galon plastic bags. In each bag, 500 g sand
were added for increase of drainage. The soil of each bag
was used for one pot.
Soybean cyst nematode HG Type 1.2.3.5.6.7 (race 4)

was cultured on susceptible soybean ‘Sturdy’. Race 4 can
reproduce well on the lines containing resistance genes
from PI 88788. Eggs were collected from the soybean
roots and soil. The eggs (80,000 eggs/bag ≈ 10,000 eggs/
100 cm3 soil) in 10 ml water were added into the soil in
the plastic bag before planting. For the pots without
SCN eggs, 10 ml water was added into the bags. The
soil-sand with or without SCN eggs were mixed in each
bag. About 83% of the soil from each bag was placed in
a pot. Ten soybean seeds were placed on the surface
each pot and the seeds were covered with the remaining
soil. The pots were placed in the greenhouse benches.
The two pots (SCN and no-SCN) of the same soybean
line were placed together to minimize the environmental
difference between the SCN and no-SCN treatments
within a genotype. Each line was replicated four times.
Due to the large number of lines, this experiment was
conducted at four different times with approximately 60
lines per time in the same greenhouse. Although pots of
each replicate were placed in a block, the experiment
was considered randomized design because the lines
were evaluated in four groups at four different times.
Leaf chlorophyll content indices (CCI) were recorded
using SPAD 502 DL Meter (Minolta) on the second tri-
foliate leaves of 8-week old soybean plants. A total of 15
observations were taken from the 15 leaflets of the five
plants each pot, and the average CCI for each pot was
calculated from the 15 observations.
Data analysis.
Data consisted of CCI without SCN, CCI of plants in

soil infested with SCN, and percentage reduction in CCI.
Percentage reduction in CCI was obtained as following:

� Leaf chlorophyll content Reduction = 100 x[(CCI
without SCN - CCI of plants infected with SCN)/
CCI without SCN]

Descriptive statistics were generated using the option
‘Tabulate’ of JMP Genomics®7 (SAS Institute Inc., Cary,

NC, USA). Data were visualized through combined vio-
lin and boxplots using the packages ‘ggplot2’, ‘labeling’
and ‘gridExtra’ of R 3.3.0. Data were analyzed using
PROC GLM of SAS®. 9.4. The statistical model for the
analysis was the following.

Y ij ¼ μþ Giþ εij with i ¼ 1; 2; :::; 172and j
¼ 1; 2; 3; 4

Yij denoted the response of the ith genotype at the jth

replication, Gi represented the effect of the ith genotype
(assumed to have fixed effect), and εij was the experi-
mental error associated with the ijth observation.

Genotyping
DNA was extracted from young leaves of each accession
using DNeasy 96 Plant Kit (QIAGEN, Valencia, CA).
The DNA samples were genotyped using an Illumina
GoldenGate SNP assay. A total of 4252 SNPs obtained
from the Soy6K SNP Infinium Chips (https://www.soy-
base.org/snps/download.php) were used in the genotyp-
ing. SNP data having more than 10% missing data, more
than 20% heterozygous SNPs, and minor allele frequency
less than 4% were removed from the analysis. After SNP
filtering, a total of 4089 high-quality SNPs were used for
further analysis.

Genome-wide association study (GWAS)
GWAS was performed using a Fixed and Random Model
Circulating Probability Unification (FarmCPU) in R soft-
ware as previously described [48]. FarmCPU was shown
to have an enhanced statistical power when running for
GWAS [49]. Both fixed (FEM) and random effects
(REM) were included in the model and run iteratively
until no new pseudo QTNs were established. The model
was described as following [48].

(a)

FEM : yi ¼ Mi1b1 þMi2b2 þ :::þMijb j þ Sikdk þ ei

where yi represented the phenotypic data obtained
from the ith individual, Mij’s denoted the pseudo QTNs,
bj’s were the effect of the jth pseudo QTN, Sik denoted
the kth SNP corresponding to the ith individual, and ei
was the random error for the ith observation such that ei
~ N(0, σ2e).

(b)

REM : yi ¼ ui þ ei

where yi was the phenotype corresponding to the ith

individual, ui denoted the total genetic effect (random
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effect) for the ith individual with a variance-covariance
matrix defined as 2Kσ2a, σ2a was an unkown genetic
variance and K was the Kinship generated from the
pseudo QTNs, and ei was the residual such that ei ~
N(0, σ2e). Estimate of the variance-covariance matrix
was computed using a Singular Value Decomposition
(SVD) of the pseudo QTNs based upon the FaST-LMM
(Factored Spectrally Transformed Linear Mixed Model)
algorithm.

Candidate gene(s) discovery
Significant SNPs (LOD > 2.0) [50] postulated from
GWAS were used for candidate gene search. A 10-kb
genomic region flanking each SNP was considered.
Functional annotation of candidate genes was investi-
gated in Soybase (www.soybase.org).

SNP selection accuracy and selection efficiency
SNP selection accuracy and selection efficiency were
computed based on the formulas previously developed
[33]. The top 57 performers and the 57 least performers
for each trait were chosen.

Selection accuracy
¼ 100 x ½ Number of genotypes having high CCI with the favorable SNP alleleð Þ

=
�
Number of genotypes having high CCI with the favorable SNP allele

þNumber of genotypes having low CCI with the favorable SNP alleleÞ:

Selection efficiency
¼ 100 x Number of genotypes having high CCI with the favorable SNP alleleð Þ= Total number of genotypes having the favorable SNP alleleð Þ½ �:

Genomic selection (GS)
Genomic selection was conducted using all 4089 SNPs
and the SNPs showing association (LOD > 2.0) [50] with
the traits of interest, respectively. Genomic estimated
breeding value (GEBV) was estimated using 5 different
statistical models described as following.

Ridge regression best linear unbiased predictor (rrBLUP)
The rrBLUP model was y =WGβ + ε [25] where y is the
vector phenotype, β was the marker effect with β~N(0,
Iσ2β), W was the incidence matrix relating the genotype
to the phenotype, G was the genetic matrix, and ε was
the random error. The solution for the rrBLUP equation
was defined by β^=(ZTZ + Iλ)−1ZTy with Z =WG. The
ridge parameter was described as λ = σ2e/σ

2
β with σ2e be-

ing the residual variance and σ2β the marker effect vari-
ance. rrBLUP was performed using the ‘rrBLUP’ package
of R [51].

Genomic best linear unbiased predictor (gBLUP) [52]
The gBLUP model was yr = Xrβ + Zrμr + εr where the ‘r’
subscript referred to the genotypes involved in the refer-
ence panel, yr was the vector phenotype, β was the gen-
etic effect being assumed to be fixed, Xr was the

incidence matrix relating β to yr, μr denoted the poly-
gene random additive effect with μr ~N(0, Kσ

2
a) where

K was the Kinship matrix and σ2a the additive genetic
variance, εr was the random error with εr ~N(0, Iσ2e)
where I was an identity matrix and σ2e was the residual
variance.
The Kinship matrix was divided into reference and in-

ference panel as described below.

K ¼
Krr Kri

K ir K ii

0

@

1

A

where Krr was the variance-covariance matrix for the ref-
erence group, Kii represented the variance-covariance
matrix for the inference group, and Kir = (Kri)’ denoted
the covariance matrix between individuals from the ref-
erence and inference groups, respectively.
The predicted genetic effect in the inference panel was

obtained using the following formula [53].

μi ¼ Kir Krrð Þ−1μr
where ui denoted the polygene effect in the inference
group, and Kir, Krr, and μr were previously described.
gBLUP was performed using GAPIT [54].

Bayesian least absolute shrinkage and selection operator
(Bayesian LASSO)
Bayesian LASSO was a modified version of LASSO re-
gression. In Bayesian LASSO, posteriors related to the
genetic and residual variances were Exponential and
Multivariate Normal, respectively. The statistical model
was described as following [55].
y = μ + Xg + ε where y was the vector phenotype, μ de-

noted the overall mean, X represented the SNP matrix, g
was the vector of random effect due to SNPs, ε repre-
sented the vector of random residuals, the posterior dis-
tribution of g was defined by g|λ~∏j(λ/2)exp.{− λ|gj|}
with λ~Unif(0,1,000,000) being the λ prior, and the pos-
terior distribution of ε|σ2e~MVN(0, Iσ2e) with σ2e~Inv-
χ2(4) being the prior distribution for σ2e. Bayesian
LASSO was done in R using the package ‘BGLR’ [56]
with burn-ins and iterations of Markov-Chain Monte
Carlo (MCMC) equal to 5000 and 1000, respectively
[57].

Random Forest
Random forest regression was based upon on unpruned
tree decision [58]. In random forest regression, a new
split was obtained from a Bootstrap sample generated
from the training set. Splitting at the tree node level was
based upon randomly selected subsets of predictors. The
prediction of a new observation x((F^rf

B(x)) was the
mean outcomes obtained from B trees defined by {T(x,
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ψb)}1
B. Therefore, the prediction function was described

as following.
F^=(1/B)* Σb T(x, ψb) with b = 1….B and ψb denoted

the bth Random Forest tree defined by the split variables,
cutpoints at each node, and the terminal node. Random
Forest regression was established in R using the package
‘randomForest’ [59]. A total of 500 trees and 4 branches
were used [12].

Support vector machines
Support Vector Machines (SVMs) have been recently
widely used in genomic selection-related studies. This is a
kernel-based supervised machine learning approach with
a regression equation described as following [60].
y = f(X|β) + ε with f(X|β) = Σj βj Kh (X, Xj) being the

kernel generating function. In this study, a Gaussian ker-
nel was used. SVMs regression was performed in R using
the package ‘kernlab’ [61].

Cross-validation
A five-fold cross validation was performed for the gen-
omic selection study [62]. The association panel was
randomly divided into 5 disjoint groups. A total of 4
subsets were used as training set, and the remaining set
was considered testing set. A total of 100 replications
were conducted at each fold. Mean and standard errors
corresponding to each fold were computed. Genomic se-
lection accuracy was obtained by computing the Pear-
son’s correlation coefficient between GEBV and the
observed phenotype for the testing set as previously de-
scribed by [62].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-019-6275-z.

Additional file 1: Table S1. Descriptive statistics for leaf chlorophyll
content indices (CCI) of plants grown in soils without the soybean cyst
nematode (SCN), CCI of plants in soils infested with SCN, and reduction
in CCI by SCN.

Additional file 2: Table S2. Genomic selection accuracy for leaf
chlorophyll content indices (CCI) without the soybean cyst nematode
(SCN) infestation, CCI of the SCN-infested plants, and reduction in CCI by
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