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Abstract

Background: Researchers discover lncRNAs can act as decoys or sponges to regulate the behavior of miRNAs.
Identification of lncRNA-miRNA interactions helps to understand the functions of lncRNAs, especially their roles in
complicated diseases. Computational methods can save time and reduce cost in identifying lncRNA-miRNA
interactions, but there have been only a few computational methods.

Results: In this paper, we propose a sequence-derived linear neighborhood propagation method (SLNPM) to
predict lncRNA-miRNA interactions. First, we calculate the integrated lncRNA-lncRNA similarity and the integrated
miRNA-miRNA similarity by combining known lncRNA-miRNA interactions, lncRNA sequences and miRNA
sequences. We consider two similarity calculation strategies respectively, namely similarity-based information
combination (SC) and interaction profile-based information combination (PC). Second, the integrated lncRNA
similarity-based graph and the integrated miRNA similarity-based graph are respectively constructed, and the label
propagation processes are implemented on two graphs to score lncRNA-miRNA pairs. Finally, the weighted
averages of their outputs are adopted as final predictions. Therefore, we construct two editions of SLNPM:
sequence-derived linear neighborhood propagation method based on similarity information combination (SLNPM-
SC) and sequence-derived linear neighborhood propagation method based on interaction profile information
combination (SLNPM-PC). The experimental results show that SLNPM-SC and SLNPM-PC predict lncRNA-miRNA
interactions with higher accuracy compared with other state-of-the-art methods. The case studies demonstrate that
SLNPM-SC and SLNPM-PC help to find novel lncRNA-miRNA interactions for given lncRNAs or miRNAs.

Conclusion: The study reveals that known interactions bring the most important information for lncRNA-miRNA
interaction prediction, and sequences of lncRNAs (miRNAs) also provide useful information. In conclusion, SLNPM-
SC and SLNPM-PC are promising for lncRNA-miRNA interaction prediction.
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Background
Non-coding RNAs (ncRNAs) are a class of RNAs that are
not translated into functional proteins [1]. NcRNAs can be
classified into many types, e.g. long non-coding RNA, circu-
lar RNA, snRNA, etc. Long non-coding RNAs (lncRNAs)
are a kind of ncRNAs whose lengths are more than 200 nu-
cleotides [2]. Studies [3, 4] show that a great number of
lncRNAs are involved in many biological processes, such as
cell proliferation, chromatin remodeling, gene imprinting
and immune response. More importantly, some researchers
discovered that lncRNAs are associated with severe diseases
such as prostate cancer and gastric cancer [5–10].
LncRNAs play functional roles by interacting with

other biological molecules (DNAs, RNAs and proteins),
and the studies on lncRNA-biomolecule interactions
help to characterize the functions of lncRNAs. For ex-
ample, lncRNA loc285194 can interact with p53 gene
and act as a tumor suppressor [11]; lncRNA PVT1 inter-
acts with FOXM1 protein and promotes gastric cancer
progression [12]. For a long time, researchers have been
paying attention to lncRNA-DNA interactions [13, 14]
or lncRNA-protein interactions [15, 16]. Recently, some
researchers discover [17] that lncRNAs can act as decoys
or sponges to regulate the behavior of miRNAs. For ex-
ample, the lncRNA H19 is found to modulate let-7 fam-
ily of miRNAs [18]. Therefore, exploring lncRNA-
miRNA interactions contributes to understanding the
complicated functions of lncRNAs.
Previous studies conduct wet experiments to identify

lncRNA-miRNA interactions. For example, Amanda et al.
[18] carry out in vivo crosslinking combined with affinity
purification experiments to explore the interaction be-
tween lncRNA H19 and miRNA let-7. Based on the cross-
linking and real-time PCR (RT-qPCR) experiment, their
results demonstrated that lncRNA H19 can physically
interact with let-7 in vivo. Zhang et al. [19] once studied
the miRNA miR-7’s function in breast cancer stem cell
(BCSCs) and its associated lncRNA. By implementing
ChIP-PCR and Double-Luciferase Reporter assay, they
find that the downregulation of miR-7 in BCSCs might be
indirectly attributed to lncRNA HOTAIR. The wet
methods are time-consuming and labor-intensive; thus, it
is important to perform in silico prediction to refine the
candidate list for further validation experiments.
Recently, researchers introduce machine learning

techniques into the lncRNA-biomolecule interaction
prediction, especially the lncRNA-protein interaction
[20–25]. However, only a few lncRNA-miRNA inter-
action prediction methods have been proposed. Huang
et al. [26] propose a method named EPLMI, which relies
on the assumption that lncRNAs having similar expres-
sion profiles are prone to associate with a cluster of
miRNAs that have similar expression profiles. Huang
et al. [27] develop a novel group preference Bayesian

collaborative filtering model called GBCF, which picks
up a top-k probability ranking list for an individual
miRNA or lncRNA based on known miRNA-lncRNA
interaction network. Hu et al. [28] predict lncRNA-
miRNA interactions by integrating the expression simi-
larity network and the sequence similarity network, and
develop a method named INLMI. Nevertheless, these
methods have several limitations, which inspire us to de-
velop better models. Firstly, existing methods rely on
several features of lncRNAs and miRNAs, such as se-
quences, expression profiles and target genes, but ex-
pression profiles and target genes are not available for
all lncRNAs (or miRNAs). Secondly, many lncRNAs and
miRNAs do not have any known interaction, but a desir-
able model should be capable of predicting their
interactions.
In this paper, we propose a sequence-derived linear

neighborhood propagation method (SLNPM) to predict
lncRNA-miRNA interactions. First, we calculate inte-
grated lncRNA-lncRNA similarity and integrated
miRNA-miRNA similarity by combining known
lncRNA-miRNA interactions, lncRNA sequences and
miRNA sequences. As the extension of our previous
work [29], we consider two integrated similarity calcula-
tion strategies, namely similarity-based information
combination (SC) and interaction profile-based informa-
tion combination (PC). Second, the integrated lncRNA
similarity-based graph and the integrated miRNA
similarity-based graph are respectively constructed, and
the label propagation processes are respectively imple-
mented on two graphs to score lncRNA-miRNA pairs.
Finally, the averages of their outputs are adopted as final
predictions. In this way, we construct two editions of
SLNPM based on similarity information combination
(SLNPM-SC) and based on interaction profile informa-
tion combination (SLNPM-PC). The experimental re-
sults show that SLNPM-SC and SLNPM-PC predict
lncRNA-miRNA interactions with higher accuracy com-
pared with other state-of-the-art methods. We also
analyze the prediction capability of SLNPM-SC and
SLNPM-PC for lncRNAs (or miRNAs) which do not
have any known interaction, and the case studies dem-
onstrate that SLNPM-SC and SLNPM-PC help to find
novel interactions which do not exist in our dataset.
This paper makes the following contributions: (1) the

proposed SLNPM models make use of diverse informa-
tion to achieve high-accuracy performances; (2) the pro-
posed SLNPM models can deal with the lncRNAs (or
miRNAs) that do not have any known interaction.

Datasets and methods
Datasets
There are several datasets about lncRNAs, miRNAs and
lncRNA-miRNA interactions, such as lncRNASNP [17],
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NONCODE [30], miRBase [31] and miRmine [32].
LncRNASNP [17] contains experimentally validated
lncRNA-related SNPs and lncRNA-miRNA interactions,
which can facilitate to study lncRNAs’ functions. NON-
CODE [30] is an integrated knowledge database of non-
coding RNAs (ncRNAs). The ncRNA sequences and re-
lated information (e.g. function, cellular role, cellular lo-
cation, chromosomal information, etc.) in NONCODE
have been confirmed manually by consulting relevant lit-
erature. MiRBase [31] is a comprehensive database about
miRNAs, containing published miRNA sequences and
annotation. The database miRmine [32] provides high-
quality human miRNA-Seq and miRNA expression
profiles.
To compile our datasets, we first download data from

lncRNASNP, and obtain 8091 experimentally verified
lncRNA-miRNA interactions. After removing duplicated
associations, there remain 5118 interactions between
780 lncRNAs and 275 miRNAs. Then, we collect
lncRNA’s sequences from NONCODE and collect miR-
NAs’ sequences from miRbase. Thus, sequences are
available for 642 lncRNAs and 275 miRNAs. Next, we
obtain expression profiles of lncRNAs in 24 human tis-
sues from NONCODE, and obtain expression profiles of
miRNAs in 16 types of human tissues and 24 types of
cell types from miRmine. The expression profiles are
available for 417 lncRNAs and 265 miRNAs. Therefore,
we compile a dataset named SLNPM-S by removing
lncRNAs and miRNAs whose sequences or expression
profiles are unavailable. Similarly, we compile a dataset
named SLNPM-L by removing lncRNAs and miRNAs
whose sequences are unavailable. SLNPM-S serves as
the main dataset for model training and performance
evaluation, and SLNPM-L is used for the case study.
Table 1 summarizes the details of two datasets.

Linear neighborhood similarity measure
In previous work [33, 34], we proposed a novel similarity
measure named linear neighborhood similarity (LNS),
and successfully solved several problems in bioinformat-
ics [24, 35–37]. In this paper, we adopt the linear neigh-
borhood similarity measure (LNS) to calculate lncRNA-
lncRNA similarity and miRNA-miRNA similarity. Here
we first introduce the detailed process of LNS.
Given n-dimensional feature vectors x1, x2, ⋯, xm,

these feature vectors are considered as the data points in
the feature space. We concentrate the vectors row by
row to obtain the n ×m matrix X, where xi is the i th

row of the matrix X. It is assumed that each data point
can be reconstructed by the linear weighted sum of
neighboring data points. Generally, nearest neighbors
based on the Euclidean distance are selected for each
data point xi, and the ratio of the neighbors (selected
nearest neighbors vs all neighboring data points) is
called neighborhood ratio, denoted by K. N(xi) is the set
of selected nearest neighbors of xi. By minimizing the re-
constructive errors for all data points, we present the
following optimization problem:

min
W

1
2

X− C⊙Wð ÞXk k2F þ
μ
2

Xm
i¼1

C⊙Wð Þek k22 ð1Þ

s:t: C⊙Wð Þe ¼ e;W ≥0

where C is an indicator matrix. C(i, j) = 1 if xj ∈N(xi);
else C(i, j) = 0; C(i, i) = 0. ‖∙‖F is the Frobenius-norm.
e = (1, 1,…, 1)T, and ⊙ is Hadamard product. μ is the tra-
deoff parameter. W is a m ×m weight matrix, where the
ith row indicates the data points’ reconstruction contri-
butions to the data point xi.
To solve the objection function (1), we introduce the

Lagrange function:

L ¼ 1
2

X− C⊙Wð ÞXk k2F
þ μ

2
C⊙Wð Þek k22−λT C⊙Wð Þe−eð Þ−tr ΦT W

� �
ð2Þ

where Φ is Lagrange multiplier. Differentiating L with
respect to W, we have:

∇WL ¼ C⊙ C⊙Wð ÞXXT þ μ C⊙Wð ÞeeT−XXT−λeT
� �

−ΦT

By Complementary slackness condition, we obtain:

C⊙Wð ÞXXT þ μ C⊙Wð ÞeeT−XXT−λeT
� �

ijW ijCij

¼ 0

So Wij can be written as:

Wij ¼
Wij XXT þ λeT

� �
ij

C⊙Wð ÞXXT þ μ C⊙Wð ÞeeT� �
ij

x j∈N xið Þ
0 x j∉N xið Þ

8><
>:

ð3Þ
But there still exists λ in (3), and (2) has the equivalent

form:

Table 1 Summary of SLNPM-S and SLNPM-L datasets

Dataset LncRNAs MiRNAs Interactions Features

SLNPM-S 417 265 2272 Sequences, Expression Profiles

SLNPM-L 642 275 3784 Sequences
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min
ωi

Li ¼ 1
2

xi−
X

i j:xi j∈N xið Þωi;i j

����
����
2

þ μ
2

X
i j:xi j∈N xið Þ ωi;i j

�� ��� �2

¼ 1
2
ωi

TGiωi þ μ
2

ωik k21 ð4Þ

s:t:eTωi ¼ 1;ωi≥0

where Gi is the Gramm Matrix whose entry is ðxi; xi jÞ
ðxi; xik ÞT . The Lagrange function of (4) is:

Li ¼ 1
2
ωT
i G

iωi þ μ
2

ωik k21−λi eTωi−1
� �

−ηTωi ð5Þ

By Karush–Kuhn–Tucker (KKT) conditions, we
obtain:

∇ωi L
i ¼ Giωi þ μeeTωi−λie−η ¼ 0

∇λi L
i ¼ eTωi−1 ¼ 0

η≥0;ωi≥0; η jωi;i j ¼ 0

8<
:

Then, it can be inferred that:

ωT
i ∇ωi L

i ¼ ωT
i G

iωi þ μ ωT
i e

� �2
−λiω

T
i e ¼ 0

So:

λi ¼ ωT
i G

iωi þ μ eTωi
� �2� 	

=eTωi

The reconstruction error 1
2ω

T
i G

iωi ≈ 0. If ωi is the op-
timal solution for (5), eTωi − 1 = 0. So λi ≈ μ. Let λ = μe.
Then we obtain:

Wij ¼
Wij XXT þ μeeT

� �
ij

C⊙Wð ÞXXT þ μ C⊙Wð ÞeeT� �
ij

x j∈N xið Þ
0 x j∉N xið Þ

8><
>:

ð6Þ
Weight matrix W is updated according to Eq. (6) until

convergence.

Sequence similarity and interaction profile similarity
In this section, we introduce mathematical notations for
lncRNA (and miRNA) interaction profile, lncRNA (and
miRNA) sequence similarity and lncRNA (and miRNA)
interaction profile similarity. Given lncRNAs L1, …, Li,
…, Ll and miRNAs M1, …, Mj, …, Mm, their pairwise in-
teractions are represented by a l ×m interaction matrix
Y, where Yij = 1 if the lncRNA Li interacts with the
miRNA Mj, otherwise Yij = 0. By using the interaction
matrix Y, we define the interaction profiles for lncRNAs
and miRNAs. The interaction profile of lncRNA Li is a
binary vector specifying the absence or presence of its
interactions with every miRNA, and corresponds to the i
th row of Y, namely Y(i, :). The interaction profile of a

miRNA Mj is a binary vector encoding the absence or
presence of its interactions with every lncRNA, and cor-
responds to the j th row of Y, namely Y(:, j).
LncRNA sequences and miRNA sequences provide

important information for exploring their functions, and
the k-mer [38] is a popular sequence-derived feature,
which describes repeated patterns of sequences. There
exist four types of nucleotides i.e. A, C, G and T/U for
both lncRNA sequences and miRNA sequences. For the
k-mer feature, we count the frequencies of 4k types of k-
length contiguous subsequences along lncRNA (miRNA)
sequences. More specifically, for a lncRNA (or miRNA)
sequence x, the k-mer feature of the sequence is defined
as f kðxÞ ¼ ðd1; d2;…d4k Þ, where di is the occurrence fre-
quency of corresponding k-length contiguous subse-
quences. In this work, we set k = 5, and we present
lncRNAs and miRNAs with their corresponding k-mer
vectors. Then, we calculate sequence similarities for l
lncRNAs, denoted as a l × l matrix SLSF, by using the lin-
ear neighborhood similarity measure (LNS). Similarly,
we utilize LNS to calculate sequence similarities for m
miRNAs, denoted as a m ×m matrix SMSF.
Related studies [39–41] adopt biological molecules’

interaction profiles in prediction models and achieve
high-accuracy performance. These studies reveal the im-
portance of interaction profiles in predicting unknown
associations. Based on the interaction matrix Y, lncRNAs
L1, …, Li, …, Ll are represented by interaction profiles
Y(1, :), …, Y(i, :), …, Y(l, :), and miRNAs M1, …, Mj, …,
Mm are represented by interaction profiles Y(:, 1), …,
Y(:, j), …, Y(:, l). Then, we can respectively calculate
interaction profile similarities for l lncRNAs, denoted as
a l × l matrix SLIP, using the linear neighborhood similar-
ity measure; we calculate interaction profile similarities
for m miRNAs, denoted as a m ×m matrix SMIP.

Sequence-derived linear neighborhood propagation
method
Since we have the sequence feature and interaction pro-
files for lncRNAs (miRNAs), we integrate diverse infor-
mation of lncRNAs (or miRNAs) to develop prediction
models. On the one hand, information integration can
lead to improved performances. On the other hand,
there exist lncRNAs (miRNAs) that have no known
interaction with any miRNA (lncRNA), and the inter-
action profiles are unavailable for these lncRNAs (miR-
NAs). The information integration can deal with such
lncRNAs (miRNAs). Here, we propose a sequence-
derived linear neighborhood propagation method
(SLNPM) and consider two strategies: similarity-based
information combination (SC) and interaction profile-
based information combination (PC) to integrate diverse
features and meanwhile address above-mentioned
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problems. Thus, we present two editions of SLNPM:
sequence-derived linear neighborhood propagation
method based on similarity information combination
(SLNPM-SC) and sequence-derived linear neighborhood
propagation method based on interaction profile infor-
mation combination (SLNPM-PC). The flowchart of two
prediction models is shown in Fig. 1.

Similarity-based information combination
In this section, we propose the similarity-based informa-
tion combination strategy to build the sequence-derived
linear neighborhood propagation model, abbreviated as
SLNPM-SC.
For a lncRNA Li (miRNA Mj), which has no inter-

action with any miRNA (lncRNA), its interaction profile
is an all-zero vector. We cannot calculate the interaction

profile similarities for lncRNAs (miRNAs) without inter-
actions. Therefore, entries in the i th (j th) row and i th
(j th) column of the lncRNA (miRNA) interaction profile
similarity matrix SLIP (SMIP) are all zeros. The similarity-
based information combination strategy is described
below.
First, we calculate the sequence similarity SLSF for all

lncRNAs, and calculate the interaction profile similarity
SLIP for lncRNAs with interaction information. Then, we
calculate the integrated similarity SLIS for lncRNAs by:

SLIS i; :ð Þ ¼ SLIP i; :ð Þ if Li has interactions
SLSF i; :ð Þ otherwise



ð7Þ

Similarly, we calculate the sequence similarity SMSF for
all miRNAs, and calculate the interaction profile similar-
ity SMIP for miRNAs with interaction information. Then,

Fig. 1 Workflow of the sequence-derived linear neighborhood propagation method. The figure explains two models: SLNPM-SC and SLNPM-PC.
SLNPM-SC integrates sequence similarity and interaction profile similarity to obtain combined similarities, and then makes predictions based on
the combined similarities; SLNPM-PC utilizes the sequence similarities to complement the interaction profiles, and then calculates the interaction
profile similarity to make predictions
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we calculate the integrated similarity SMIS for miRNAs
by:

SMIS j; :ð Þ ¼ SMIP j; :ð Þ if M j has interactions
SMSF j; :ð Þ otherwise



ð8Þ

Then, we construct a directed graph based on the inte-
grated lncRNA similarity matrix SLIS, and construct an-
other directed graph based on the integrated miRNA
similarity matrix SMIS. Considering miRNA Mj, the j th
column of interaction matrix Y is regarded as the initial
labels of all nodes (lncRNAs) in the integrated lncRNA
similarity-based graph. The label information is itera-
tively propagated in the graph until convergence, and
the details about label propagation can refer to [42]. The
prediction matrix Pl with size l ×m is obtained. Simi-
larly, considering lncRNA Li, the ith row of interaction
matrix Y is regarded as the initial labels of all nodes
(miRNAs) in the integrated miRNA similarity-based
graph, and the l ×m prediction matrix Pm. Finally, the
prediction result of SLNPM-SC model is produced by:

PSLNPM−SC ¼ βPl þ 1−βð ÞPm ð9Þ
where 0 ≤ β ≤ 1 is the weighted coefficient.

Interaction profile-based information combination
In this section, we propose the interaction profile-based
information combination strategy to build a sequence-
derived linear neighborhood propagation model, abbre-
viated as SLNPM-PC.
The interaction profiles of lncRNAs (miRNAs) without

any interaction information are unavailable, and corre-
sponding rows (columns) in the interaction matrix are
all zeros. The interaction profile-based information inte-
gration strategy is described below.
For miRNA Li, which does not have any interaction,

its interaction profile is complemented by the sequence
information,

Y i; :ð Þ ¼ 1
Qi

X
ikϵN Lið ÞSLSF i; ikð ÞY ik ; :ð Þ ð10Þ

where N(Li) is the set of k most similar lncRNAs to the
lncRNA Li based on lncRNA sequence similarity SLSF,
and each of similar lncRNAs has at least one association
with miRNAs. Qi is the sum of similarity between the
lncRNA Li and k most similar lncRNAs, Qi ¼

P
ikϵNðLiÞ

SLSFði; ikÞ.
Similarly, for miRNA Mj, which does not have any

interaction, its interaction profile is complemented by
the sequence information,

Y :; jð Þ ¼ 1
Qj

X
jkϵN M jð ÞSMSF j; jk

� �
Y :; jk
� � ð11Þ

where N(Mi) is the set of k most similar miRNAs for the

miRNA Mj based on miRNA sequence similarity SMSF,
and each of similar miRNAs has at least one association
with lncRNAs. Qj is the sum of similarity between the
miRNA Mj and k most similar miRNAs, Qj ¼

P
jkϵNðM jÞ

SMSFð j; jkÞ.
After complementing interaction profiles by using

lncRNA (miRNA) sequence similarities, we can calculate
interaction similarity matrices for lncRNA and miRNA
respectively. Then, we construct prediction models
based on lncRNA-lncRNA similarity graph and miRNA-
miRNA similarity graph by using label propagation, and
the prediction models produce the prediction matrices
Pm and Pl. The final prediction matrix PSLNPM − PC is
produced by a weighted average of two prediction
matrices,

PSLNPM−PC ¼ βPl þ 1−βð ÞPm ð12Þ

where 0 ≤ β ≤ 1 is the weighted coefficient.

Results and discussion
Evaluation metrics
Here, we adopt 5-fold cross-validation (5-CV) to evalu-
ate prediction models. Specifically, we randomly split
known lncRNA-miRNA interactions into five subsets. In
each fold, we keep one subset as the testing set, and use
others as the training set. All the prediction models are
built on the interactions in the training set, and then
make predictions for other lncRNA-miRNA pairs. Then,
the predictions and real labels (interactions or not) for
these pairs are used to calculate evaluation metrics: the
area under receiver-operating characteristic curve
(AUC), the area under precision-recall curve (AUPR),
sensitivity (SEN), specificity (SPEC), precision (PREC),
accuracy (ACC) and F-measure (F).
The area under the precision-recall curve (AUPR) and

the area under the ROC curve (AUC) are adopted as the
evaluation metrics. AUPR and AUC evaluate the perfor-
mances of prediction models regardless of any threshold.
We also adopt binary classification metrics to measure the
models, i.e. recall (REC), specificity (SP), precision (PR), ac-
curacy (ACC) and F1-measure (F1). In the experiments, we
run 20 runs of 5-CV for each model and adopt averages.

Parameter settings
In this study, both SLNPM-SC and SLNPM-PC have
two major components: the linear neighborhood similar-
ity calculation and similarity-based label propagation.
The linear neighborhood similarity has the parameter:
neighbor number K, and the label propagation has the
parameter: absorbing probability α. β is a tradeoff par-
ameter in the final prediction phase. Here, we consider
different combinations of following values: {10%, 20%,
30%,…, 90%} of number of data points for K, {0.1, 0.2,
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0.3,…, 0.9} for α and {0, 0.05, 0.1,…, 0.95, 1} for β to
build SLNPM-SC model and SLNPM-PC model, and
then evaluate the influence of parameters. All the experi-
ments are conducted with 5-fold cross-validation on
SLNPM-S dataset. The result shows that SLNPM-SC
model achieves the best AUPR score of 0.6033 when
K = 80%, α = 0.4 and β = 0.25 and SLNPM-PC model
produces the best AUPR score of 0.5996 when K = 90%,
α = 0.4 and β = 0.25.
For simplicity, we use the parameter setting in the

SLNPM-SC model for analysis. Firstly, we set β = 0.25
and then evaluate the influence of K and α on the per-
formances of SLNPM-SC model. The AUPR scores of
SLNPM-SC models with different combinations of K
value and α value are visualized in Fig. 2 (a). This figure
indicates that the parameter α has great impact on the
performance of SLNPM-SC model. More specifically,
when α becomes greater, the performances first increase
and then decrease after a peak. Besides, better perform-
ance can also be obtained as the neighborhood ratio K
keeps increasing. This result might be the consequence
of more neighbors’ information being considered to cal-
culate similarity. Then, we fix K = 0.8 and α = 0.4 and
evaluate the influence of parameter β in the prediction
model. Note that β is a tradeoff parameter between
lncRNA-based prediction and miRNA-based prediction.
The parameter β = 1 means that SLNPM-SC only utilizes
the lncRNA-lncRNA similarity information in lncRNA-
miRNA interaction prediction. Vice versa, SLNPM-SC
only uses the miRNA-miRNA similarity information
when β = 0. All the results are summarized and shown in
Fig. 2 (b) and denote that the prediction model produces

the best result when β = 0.25. This result demonstrates
the SLNPM-SC model depends more on the miRNA
information-based component than the lncRNA
information-based component (0.75 VS. 0.25).
Therefore, we adopt K = 80%, α = 0.4 and β = 0.25 for

SLNPM-SC model and K = 90%, α = 0.4 and β = 0.25 for
the SLNPM-PC model in the following sections.

Results of SLNPM-SC and SLNPM-PC
SLNPM-SC integrates sequence similarity and inter-
action profile similarity to obtain combined similarities,
and then makes predictions based on the combined
similarities; SLNPM-PC utilizes the sequence similarities
to complement the interaction profiles and then calcu-
lates the interaction profile similarity to make
predictions.
To demonstrate the superiority of the SLNPM-SC and

SLNPM-PC, we build several similar models by using in-
dividual features or other similarity measures. First, we
respectively build sequence-derived linear neighbor
propagation (SLNPM) models based on either inter-
action profile similarities or sequence similarities. Since
existing work [43] ever used the expression profiles of
lncRNAs and miRNAs in predicting lncRNA-miRNA in-
teractions, we calculate the expression profile similarity
by using linear neighborhood similarity measure (LNS)
and build the SLNPM model. We also calculate the se-
quence similarity by using the Smith-Waterman algo-
rithm (SW) [44] and build the SLNPM model. The
performances of the above models are evaluated on
SLNPM-S dataset by using 5-CV, and results are shown
in Table 2. Clearly, SLNPM-SC and SLNPM-PC produce

Fig. 2 The influence of parameters on AUPR scores of SLNPM-SC model. a the influences of K and α when fixing β. b the influences of β when
fixing K and α
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better results than other SLNPM models, indicating the
effectiveness of two information combination strategies.
The SLNPM model produced by LNS has better perfor-
mances than the SLNPM model produced by SW, dem-
onstrating the LNS can better measure lncRNA-lncRNA
similarity and miRNA-miRNA similarity than SW.
Moreover, the SLNPM models which utilize interaction
profile similarities outperform other SLNPM models
based on individual feature similarities, revealing the im-
portance of interaction profiles.
Previous studies [26, 29] and our experimental results

demonstrate that interaction profiles are critical for pre-
dicting lncRNA-miRNA associations. However, inter-
action profiles of some lncRNAs (miRNAs) are
unavailable. Therefore, the models which mainly rely on
interaction profiles cannot make predictions for such
lncRNAs (miRNAs), and thus we solve this problem
with the proposed information combination strategies
which utilize the biological feature: lncRNA (miRNA) se-
quences. Besides, we notice that expression profiles can
also describe lncRNAs (miRNAs), and relevant study
[28] shows expression profiles play a crucial role in
lncRNA-miRNA interactions. To compare the effective-
ness of different information sources used in the com-
bination strategy, we respectively utilize sequences and
expression profiles to build SLNPM-SC and SLNPM-PC.
The performances of these models are evaluated by 5-
CV and detailed results are displayed in Table 3. Specif-
ically, we calculate the lncRNA expression profile simi-
larity and miRNA expression profile similarity by using
linear neighborhood similarity measure, and build
SLNPM-SC (M2) model and SLNPM-PC model (M4),
our original SLNPM-SC model(M1) and SLNPM-PC
model(M3) based on sequence similarity are denoted by
M1 and M3 respectively. Clearly, the SLNPM models
based on the sequence similarity can lead to much better
performances than the SLNPM models based on expres-
sion profile similarity.
Since we implement 20 runs of 5-CV for each model,

we can obtain 20 AUPR scores and 20 AUC scores of
each model. Further, we test the statistical difference be-
tween SLNPM-SC models (M1 and M2) and SLNPM-
PC models (M3 and M4) by using the paired t-test. For
the SLNPM-SC models, the P-values are 7.97E-27 (M2

VS. M1) and 1.07E-10 (M2 VS. M1) respectively in
terms of the AUPR scores and AUC scores. For the
SLNPM-PC models, considering the AUPR scores and
AUC scores, the P-values are 1.24E-22 (M3 VS. M4) and
1.63E-04 (M3 VS. M4), respectively. The experimental
results show that two editions of sequence-derived linear
neighborhood propagation method (M1 and M3) can
statistically outperform the SLNPM models based on ex-
pression information (M2 and M4) in terms of AUPR
and AUC (P-value< 0.05).

Comparison with state-of-the-art methods
To the best of our knowledge, there are only a few
machine-learning based methods for lncRNA-miRNA
interaction prediction. Here, we adopt EPLMI [26] and
INLMI [28] as benchmark methods. EPLMI is a two-way
diffusion model which uses the known lncRNA-miRNA
interaction-based bipartite graph and expression profiles
to predict lncRNA-miRNA interaction. We implement
EPLMI using its publicly available source code. INLMI
[28] integrates the expression similarity network and the
sequence similarity network to predict lncRNA–miRNA
interactions, and we implement this model according to
descriptions in [28]. Since predicting lncRNA-miRNA
interactions can be considered as a link prediction task,
we adopt several network link inference methods as
baseline methods, i.e. the collaborative filtering method
(CF) [45] and the resource allocation algorithm (RA)
[46]. The collaborative filtering method takes known
lncRNA-miRNA interactions as a bipartite graph and ex-
ploits external information, such as expression profiles
to calculate the lncRNA-lncRNA similarity and miRNA-
miRNA similarity. Then, CF method finds neighbors for
each lncRNA and each miRNA, and then predicts un-
known interactions by utilizing a weighted average of its
neighbors’ interacting miRNAs/lncRNAs, then combines
the lncRNAs’ neighbors-based prediction and the miR-
NAs’ neighbor-based prediction with a tradeoff param-
eter. The resource allocation algorithm also formulates
lncRNAs/miRNAs as nodes and lncRNA-miRNA inter-
actions as links in a bipartite graph. Interaction informa-
tion is iteratively propagated from miRNAs to their
linked lncRNAs, and then the information is allocated
from lncRNAs back to miRNAs. After finite iteration,

Table 2 Performances of SLNPM models based on different information sources

Information Source Similarity Computing AUPR AUC REC SP PR ACC F1

Expression Profiles LNS 0.0305 0.6981 0.0415 0.9974 0.0763 0.9935 0.0518

Sequences SW 0.1358 0.8245 0.2515 0.9956 0.1989 0.9925 0.2191

LNS 0.1856 0.8596 0.2883 0.9962 0.2436 0.9932 0.2621

Interaction Profiles LNS 0.5981 0.8756 0.5993 0.9990 0.7180 0.9973 0.6500

SLNPM-SC 0.6033 0.9115 0.6043 0.9989 0.7028 0.9972 0.6469

SLNPM-PC 0.5996 0.9006 0.6092 0.9989 0.7087 0.9973 0.6522
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final resources for miRNAs are probabilities that the
lncRNA interacts with these miRNAs. EPLMI and RA
have no parameter. INLMI has a parameter that repre-
sents the dimension of latent variable in the non-
negative matrix factorization. CF has a trade-off param-
eter for the lncRNAs’ neighbor-based prediction and the
miRNAs’ neighbor-based prediction. We tuned the pa-
rameters of INLMI and CF, and adopted the values that
produce the best results.
All models are evaluated on SLNPM-S dataset by

using 5-CV. As shown in Table 4, SLNPM-SC model
achieves AUPR score of 0.6033 and AUC score of
0.9115, and SLNPM-PC model produces AUPR score of
0.5996 and AUC score of 0.9006. The performances of
the proposed models are far better than EPLMI (AUPR
score of 0.0706 and AUC score of 0.8494), INLMI
(AUPR score of 0.0723 and AUC score of 0.8477), RA
(AUPR score of 0.5078 and AUC score of 0.8637) and
CF (AUPR score of 0.2363 and AUC score of 0.8610).
There are several reasons why SLNPM-SC and SLNPM-
PC have excellent prediction performances. On one
hand, the linear neighborhood similarity measure effect-
ively calculates the lncRNA-lncRNA similarities and
miRNA-miRNA similarities. On the other hand, the in-
tegrated similarities and complemented interaction pro-
file make use of diverse information.
In the computational predictions, the top-ranked pre-

dictions are very important and reflect the performances
of models. Here, we check up on the top-ranked predic-
tions ranging from top 100 to top 1000, and figure out
how many real interactions can be predicted. As shown
in Fig. 3, SLNPM-SC model and SLNPM-PC model per-
form better than the other three methods when checking
up on top-ranked predictions. In the top 100 predic-
tions, EPLMI, INLMI, RA, CF, SLNPM-SC and SLNPM-

PC find out 18, 19, 87, 33, 91 and 91 real interactions re-
spectively. Importantly, SLNPM-SC model and SLNPM-
PC model can respectively predict 71 and 70% of inter-
actions when only verifying top 1000 predictions.

Case studies
In this section, we conduct the experiments on SLNPM-
L dataset to demonstrate the practical capability of
SLNPM-SC and SLNPM-PC for the lncRNA-miRNA
interaction prediction.
First, we analyze the performances of SLNPM-SC and

SLNPM-PC for predicting lncRNAs (miRNAs) inter-
acted with a specific miRNA (lncRNA). In the experi-
ment, we remove the interactions of a specific lncRNA
or the interactions of a specific miRNA in our dataset,
and build the SLNPM-SC model and SLNPM-PC model
to predict the removed interactions. For every lncRNA
or miRNA, we adopt the prediction scores and real la-
bels (interaction or non-interaction) to calculate the
AUC scores. We conduct the statistical analysis on the
results for lncRNAs and miRNAs, and draw the boxplot.
As shown in Fig. 4, the medians of lncRNAs and miR-
NAs are all larger than 0.65, indicating SLNPM-SC
model and SLNPM-PC model can produce satisfying

Table 3 Performances of SLNPM models based on different similarities combinations

Models Model and Information Source AUPR AUC REC SP PR ACC F1

M1 SLNPM-SC (combining sequence similarity) 0.6033 0.9115 0.6043 0.9989 0.7028 0.9972 0.6469

M2 SLNPM-SC (combining expression profile similarity) 0.3962 0.9000 0.5669 0.9973 0.4734 0.9955 0.5135

M3 SLNPM-PC (complementing IP with sequence similarity) 0.5996 0.9006 0.6092 0.9989 0.7087 0.9973 0.6522

M4 SLNPM-PC (complementing IP with expression profile similarity) 0.5236 0.8980 0.5787 0.9983 0.5929 0.9966 0.5843

IP interaction profile

Table 4 Performances of different models on SLNPM-S dataset

Methods AUPR AUC REC SP PR ACC F1

EPLMI 0.0706 0.8494 0.1373 0.9962 0.0883 0.9939 0.1055

INLMI 0.0723 0.8477 0.1531 0.9956 0.0867 0.9935 0.1086

RA 0.5078 0.8637 0.5129 0.9987 0.6299 0.9967 0.5631

CF 0.2363 0.8610 0.4599 0.9956 0.3089 0.9934 0.3684

SLNPM-SC 0.6033 0.9115 0.6043 0.9989 0.7028 0.9972 0.6469

SLNPM-PC 0.5996 0.9006 0.6092 0.9989 0.7087 0.9973 0.6522

Fig. 3 Recall of different methods in top-ranked predictions. The X-
axis denotes the top predictions from the top 100 to the top 1000,
and the Y-axis denotes the recall produced by SLNPM-SC
and SLNPM-PC
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results in predicting lncRNA-interacting miRNAs and
miRNA-interacting lncRNAs.
Further, we build the SLNPM-SC model and SLNPM-

PC model based on SLNPM-L dataset to predict novel
lncRNA-miRNA interactions, which are not included in
the SLNPM-L dataset. Since the SLNPM-L dataset is
compiled from lncRNASNP [17], the predictions are val-
idated by other databases and publicly available litera-
ture. We take the lncRNA “MALAT1” and the miRNA
“hsa-miR-17-5p” as examples, and respectively build pre-
diction models (SLNPM-SC and SLNPM-PC) to predict
miRNAs interacting with “MALAT1” and lncRNAs
interacting with “hsa-miR-17-5p”. The lncRNA
MALAT1(metastasis-associated lung adenocarcinoma
transcript 1), a bona fide long noncoding RNA, is

reported to be closely related with lung cancer and is
one of the first discovered cancer-associated lncRNAs
[47, 48]. The miRNA has-miR-17-5p, also known as
miR-17, is identified as a member of solid cancer
miRNA signature [49], and also acts as both an onco-
gene and a tumor suppressor in different cellular con-
texts [50, 51].
The top 10 predictions for the lncRNA “MALAT1”

and the miRNA “hsa-miR-17-5p” are shown in Table 5.
Both SLNPM-SC and SLNPM-PC correctly predict that
hsa-miR-1 can interact with the lncRNA “MALAT1”.
The study [60] reported that MALAT1 was identified as
the target of miRNA hsa-miR-1, and MALAT1 could
directly bind with hsa-miR-1, and level of miRNA hsa-
miR-1 was negatively associated with that of MALAT1

Fig. 4 Boxplot of AUC scores for lncRNAs and miRNAs. a shows the boxplot of AUC scores of SLNPM-SC in predicting lncRNA-interacting miRNAs
and miRNA-interacting lncRNAs. b shows the boxplot of the AUC scores of SLNPM-PC model in predicting lncRNA-interacting miRNAs and
miRNA-interacting lncRNAs

Table 5 Top 10 prediction of LNPM-SC and SLNPM-PC for lncRNA “MALAT1” and miRNA “hsa-miR-17-5p”

SLNPM-SC SLNPM-PC

MALAT1 hsa-miR-17-5p MALAT1 hsa-miR-17-5p

NO miRNAs Confirmed? lncRNAs Confirmed? miRNAs Confirmed? lncRNAs Confirmed?

1 hsa-miR-1 YES [52] lnc-SNRPN-8 N.A. hsa-miR-1 YES [52] lnc-SNRPN-8 N.A.

2 hsa-miR-101-3p YES [53] KCNQ1OT1 N.A. hsa-miR-101-3p YES [53] KCNQ1OT1 N.A.

3 hsa-miR-206 YES [54] XIST YES [55] hsa-miR-142-3p YES [56] XIST YES [55]

4 hsa-miR-210-3p N.A. lnc-COL9A2–1 N.A. hsa-miR-206 YES [54] lnc-COL9A2–1 N.A.

5 hsa-miR-216a-5p YES [57] lnc-ALYREF-1 N.A. hsa-miR-210-3p N.A. lnc-ALYREF-1 N.A.

6 hsa-miR-329-3p N.A. COX10-AS1 YES [55] hsa-miR-216a-5p YES [57] COX10-AS1 YES [55]

7 hsa-miR-335-5p N.A. lnc-NFAT5–2 N.A. hsa-miR-335-5p N.A. lnc-NFAT5–2 N.A.

8 hsa-miR-3529-5p N.A. lnc-ACER2–1 YES [58] hsa-miR-376b-3p YES [52] lnc-ACER2–1 YES [58]

9 hsa-miR-362-3p N.A. lnc-LUZP1–1 YES [55] hsa-miR-455-5p YES [59] lnc-LUZP1–1 YES [55]

10 hsa-miR-376b-3p YES [52] lnc-NMRK1–1 N.A. hsa-miR-876-5p YES [52] lnc-NMRK1–1 N.A.

N.A not available.
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in breast cancer tissues. In general, SLNPM-SC success-
fully identifies 5 miRNAs interacting with the lncRNA
“MALAT1” and 4 lncRNAs interacting with the miRNA
“hsa-miR-17-5p”; SLNPM-SC identifies 8 miRNAs inter-
acting with the lncRNA “MALAT1” and 4 lncRNAs
interacting with the miRNA “hsa-miR-17-5p”. Therefore,
both SLNPM-SC and SLNPM-PC can predict novel
lncRNA-miRNA interactions with high accuracy.

Conclusions
LncRNA-miRNA interactions are critical to many biological
events, and exploring these interactions contributes to un-
derstanding lncRNA’s functions. In this work, we propose a
computational method named the sequence-derived linear
neighborhood propagation method (SLNPM). SLNPM
makes the best use of lncRNA sequences, miRNA sequences
and known lncRNA-miRNA interactions to predict novel
lncRNA-miRNA interactions. To deal with the miRNAs (or
lncRNAs) without interaction information, we introduce
two information combination strategies: similarity-based in-
formation combination and interaction profile-based infor-
mation combination, and develop two editions of SLNPM:
SLNPM-SC and SLNPM-PC. The proposed models are
compared with benchmark methods and baseline methods.
The experimental results show that the interaction profiles
are very important for the high-accuracy performances of
SLNPM-SC and SLNPM-PC, and the information combin-
ation strategies further improve performances. The predic-
tion capabilities of proposed models are also tested by case
studies, and predicted lncRNAs (miRNAs) for the given
miRNA (lncRNAs) are confirmed by existing literature. In
conclusion, SLNPM-SC and SLNPM-PC are promising for
lncRNA-miRNA interaction prediction. However, SLNPM
has several parameters, and it costs a large amount of time
to determine optimal parameters. How to effectively tune
parameters of SLNPM is our future consideration.
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