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Background: Metagenomes can be analysed using different approaches and tools. One of the most important
distinctions is the way to perform taxonomic and functional assignment, choosing between the use of assembly
algorithms or the direct analysis of raw sequence reads instead by homology searching, k-mer analysys, or detection of
marker genes. Many instances of each approach can be found in the literature, but to the best of our knowledge no
evaluation of their different performances has been carried on, and we question if their results are comparable.

Results: We have analysed several real and mock metagenomes using different methodologies and tools, and
compared the resulting taxonomic and functional profiles. Our results show that database completeness

(the representation of diverse organisms and taxa in it) is the main factor determining the performance of
the methods relying on direct read assignment either by homology, k-mer composition or similarity to marker
genes, while methods relying on assembly and assignment of predicted genes are most influenced by
metagenomic size, that in turn determines the completeness of the assembly (the percentage of read that

Conclusions: Although differences exist, taxonomic profiles are rather similar between raw read assignment
and assembly assignment methods, while they are more divergent for methods based on k-mers and marker
genes. Regarding functional annotation, analysis of raw reads retrieves more functions, but it also makes a
substantial number of over-predictions. Assembly methods are more advantageous as the size of the metagenome
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Background

Since its beginnings in the early 2000s, metagenomics has
emerged as a very powerful way to assess the functional and
taxonomic composition of microbiomes. The improvement
in high-throughput sequencing technologies, computational
power and bioinformatic methods have made metagenomics
affordable and attainable, increasingly becoming a routine
methodology for many laboratories.

The usual goal of metagenomics is to provide func-
tional and taxonomic profiles of the microbiome, that is,
to know the abundances of taxa and functions. A meta-
genomic experiment consists of a first wet-lab part,
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where DNA from samples is extracted and sequenced,
and a second in silico part, where bioinformatics analysis
of the sequences is carried out. There is not a golden
standard for performing metagenomic experiments, es-
pecially regarding the bioinformatics used for the
analysis.

Usually, one of the first steps in the analysis involves
the assembly of the raw metagenomic reads after quality
filtering. The objective is to obtain contigs, where genes
can be predicted and then annotated, usually by means
of comparisons against reference databases. It is sensible
to think that the taxonomic and functional identification
is more precise having the full gene than just the frag-
ment of it contained in a short read. Also, taxonomic
classification benefits of having contiguous genes, be-
cause since they come from the same genome, non-
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annotated genes can be ascribed to the taxon of their
neighbouring genes. Therefore, obtaining an assembly
can facilitate considerably the subsequent annotation
steps.

However, de novo metagenomic assembly is a complex
task: the performance of the assembly is dependent on
the number of sequences and the diversity of the micro-
biome (richness and evenness of the present species) [1],
and a fraction of reads will always remain unassembled.
Microbiomes of high diversity or high richness (those
presenting many different species) such as those of soils,
are harder to assemble, likely to produce more misas-
sembles and chimerism [2], and will produce smaller
contigs.

From a computational point of view, the assembly step
often requires large resources, especially in terms of
memory usage, although modern assemblers have some-
what reduced this constraint. Different assemblers are
available, which use diverse algorithms and heuristics
and hence may produce different results, whose assess-
ment is difficult.

Probably because of these problems, some authors
prefer to skip the assembly step and proceed to the dir-
ect functional/taxonomic annotation of the raw reads,
especially when the aim is just to obtain a functional or
taxonomic profile of the metagenome [3-8]. This ap-
proach provides counts for the abundance of taxa and
functions based on the similarity of the raw reads to cor-
responding genes in the database. There are two main
drawbacks of working with raw reads in this way: first,
since it is based on homology searches for millions of se-
quences against huge reference databases, it usually
needs large CPU usage, especially taking into account
that for taxonomic assignment the reference database
must be as complete as possible to minimize errors [9];
and second, the sequences could be too short to produce
accurate assignments [10, 11]. Also, it is generally harder
to annotate functions than taxa, because short reads are
often not discriminative enough to distinguish between
functions, since they may map to promiscuous domains
that can be shared between very different protein.

Another alternative to assembly is to count the k-mer
frequency of the raw reads, and compare it to a model
trained with sequences from known genomes, as
implemented in Kraken2 [12] or Centrifuge [13]. As k-
mer usage is linked to the phylogeny and not to func-
tion, these methods can be used only for taxonomic
assignment.

Finally, also for taxonomic profiling other methods rely on
the identification of phylogenetic marker genes in raw reads
to estimate the abundance of each taxa in the metagenome,
for instance Metaphlan2 [14] or TIPP [15]. These methods
must be considered profilers, since they do not attempt to
classify the full set of reads, but instead recognize the identity
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of particular marker genes to infer community composition
from these.

These different methods (assemblies, raw reads, k-mer
composition and marker gene profiling) are likely to produce
different results. While benchmarking and comparison of
metagenomic software has been extensively done, for in-
stance in the GAGE (Critical evaluation of genome and
metagenome assemblies) [16] and CAMI (Critical Assess-
ment of Metagenome Interpretation) [17] exercises, the in-
fluence of these different annotation strategies has been less
studied. We have scarce information on how diverse the
results of these approaches are, and whether they are so dif-
ferent as to compromise the subsequent biological interpret-
ation of the data. This is a relevant point, since these
methods are being used indistinctly for metagenomic ana-
lyses and their results could not be comparable if the differ-
ences are large.

The objective of the present analysis is to estimate the
differences between all these approaches. To this end,
we will functionally and taxonomically classify several
real and mock metagenomes using direct assignment of
the raw reads, or assembling the metagenomes first, an-
notating the genes, and then annotating the reads using
their mapping to the genes [18, 19]. For taxonomic ana-
lysis, we also use Kraken2 as a k-mer classifier, and
Metaphlan2 as a marker gene classifier.

The mock communities of known composition can
help us to evaluate the goodness of the results. Even if
mock communities are rather less complex than real
ones, they are valuable tools for having a framework to
compare the annotations done by different methods to
the real expectations.

We aim to illustrate how different approaches can lead to
diverse results, and therefore different interpretations of the
underlying biological reality. We hope that this can help in
the informed choice of the most adequate method according
to the particular characteristics of the dataset.

Results

Mock communities

To better estimate the performances of each method of as-
signments, we created mock communities simulating micro-
biomes of marine, thermal, and gut environments. We
selected 35 complete genomes from species known to be as-
sociated to these environments, according to a compiled list
of preferences between taxa and habitats [20], and created
mock metagenomes by selecting a variable number (from 0.2
M to 5M) of reads from them, in diverse proportions. The
composition of these mock metagenomes can be found in
Additional file 8: Table S1.

Taxonomic annotations
We used different methods to taxonomically assign the
reads from these metagenomes (see Fig. 1 and methods
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Fig. 1 Schematic description of the procedure followed for the analysis. Box
(.

ed in blue, taxonomic annotations. In red, functional (KEGG) annotations

for full details): 1) We ran a homology search of the
reads against the GenBank NR database, followed by as-
signment using the last common ancestor (LCA) of the
hits. We termed this approach “assignment to raw reads”
(RR). 2) We also used the SqueezeMeta software [21] to
proceed with a standard metagenomic analysis pipeline:
assembly of the genomes using Megahit [18], prediction
of genes using Prodigal [22], taxonomic assignment of
these genes by homology search against the GenBank nr
database (followed by LCA assignment as above), taxo-
nomic assignment of the contig to the consensus taxon

of its constituent genes, mapping of the reads to the
contigs using Bowtie2, and taxonomic annotation of the
reads according to the taxon of the gene (assembly by
genes, Ag) or contig (assembly by contigs, Ac) they
mapped to. We also used a combined approach in which
the read inherited the annotation of the contig in first
place, or the one for the gene if the contig was not anno-
tated (assembly combined, Am). 3) In addition, we used
Kraken2, a k-mer profiler that assigns reads to the most
likely taxon by compositional similarity. 4) Finally, we
used Metaphlan2, which attempts to find reads
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Fig. 2 Taxonomic assignments for the mock metagenomes. Left panels show the results for all the reads, right panels show the results removing
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Numbers above the bars in the right panels correspond to the Bray-Curtis distance to the composition of the original microbiome, and the number of
taxa (phyla) recovered by each method, with the real number of taxa present in the mock metagenome indicated in the “Real” column

corresponding to clade-specific genes to assign the cor-
responding read to the target clade.

We first will focus in the 1 M dataset for discussing
the results. The results for the phylum rank can be
seen in Fig. 2, and for the family rank in Add-
itional file 1: Figure S1.

The methods classifying more reads are RR for the
marine mock metagenome, Am for the thermal, and

Kraken2 for the gut. As expected, the assembly ap-
proaches work better when the assemblies recruit more
reads (the percentage of mapped reads in the assemblies
is 75, 84 and 81% for marine, thermal and gut, respect-
ively). Kraken2 seems to be especially suited to classify
gut metagenomes, but misses many reads for metagen-
omes from other environments. RR also classifies more
reads for gut metagenomes, indicating that the
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representation of related genomes and species in the data-
base, which is higher for gut genomes, is an important fac-
tor. We measured the Bray-Curtis dissimilarities to the
real taxonomic composition of the mock metagenome to
evaluate the closeness of the observed results to the ex-
pected ones. The results are rather close to the original
composition for the assembly approaches and RR, with
best results for the gut metagenome. Kraken2 performs
well for the marine and gut metagenomes, even if it misses
entire phyla in some instances (for example, Nitrospinae
in the thermal metagenome). Metaphlan2 provides the
more distant profile in all cases. The Bray-Curtis dissimi-
larities between the taxonomic profiles generated by each
method can be seen in Additional file 2: Figure S2. The
RR and assembly approaches, which relied on homology
annotations, led to similar results. On the other hand, the
results from Kraken2 and Metaphlan2 were markedly dif-
ferent from the others.

We also inspected the number of reported phyla by each
method. Excess of predicted phyla will be produced by in-
correct assignments. Metaphlan2 is the only method that
reports the exact number of phyla in all the mock micro-
biomes, while the assembly approaches provide a few
more, and RR and Kraken2 report a higher number of su-
perfluous taxa. Especially RR produces a very inflated
number (more than ten times higher for the thermal mock
microbiome). The version of Kraken2 that we used pro-
vided a maximum of 42 phyla for training, and therefore
this is the maximum number of phyla that it will predict.
In all cases the number is close to this top, indicating that
Kraken2 predicts almost all taxa it has in its training set,
irrespectively of the environment.

We next measured the error by inspecting the accur-
acy of the taxonomic annotations of the reads using the
different methods (Fig. 3). All methods perform well
(less that 1% error) for the gut metagenome at the
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phylum rank, and also at the family rank. Nevertheless,
substantial differences appear for the other two environ-
ments, where errors increase notably. At phylum rank,
more errors are done for the thermal metagenome, while
at family rank, the marine metagenome is the most chal-
lenging. This is unrelated to the number of taxa in both
metagenomes, as the thermal set has both more phyla
and families. The most precise method is Metaphlan2,
that makes no errors, although the low number of reads
classified with this method produces a skewed compos-
ition as seen in Fig. 2. The assembly methods have less
that 1% error in all cases, and annotation by contigs is
more accurate than by genes, evidencing the advantage
of having contextual information. RR taxonomic annota-
tion exceeds the error rate of the assemblies, reaching
4% for the thermal metagenome at the family level. Kra-
ken2 is the method making more errors, more than 4%
for thermal and marine metagenomes at the phylum
level, and reaching more than 10% for the marine meta-
genome at the family level. This is also reflected in the
high amount of “Other taxa” classifications for Kraken2
in the Fig. 2.

The results were almost identical when replacing the
megahit assembler by metaSPAdes [23], as it can be seen
by the very low Bray-Curtis dissimilarities between
Megahit and metaSPAdes results (Additional file 3:
Figure S3).

We were aware that our results could be dependent
on metagenomic size, especially those related to the
assemblies for which the number of sequences is a
critical factor. Therefore, we did additional tests to
evaluate the performance of each method regarding
metagenomic size. Our hypothesis was that methods
that classify reads independently (RR, Kraken2 and
Metaphlan2) would not be influenced, while the an-
notation by assembly could be seriously impacted. We
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Fig. 3 Percentage of discordant assignments between the different methods, for mock metagenomes. Only reads that were classified by both
compared methods are considered (i.e. unclassified reads by either method are excluded). A: Assignment by Megahit assembly mapping to: (g: genes;
C: contigs; m: combination of contigs and genes). RR: Assignment by raw reads; KR: Kraken2; MP: Metaphlan2
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created several mock metagenomes of different sizes
for marine, thermal and gut environments, extracting
reads from genomes strongly associated with these
environments [20]. We created mock metagenomes
for 200.000 (0.2 M), 500.000 (0.5M), 1.000.000 (1 M),
2.000.000 (2 M) and 5.000.000 (5M) paired sequences,
all with the same composition of species (Additional
file 8: Table S1). We annotated these datasets using
the different methods, and calculated the Bray-Curtis
distance between the resulting distribution of taxa
and the real one. The results can be seen in Fig. 4
for the phylum rank, and in Additional file 4: Figure
S4 for the family rank.

As we expected, RR, Kraken2 and Metaphlan2 are not
affected by the size of the metagenome. Metaphlan2 is
the method diverging more from the actual composition,
except for the thermal mock community at family rank.
Of these three methods directly assigning reads, RR is
clearly the one providing the closest estimation to the
real composition. Again, these methods perform much
better for the gut mock metagenome than for the rest.

The assembly methods are, as expected, highly
dependent of the amount of reads that can be assem-
bled. For very small samples, where less than 50% of
the reads are mapped to the assembly, it provides
much more divergent classifications than other
methods. When the percentage of assembled reads is
in the range of 80-85%, they obtain similar results
than RR. When the percentage of assembled reads is
higher than that, taxonomic annotation by assembly
outperforms the other methods. This indicates that
the coverage of the metagenome (the number of
times that each base was sequenced), which is directly
related to the percentage of assembled reads, can be
seen as the factor determining if it is more advanta-
geous using RR or assembly methods for analysing
metagenomes.

Functional annotations

We also analysed the functional assignment for these
mock metagenomes. The reference was the annotation
of genes to KEGG functions. We classified the reads
using the Assembly (F_Ag) and Raw Read (F_RR) anno-
tation approaches. Kraken2 and Metaphlan2 were
skipped since they do not provide functional annotation,
and Ac and Am because there is not a contig annotation
for functions (each gene has a different function). The
results can be seen in the Fig. 5.

The maximum percentage of reads that can be func-
tionally classified is around 60% for all metagenomes,
the ones mapping to functionally annotated genes in the
reference genomes. The rest correspond to reads from
genes with no known function or with no associated
KEGG. RR classification classifies around 50% of the

Page 6 of 16

reads in all cases. The variation with metagenomic size
(the number of picked reads) is almost inexistent be-
cause the reads are extracted from the same background
distribution of functions and they are annotated inde-
pendently. F_Ag functional assignment, in turn, varies
with size since it depends on metagenomic coverage, as
stated above. We can see that for the biggest size (5M),
the percentage of assignments is larger for F_Ag than
for F_RR. In this case there are no evident differences
regarding the diverse environments.

Concerning the number of functions detected, it can
be seen how the F_RR approach is over-predicting the
number of functions, exceeding these actually present in
the complete metagenome. This is an indication that this
method is producing false positives, and the number of
predicted functions increases linearly and shows no sat-
uration, in contrast to the real number of functions. On
the other hand, F_Ag produces a very low number of
functions when the metagenomes are small, but it
quickly increases to numbers close to the real ones for
bigger sizes.

We also quantified the number of wrong annotations
by comparing the functional annotation of reads by each
method with regard to the real scenario. The results can
be seen in Fig. 6, and show that F_Ag has consistently a
lower number of errors than F_RR, for all data sets. The
differences between methods (discordant annotations)
can also be seen in Additional file 9: Table S2.

F_RR assignments are always more error-prone. As for
the taxonomic analysis, the thermal metagenome is the
most difficult to annotate, and the gut one the easiest.
The percentage of errors does not vary with sizes, and it
is above 4% in the thermal metagenome. The F_Ag an-
notations are more precise, not exceeding the threshold
of 3% errors. The influence of sizes can be noticed also
here, with usually fewer errors in the bigger metage-
nomic sizes, but this trend is not so marked as for taxo-
nomic annotations. For instance, the gut example shows
a very stable error rate around 1.8%, irrespectively of the
metagenomic size.

Real metagenomes

Using methods described above, we analysed three dif-
ferent metagenomes coming from different environ-
ments, coincident with the mock communities studied
previously: a thermal microbial mat metagenome from a
hot spring in Huinay (Chile) [24], a marine sample from
the Malaspina expedition [25], and a gut metagenome
from the Human Microbiome Project [26] (thermal,
marine and gut from now on).

Taxonomic annotations
The results of the taxonomic annotation can be seen in
Fig. 7, for the assignments at phylum rank. The results
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at family taxonomic rank are shown in Additional file 5:
Figure S5, and show similar trends. The Bray-Curtis dis-
similarities between the profiles generated by each
method can be seen in Additional file 6: Figure S6.
Assembly methods achieve the highest number of clas-
sified reads in the three metagenomes. According to the
results for mock communities, we anticipated that the
amount of classifications by these methods would be re-
lated to the percentage of reads that were assembled.

This will be ultimately related to the total size of the
metagenome and the diversity of the community. The
ratio of mapped reads is 72, 93, and 94% for the marine,
thermal and gut samples, respectively. These numbers
set the maximum percentage of reads that can be
assigned by the assembly approaches. The most
complete classification is achieved for the gut sample,
allowing the taxonomic assignment of 73% of the reads.
A substantial reduction is observed for the thermal
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sample (65% of reads assigned), even if the percentage of
mapped reads is almost the same. This must be attrib-
uted to representation biases in the reference databases.
This sample belongs to a much less studied habitat, and
therefore the corresponding taxa are expected to be less
represented in the databases, complicating the assign-
ment. Finally, the marine sample is the most difficult to
annotate by assembly (51% of the reads), because of the
lower percentage of assembled reads.

The percentage of assignment is higher when using
the combination of mapping reads to genes and contigs
(Ac). Using the contig annotation can overcome unan-
notated genes, while gene annotations are not affected
by the lack of consensus needed for contig assignment.

Taxonomic annotation of the raw reads (RR) resulted in
10-20% less classified reads, with the gut metagenome be-
ing the best annotated (65%), and marine and thermal
having similar percentages (42-45% annotated reads).
Kraken2 classification provides less annotations, around
25-30% less than the assembly. Again, the gut metagen-
ome is the one having more assignments, benefiting of the
increased completeness of the databases in gut-associated
taxa. Finally, Metaphlan2 is able to classify very few reads,
which is expected because it only annotates marker
(clade-specific) genes.

The relative taxonomic composition at the phylum
level obtained by each approach, discounting the effect
of the unclassified reads, can be also seen in Fig. 7.
Ideally, we should expect the same composition for all
methods for the same metagenome, but instead we see
that they diverge substantially. One of the most affected

phylum is Cyanobacteria, present in thermal and marine
samples. Assembly approaches report lower quantities
for this taxon than RR and especially Kraken2, which
greatly increases its proportion in the two datasets to
unrealistic values, particularly in the case of the marine
sample. The gene marker approach of MetaPhlan2 pre-
dicts less Cyanobacteria than the rest in the marine sam-
ple, but much more than the others in the thermal
sample. The rest of the taxa are affected in different
ways. Rare taxa such as Armatimonadetes in the thermal
sample are obtained in greater abundance by the assem-
bly approaches, and are ignored by Kraken2 and
Methaphlan2, probably because of the absence of
complete genomes belonging to these phyla in their
training data sets. This is an example of how the gaps in
the representation of taxa in the set of available
complete genomes can hamper the taxonomic annota-
tions of methods based on them [9, 27].

While the inferred composition of the gut metagen-
ome is roughly the same for all approaches, the marine
and thermal metagenomes vary slightly between raw
reads and assembly, and greatly for Kraken2 and
Metaphlan2. These divergences can be seen in the Bray-
Curtis dissimilarity values in Additional file 6: Figure S6.
The thermal metagenome shows big variations that
affect for instance the determination of the most abun-
dant taxon in the sample (Chloroflexi by assembly, Pro-
teobacteria by raw reads, and Cyanobacteria by Kraken2
and Metaphlan2). Therefore, the choice of the method
can influence greatly the ecological inferences obtained
from the analysis.
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We compared the discrepancies between the assign-
ments done by different methods, by counting the cases
in which the annotations were different at the phylum
level (not-annotated reads were not considered). The re-
sults can be seen in Fig. 8. Consistently with the previ-
ous results, the thermal dataset is the one having more
differences. The differences between the assembly
methods are very low, and are also low between RR and
assembly methods (less than 3% of the reads in the ther-
mal dataset, less than 1% in the others). On the contrary,
the differences were much bigger between Kraken2 and

the rest: more than 8% for the thermal dataset, more
than 4% for the marine, and almost 4% for the gut. This
indicates again that the Kraken2 assignment is more dis-
similar than the rest.

The statistical significances of the differences between
different methods are shown in Additional file 7: Figure
S7. The three assembly-based methods and RR were sig-
nificantly (Kruskal-Wallis p <0.05) more similar to the
rest, while Kraken2 and Metaphlan2 were significantly
(Kruskal-Wallis p <0.05) more dissimilar to other
methods.
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Functional annotations
We studied the distribution of functions by the assign-
ment of reads to KEGG functions with the Ag (F_Ag)
and RR (F_RR) approaches. F_Ag is again able to classify
more reads than the F_RR in all metagenomes, even if
the difference is small (Fig. 9 top). In contrast, F_RR as-
signment detects a much higher number of KEGGs in
all cases (Fig. 9 bottom). These correspond to low-
abundance functions. The percentage of functions repre-
sented by less than 10 reads in F_RR is 20, 15 and 23%
for marine, thermal and gut metagenomes, respectively.
These could correspond to low-coverage parts of the
metagenome that could not be assembled. Also, these
could correspond to false positives in F_RR annotation,
as described when working with mock communities.
Figure 10 (left) shows the distribution of abundances
of each KEGG function as rank-abundance curves. Dis-
tributions for F_Ag and F_RR are almost indistinguish-
able, except for the higher number of KEGG functions
predicted by F_RR, and the slightly higher abundance
for all functions using the assembly, because of the
higher number of reads assigned by this method. A com-
parison of the abundance of KEGG functions can be
seen in Fig. 10 (right), where the good fit indicates that
there are not big differences between the functional as-
signments by both methods. The number of discordant
assignments (reads classified to different functions by
both methods) is low: 1.49, 2.21 and 0.88% for marine,
thermal and gut metagenomes, respectively.

Discussion

Different approaches can be used for the taxonomic and
functional annotation of metagenomes. Working with
raw reads, taxonomic annotation can be done using
homology, k-mer composition or gene marker searches.
But we also can assemble the reads and use the assembly
as a framework for the annotation, since this will provide
longer fragments of genes (or complete ones) and con-
textual information. There is not a standard way of
proceed, and examples of each approach can be found in
the literature. However, it is unclear how the diverse ap-
proaches can influence the accuracy of the results. We
wanted to explore the characteristics of each method to,
if possible, provide hints helping the choice of the most
appropriate approach.

Regarding taxonomic annotation, our study shows that
the differences between different methods are significant
(Additional file 7: Figure S7). Especially Kraken2 and
Metaphlan2 produce taxonomic assignations that are
quite different to the ones obtained using assembly-
based or raw read assignment approaches.

Assembly and especially the assignment of raw reads
are demanding methods in time and computational re-
sources. In contrast, Kraken2 and Metaphlan2 are very
fast methods that can be very useful to obtain a quick
view of the diversity of the metagenomes. Nevertheless,
the analysis of mock metagenomes shows that these
methods are less accurate, especially for non-human-
associated environments. They are rather sensitive to the
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composition of the databases, and their performance de-
creases when rare species are present in the metagen-
ome. This drawback also affects to the assignment of
raw reads by homology.

While for the methods based on annotation of reads
database completeness is the main factor determining
their performance, for the assembly approaches the crit-
ical issue is metagenomic coverage, that in turn influ-
ences the completeness of the assembly. When the
assemblies recruit 85% or more of the original reads, as-
sembly approaches are more advantageous in terms to
percentage of reads classified, smaller number of errors
and importantly, similarity to the real scenario. When
the coverage is reduced because of both a high microbial
diversity and a small number of reads, the assignment of
raw reads could be preferred. Assembly approaches
seem to be less influenced than others by database com-
pleteness because having longer sequences (full genes in-
stead of short reads) is advantageous when only distant
homologies can be found, and, for taxonomic

annotation, having the contextual information of the
contigs helps to infer annotations for all genes on it.
Nevertheless, they are also affected to some extent by
database composition.

Therefore, when dealing with small metagenomes
from well-studied ecosystems, such as these human-
associated, the usage of raw read assignment can be
preferred for taxonomic assignments, at least for the
ranks considered in this study. In other instances,
assembly approaches should be favoured. This is es-
pecially true if we want to obtain bins, where co-
assembly of metagenomes is mandatory. We did not
consider the effect of co-assembly in the taxonomic
annotation, but since it helps to obtain more and
longer contigs and therefore to map more reads to
the assembly, it is expected to improve the annota-
tions even more. It would be also possible to follow
a combined approach in which assembly is done and
used as a reference, and then the remaining un-
mapped reads are classified independently.
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For functions, the KEGG assignments for the real
metagenomes show a high degree of correlation between
assembly and raw read annotation. Short reads are often
not discriminative enough to distinguish between func-
tions, and consequently assembly annotation provides a
higher percentage of functional classification. On the
other hand, functions represented by a few reads will be
probably missed by the assembly approaches. Because of
this, raw read assignment provides a higher number of
functions than the assembly. Given these advantages and
disadvantages of each method, if one is interested in

looking for specific functions, a combination of both ap-
proaches would be advisable.

Conclusions

When choosing the most appropriate method for analys-
ing metagenomes, several factors must be taken into
account: the underlying diversity and richness, often re-
lated to the type of habitat, will influence coverage be-
cause rich and diverse samples are more difficult to
assemble. Also, metagenomes from less studied habitats
will likely find less similarities in the databases.
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Therefore, when dealing with small metagenomes from
well-studied ecosystems, the usage of raw read assign-
ment can be advantageous. Otherwise assembly ap-
proaches are more accurate.

Methods

We have used three different metagenomes: 1) a mi-
crobial mat metagenome from a hot spring in Huinay
(Chile), corresponding to a sample taken at 48 °C, and
sequenced using Illumina HiSeq (82.7 M reads, 9.8 G
bases, accession SRP104009) [24] 2) A marine meta-
genome corresponding to Malaspina sampling exped-
ition, taken at 3m depth in the Pacific Ocean [25],
also sequenced with Illumina HiSeq (168.9 M reads,
16 G bases). 3) A gut metagenome from the human
microbiome project [26], sequenced with the Illumina
Genome Analyzer II (68.1 M reads, 6.4 G bases, acces-
sion SRS052697).

For assessing the performance of the approaches,
we used mock metagenomes of different sizes (0.2 M,
05M, 1M, 2M, 5M reads) built with genomes of
species significantly associated to each of the three
environments considered: marine, thermal and gut.
We calculated the associations between species and
environments as in [20]. We selected sets of 35 envir-
onment- associated species with complete genomes
available (Additional file 8: Table S1), and calculated
their abundance ratios following a hypergeometric
distribution, used to simulate the ratios of species in
samples [28]. Knowing these ratios and the total
number of reads, we estimated how many reads of
each species must be taken and created the mock
metagenome by simulating the sequencing of the re-
quired number of paired-end reads from these
genomes.

For analysing the mock metagenomes, we followed the
same approaches above, but we removed the corre-
sponding genomes in the NR database used for hom-
ology searching. We also created custom databases for
Kraken2 and Metaphlan2 in which we also removed
these genomes.

A schematic description of the procedure of analysis can
be seen in Fig. 1. The taxonomic classification of the raw
reads (RR) was obtained by direct homology searches against
GenBank NR database (release 223, December 2017) using
DIAMOND (v0.9.13.114) with a minimum e-value threshold
of 1e-03 [19]. The taxonomic annotations were done using a
last-common ancestor (LCA) algorithm. LCA first select the
hits having at least 80% of the bitscore of the best hit and
overcoming the minimum identity threshold set for a par-
ticular taxonomic rank (85, 60, 55, 50, 46, 42 and 40% for
species, genus, family, order, class, phylum and superking-
dom ranks, respectively) [29]. This means that in order to
classify a sequence at the phylum taxonomic rank, for
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instance, hits for that sequence must be at least 42% identi-
cal. Then it looks for the common taxon for all hits at the
desired taxonomic rank (although some flexibility is allowed,
for instance admitting one outlier if the number of hits is
high). In case that a common taxon is not found, the read is
unassigned. For the functional annotation of the raw reads
(F_RR), KEGG [30] was used as the reference functional clas-
sification, and the reads were annotated using the best hit to
this KEGG database.

The set of reads was also assembled and annotated.
We used the SqueezeMeta pipeline [21] for this task,
that automatizes all steps of metagenomic analysis. The
assembly was done using Megahit (v1.1.2) [18], followed
by gene prediction using Prodigal (v2.6.2) [22]. The pre-
dicted genes were searched for homologies against Gen-
Bank NR and KEGG databases using DIAMOND, and
processed with the LCA algorithm, as above. This pro-
duces taxonomic and functional assignments for the
genes in the contigs.

A taxonomic classification for the whole contig can be
obtained as the consensus of the annotations of its
genes. The criteria for declaring a consensus taxon are:
50% of all genes and 80% of the annotated genes in the
contig must belong to the taxon (some genes may not
have annotation). Otherwise, the contig is left un-
assigned. This approach has the advantage of allowing
the annotation of many additional genes (those in the
contig that were not classified directly, including or-
phans), but it has the drawback of dropping the original
annotations for the genes if a consensus is not found.
Notice that under these criteria, short contigs compris-
ing just one gene get the annotation of their only gene.

Once genes and contigs are annotated, we classified
the reads mapping them against the contigs using Bow-
tie2 (v2.2.6) [31], and inheriting the annotation of the
corresponding gene or contig. Also, we investigated a
combined approach merging these two strategies, in
which reads first inherit the annotation of the contig,
and then the one of the gene if the contig did not pro-
vide an annotation. These approaches will be referred as
annotation by assembly/genes (Ag), assembly/contigs
(Ac), and assembly/combined (Am). For functional clas-
sification, only mapping against genes was used (F_Ag),
since there is not contig annotation for functions (each
gene has a different function).

We also used two other approaches widely used in
metagenomic analysis for taxonomic assignment. First,
assignment by means of k-mer composition using Kra-
ken2 (KR) [12]. Second, the clade-specific gene marker
searching of Metaphlan2 (MP) [14]. These methods are
not suitable for functional assignment.

For analysing the mock metagenomes, we followed
these same approaches, but we removed the correspond-
ing genomes in the NR database used for homology
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searching. We also created custom databases for
Kraken2 and Metaphlan2 in which we removed these ge-
nomes as well.

For each metagenome, we compiled tables with the
taxonomic or functional assignment of each of the reads
by all methods. These tables were used to calculate the
functional and taxonomic profiles that were used in the
comparison.

Such [20, 28] comparison between taxonomic profiles
for the different methods (and to real values in case of
mock communities) was done by calculating the Bray-
Curtis dissimilarity measure between them. Comparison
between functional profiles was done measuring the per-
centage of reads with divergent annotations between
them.

The datasets used and/or analyzed during the current
study available from the corresponding author on rea-
sonable request.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512864-019-6289-6.

Additional file 1: Figure S1. Taxonomic assignments for the mock
communities, at the family rank. Ac, Megahit assembly and mapping
reads to contigs. Ag, Same but mapping reads to genes. Am, same but
mapping genes first to contigs, then to genes. RR, raw reads assignment.
KR: Kraken. MP: Metaphlan2. Left: All reads considered. Right: Discounting
unclassified reads. Numbers above the bars in the right panels
correspond to the Bray-Curtis dissimilarity to the composition of the ori-
ginal microbiome.

Additional file 2: Figure S2. Bray-Curtis dissimilarity between assign-
ment methods for mock metagenomes. The “real” column indicated the
distance to the real composition of the mock metagenome.

Additional file 3: Figure S3. Bray-Curtis dissimilarity between assign-
ment methods by assembly, comparing Megahit and metaSPAdes assem-
blers. Left: mock communities. Right: real metagenomes.

Additional file 4: Figure S4. Bray-Curtis dissimilarity to the real com-
position of the mock community, at family taxonomic rank. For several
sample sizes, at phylum rank. Ac, Assembly and mapping reads to con-
tigs. Ag, Same but mapping reads to genes. Am, same but mapping
genes first to contigs, then to genes. RR, raw reads assignment. KR: Kra-
ken2. MP: Metaphlan2.

Additional file 5: Figure S5. Taxonomic assignments for the real
communities, at the family rank. Ac, Megahit assembly and mapping
reads to contigs. Ag, Same but mapping reads to genes. Am, same but
mapping genes first to contigs, then to genes. RR, raw reads assignment.
KR: Kraken. MP: Metaphlan2. Left: All reads considered. Right: Discounting
unclassified reads.

Additional file 6: Figure S6. Bray-Curtis dissimilarity between assign-
ment methods for real metagenomes.

Additional file 7: Figure S7. Significance of differences for taxonomic
assignment methods. For each analysis method (Ac, Ag, Am, RR, KR, MP),
the left-side boxplot shows the Bray-Curtis dissimilarities between the
taxonomic profile (phylum level) obtained with that method and the
taxonomic profiles obtained with the rest of the methods. This was done
separately for the three real metagenomes and the three mock metagen-
omes with one million reads. The right side boxplot shows the pairwise
Bray-Curtis dissimilarities between the taxonomic profiles (phylum level)
obtained with the rest of the methods. Significant differences (Kruskal-
Wallis, p < 0.05) are denoted with a red asterisk.
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Additional file 8: Table S1. Abundances and PATRIC accession
numbers [32] of different species in the mock metagenomes.

Additional file 9: Table S2. Percentage of divergent assignments for
mock communities. “Real” indicates the differences with the real
functional composition of the metagenome.

Acknowledgements
Not applicable.

Authors’ contributions

JT designed the work, interpreted the data, drafted the manuscript and
approved the submitted version. FPS interpreted the data, drafted the
manuscript and approved the submitted version. MCS acquire data and
approved the submitted version.

Funding

This research was funded by projects CTM2013-48292-C3-2-R and CTM2016—
80095-C2-1-R, Spanish Ministry of Economy and Competitiveness. This funding
body had no further role in the design of the study, analysis, interpretation of
data and writing. Manuscript.

Availability of data and materials

All datasets used and/or analyzed during the current study available from
the corresponding author on reasonable request. Metagenomic datasets can
be found in the SRA archive with accession SRP104009 (Thermal dataset),
SRS052697 (Gut dataset).

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 16 January 2019 Accepted: 14 November 2019
Published online: 10 December 2019

References

1. Luo C, Tsementzi D, Kyrpides NC, Konstantinidis KT. Individual genome
assembly from complex community short-read metagenomic datasets. ISME
J.2012,6:898-901. https://doi.org/10.1038/ismej.2011.147.

2. Mikheenko A, Saveliev V, Gurevich A. MetaQUAST: evaluation of
metagenome assemblies. Bioinformatics. 2016,32:1088-90.

3. Varin T, Lovejoy C, Jungblut AD, Vincent WF, Corbeil J. Metagenomic
analysis of stress genes in microbial mat communities from Antarctica and
the high Arctic. Appl Environ Microbiol. 2012;78:549-59.

4. Varin T, Lovejoy C, Jungblut AD, Vincent WF, Corbeil J. Metagenomic
profiling of Arctic microbial mat communities as nutrient scavenging and
recycling systems. Limnol Oceanogr. 2010;55:1901-11. https://doi.org/10.
4319/10.2010.55.5.1901.

5. Greenblum S, Turnbaugh PJ, Borenstein E. Metagenomic systems biology of
the human gut microbiome reveals topological shifts associated with
obesity and inflammatory bowel disease. Proc Natl Acad Sci. 2012;109:594—
9. https://doi.org/10.1073/pnas.1116053109/-/DCSupplemental.www.pnas.
org/cgi/doi/10.1073/pnas.1116053109.

6. Mangrola AV, Dudhagara P, Koringa P, Joshi CG, Patel RK. Shotgun
metagenomic sequencing based microbial diversity assessment of Lasundra
hot spring, India. Genomics Data. 2015;4:73-5.

7. Mackelprang R, Waldrop MP, DeAngelis KM, David MM, Chavarria KL,
Blazewicz SJ, et al. Metagenomic analysis of a permafrost microbial
community reveals a rapid response to thaw. Nature. 2011;480:368-71.
https://doi.org/10.1038/nature10576.

8. Balcom IN, Driscoll H, Vincent J, Leduc M. Metagenomic analysis of an
ecological wastewater treatment plant’s microbial communities and their
potential to metabolize pharmaceuticals. F1000Research. 2016;5:1881.

9. Pignatelli M, Aparicio G, Blanquer |, Herndndez V, Moya A, Tamames J.
Metagenomics reveals our incomplete knowledge of global diversity.
Bioinformatics. 2008;24:2124-5.


https://doi.org/10.1186/s12864-019-6289-6
https://doi.org/10.1186/s12864-019-6289-6
https://doi.org/10.1038/ismej.2011.147
https://doi.org/10.4319/lo.2010.55.5.1901
https://doi.org/10.4319/lo.2010.55.5.1901
https://doi.org/10.1073/pnas.1116053109/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1116053109
https://doi.org/10.1073/pnas.1116053109/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1116053109
https://doi.org/10.1038/nature10576

Tamames et al. BMC Genomics

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

(2019) 20:960

Wommack KE, Bhavsar J, Ravel J. Metagenomics: read length matters. Appl
Environ Microbiol. 2008;74:1453-63.

Carr R, Borenstein E. Comparative analysis of functional metagenomic
annotation and the mappability of short reads. PLoS One. 2014;9:2105776.
Wood DE, Salzberg SL. Kraken: Ultrafast metagenomic sequence
classification using exact alignments. Genome Biol. 2014;15:R46.

Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: Rapid and sensitive
classification of metagenomic sequences. Genome Res. 2016;26:1721-9.
Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, et al.
MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods.
2015;12:902-3.

Nguyen NP, Mirarab S, Liu B, Pop M, Warnow T. TIPP: Taxonomic
identification and phylogenetic profiling. Bioinformatics. 2014;30:3548-55.
Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T, Koren S, et al. GAGE: a
critical evaluation of genome assemblies and assembly algorithms. Genome
Res. 2012,22:557-67.

Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Drége J, et al.
Critical Assessment of Metagenome Interpretation - A benchmark of
metagenomics software. Nat Methods. 2017;14:1063-71.

Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-
node solution for large and complex metagenomics assembly via succinct
de Bruijn graph. Bioinformatics. 2015;31:1674-6.

Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using
DIAMOND. Nat Methods. 2015;12:59-60. https://doi.org/10.1038/nmeth.3176.
Tamames J, Sanchez PD, Nikel Pl, Pedrés-Alio C. Quantifying the relative
importance of phylogeny and environmental preferences as drivers of gene
content in prokaryotic microorganisms. Front Microbiol. 2016;7:433.
Tamames J, Puente-Sanchez F. SqueezeMeta, a highly portable, fully
automatic metagenomic analysis pipeline. Front Microbiol. 2019; In press.
Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal:
prokaryotic gene recognition and translation initiation site identification.
BMC Bioinformatics. 2010;11:119.

Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. MetaSPAdes: A new
versatile metagenomic assembler. Genome Res. 2017,27:824-34.
Alcaman-Arias ME, Pedros-Alio C, Tamames J, Ferndndez C, Pérez-Pantoja D,
Vasquez M, et al. Diurnal Changes in Active Carbon and Nitrogen Pathways
Along the Temperature Gradient in Porcelana Hot Spring Microbial Mat.
Front Microbiol. 2018,9:2353.

Duarte CM. Seafaring in the 21st century: the Malaspina 2010
circumnavigation expedition. Limnology Oceanography Bull. 2015;24:11-4.
Turnbaugh PJ, Ley RE, Hamady M, Fraser-liggett C, Knight R, Gordon JI. The
human microbiome project: exploring the microbial part of ourselves in a
changing world. Nature. 2007;449:804-10.

Tamames J, Durante-Rodriguez G. Taxonomy becoming a driving force in
genome sequencing projects. Syst Appl Microbiol. 2013;36.

Shimadzu H, Darnell R. Attenuation of species abundance distributions by
sampling. R Soc Open Sci. 2015;2:140219.

Luo G, Rodriguez-R LM, Konstantinidis KT. MyTaxa: An advanced taxonomic classifier
for genomic and metagenomic sequences. Nucleic Acids Res. 2014/42:€73.

Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto
encyclopedia of genes and genomes. Nucleic Acids Res. 1999,27:29-34.
https://doi.org/10.1093/nar/27.1.29.

Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat
Methods. 2012,9:357-9.

Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard L, et al.
PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic
Acids Res. 2014,42:D581-91.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 16 of 16

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions



https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1093/nar/27.1.29

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Mock communities
	Taxonomic annotations
	Functional annotations

	Real metagenomes
	Taxonomic annotations
	Functional annotations


	Discussion
	Conclusions
	Methods
	Supplementary information
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

