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Abstract

run four tools may be impractical in certain applications.

Keywords: CRISPR, Guide design, Consensus

Background: CRISPR-based systems are playing an important role in modern genome engineering. A large number
of computational methods have been developed to assist in the identification of suitable guides. However, there is
only limited overlap between the guides that each tool identifies. This can motivate further development, but also
raises the question of whether it is possible to combine existing tools to improve guide design.

Results: We considered nine leading guide design tools, and their output when tested using two sets of guides for
which experimental validation data is available. We found that consensus approaches were able to outperform
individual tools. The best performance (with a precision of up to 0.912) was obtained when combining four of the
tools and accepting all guides selected by at least three of them.

Conclusions: These results can be used to improve CRISPR-based studies, but also to guide further tool
development. However, they only provide a short-term solution as the time and computational resources required to

Background

Wild-type CRISPR (Clustered Regularly Interspaced
Short Palindromic Repeats) act as an adaptable immune
system in archaea and bacteria [1]. The process by which
the CRISPR system provides immunity has three main
steps [2]:

1. a DNA snippet from an invading phage is obtained
and stored within the CRISPR array, making a
memory of past viral infection;

2. the CRISPR region is expressed and matured to
produce duplicates of previously obtained DNA
snippets (or guides);

3. aguide binds with an RNA-guided endonuclease (e.g.
Cas9, in the case of S. pyogenes) to enable
site-specific cleavage through homology between the
guide and the DNA sequence of the invading phage.
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This last step is the mechanism by which CRISPR can
be used in a genome engineering context, where a syn-
thetic guide is supplied. CRISPR-based systems have been
used for a number of such applications [3-5]. However,
guide design is not trivial. The efficacy and specificity of
guides are crucial factors. For this reason, computational
techniques have been developed to identify and evaluate
candidate CRISPR-Cas9 guides.

In a benchmark of the leading guide design tools, we
previously noted the limited overlap between the guides
that each tool selects [6]. In the long term, this justifies
the development of a new generation of tools, which will
combine the best features of existing tools and provide a
more exhaustive and more reliable selection of guides. In
the meantime, this poses an important question: is it pos-
sible to combine the results of existing tools to improve
guide selection?

To answer this question, we analysed the output of
nine distinct guide design tools on experimental data and
investigated whether the consensus between some or all
of the tools would lead to a better set of guides.
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Results

Individual tools

We tested each tool on two datasets (namely Wang and
Doench), which contains guides for which the efficiency
has been experimentally assessed. For each dataset, we
considered two recall thresholds: 0.2 and 0.5 (see Meth-
ods).

First, the performance of each tool was measured indi-
vidually. It was found that most tools provide useful
results given the constraints of each dataset. For the
Doench dataset, a lower precision is observed. This is
consistent with the portion of efficient guides in Doench
being smaller than in Wang. The results are summarised
in Table 1.

When testing on the Wang dataset and seeking a recall
of 0.2, CHOPCHOP achieved the highest precision: 0.843.
When seeking a recall of at least 0.5, sgRNAScorer2
achieved the highest precision on this dataset: 0.833. The
guides selected by each tool are shown in Fig. 1.

When testing on the Doench dataset, CHOPCHOP
again achieved the best precision for a recall of 0.2, at
0.294. When seeking a recall of at least 0.5, SSC achieved
the highest precision, at 0.277. The distribution of guides
accepted and rejected by each tool are shown in Fig. 2.

Next, for tools that rely on a score threshold to reject
and accept guides, we considered the impact of that
threshold. For most of these tools, it was not possible to
find a better configuration: while increasing the thresh-
old increases the precision, it quickly dropped the recall
below our target values. The only exception was SSC on
the Doench dataset. The optimal solution was to raise the
threshold from 0.0 to 0.55 (range is —1.0 to 1.0), which
maintained the recall above 0.2 and raised the precision
to 0.355. This also improves its performance on the Wang
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relevant. For a recall above 0.5, the optimal threshold for
SSC was 0.2, for a precision of 0.300. However, it is impor-
tant to note that SSC is implemented so that it can only
work on small input sequences, and does not do any off-
target scoring. It therefore cannot be used as a stand-alone
tool, especially when considering entire genomes.

Simple consensus

The most intuitive way to combine results from separate
tools was to only accept guides that have been selected by
at least # tools.

First, we consider an approach where all tools are
included, except if they are trained using the dataset used
for tests or if they did not successfully complete at least
two tests in the benchmark study [6]. This means that,
for, when testing on the Wang dataset, the set considered
for the consensus includes: Cas-Designer, WU-CRISPR,
FlashFry, sgRNAScorer2, CHOPCHOP, CHOPCHOP-
MM, TUSCAN, PhytoCRISP-Ex and mm10db. When
testing on the Doench dataset, the set includes: Cas-
Designer, sgRNAScorer2, CHOPCHOP, CHOPCHOP-
Xu, CHOPCHOP-MM, PhytoCRISP-Ex and mm10db.

The results are shown in Table 2. As can be expected,
guides that were selected by many tools were more likely
to be efficient. However, a strict intersection of the results
from each tool would not be practical: on both datasets,
only a handful are identified by all tools. At the other end
of the spectrum (i.e. choosing n = 1), there was a very
high recall on both datasets, but this approach had a low
precision.

As described in Methods, we considered two levels of
recall (0.2 and 0.5) that address the needs of specific
experimental settings.

If a recall of at least 0.2 is appropriate, the best results

dataset, but SSC uses that dataset for training so it is not on the Wang dataset were obtained for n = 5, with
Table 1 Results for individual tools
Wang Doench

Tool name n Accepted Precision Recall NPV Accepted Precision Recall NPV

Cas-Designer 206 0.612 0.172 0372 668 0210 0377 0.803
SSC 632 0.851% 0.736 0.641 1056 0277 0.787 0.899
PhytoCRISP-Ex 348 0.764 0.364 0434 524 0.235 0332 0.812
TUSCAN 737 0.715 0.721 0528 1390 0.245% 0.919 0934
sgRNAScorer2 484 0.833 0.551 0.521 893 0.270 0.650 0.863
mm10db 330 0.652 0.294 0.385 384 0.227 0.235 0.805
CHOPCHOP 273 0.843 0315 0441 537 0.294 0426 0.837
CHOPCHOP-Xu 638 0.853* 0.744 0.648 1061 0.197 0.563 0.792
CHOPCHOP-MM 338 0.716 0.331 0412 761 0.191 0.391 0.791
WU-CRISPR 286 0.818 0.320 0437 366 0.511% 0.504 0.875
FlashFry 141 0.844 0.163 0.405 210 0.586* 0332 0.848

“indicates tool was trained using this dataset
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Fig. 1 Results for individual tools on the Wang dataset

a precision of 0.911. This is higher than any individual
tool. In contexts where a higher recall is needed (0.5), a
precision of 0.811 can be achieved with n = 3.

On the Doench dataset, for a recall of 0.2, a precision of
0.282 was achieved with n = 4. This is higher than any
of these tools taken individually, apart from CHOPCHOP.

For a recall of 0.5, a precision of 0.244 was achieved with
n=3.

Cas-Designer had the lowest overall performance (low-
est precision and second-lowest recall on Wang, third-
lowest precision on Doench). Excluding Cas-Designer and
repeating the consensus approach for the remaining tools
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greater than this were deemed experimentally efficient [19]
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Fig. 2 Results for individual tools on the Doench dataset. The blue distribution shows the number of guides accepted, and the grey distribution
shows the number of guides rejected. The vertical marker at 0.8 shows the threshold used to determine efficiency; guides with a gene rank score
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Table 2 Consensus when removing models trained on the associated test dataset

Wang Doench

Consensus level n Accepted Precision Recall NPV Accepted Precision Recall NPV

1 1050 0.663 0.952 0.706 1751 0.205 0.968 0.867
2 857 0.712 0.835 0.612 1472 0.218 0.865 0.865
3 578 0.811 0.642 0.557 947 0.244 0.623 0.843
4 357 0.868 0424 0482 490 0.282 0372 0.828
5 180 0911 0.224 0427 136 0.331 0.121 0.809
6 81 0.926 0.103 0397 29 0.276 0.022 0.800
7 30 0.967 0.040 0.384 3 0333 0.003 0.799
8 9 0.889 0.011 0377 - - - -

9 1 1.000 0.001 0.375 - - - -

Tools considered for Wang: Cas-Designer, WU-CRISPR, FlashFry, sgRNAScorer2, CHOPCHOP, CHOPCHOP-MM, TUSCAN, PhytoCRISP-Ex and mm10db. Tools considered for
Doench: Cas-Designer, sgRNAScorer2, CHOPCHOP, CHOPCHOP-Xu, CHOPCHOP-MM, PhytoCRISP-Ex and mm10db

produced similar, but improved, results. The highest pre-
cision with acceptable recall is now 0.925 on Wang and
0.303 on Doench, and the highest precision with high
recall is now 0.831 on Wang and 0.260 on Doench. Con-
tinuing this approach by excluding a second tool was
not convincing, but motivates further exploration with
smaller list of tools.

We also considered when tools trained on either
dataset were removed. The tools used for the consen-
sus are then Cas-Designer, sgRNAScorer2, CHOPCHOP,
CHOPCHOP-MM, PhytoCRISP-Ex and mm10db. The
results from this approach are shown in Table 3. The pre-
cision is comparable, but the recall decreases slightly. The
distribution of guides are shown in Figs. 3 and 4 for both
datasets.

Design-specific consensus

Next, we explored whether the design approach had any
impact; we grouped the machine-learning (ML) methods,
and the procedural methods. The results on the consen-
sus of procedural methods are shown in Table 4, Figs. 5
and 6. A consensus approach based solely on procedural
methods does not appear to be useful.

For ML methods, we followed the same strategy as
above, and removed tools trained on the data used in our
tests. The results are summarised in Table 5.

For the Wang dataset, this means that we considered the
consensus between sgRNAScorer2, CHOPCHOP-MM,
WU-CRISPR, FlashFry and TUSCAN. Given a recall of
at least 0.2, the approach had a precision of 0.881 when
n = 3. For a recall of at least 0.5, the approach had a
precision of 0.793 when n = 2.

For the Doench dataset we considered sgRNAScorer2,
SSC, CHOPCHOP-MM and CHOPCHOP-Xu. Here,
aiming for a recall above 0.2, the best precision was 0.254
(for n = 3). With n = 4, it is possible to reach a precision
of 0.290, but the recall is only 0.173.

Only considering ML tools that are not trained on either
dataset is not useful, as there are only two such methods
(sgRNAScorer2 and CHOPCHOP-MM).

Optimal consensus

Based on the earlier results, we tried to identify the
best set of tools to use for consensus, with only the
same two constraints as above: the tool should not have
been trained on the dataset used for testing, and it

Table 3 Consensus: accepting guides selected by at least n tools (except those models trained on the test data and poor performing

tools)
Wang Doench

Consensus level n Accepted Precision Recall NPV Accepted Precision Recall NPV
1 953 0.681 0.888 0.620 1662 0.209 0.935 0.866
2 607 0.763 0.633 0523 1214 0.236 0.771 0.864
3 284 0.870 0.338 0453 642 0.280 0.485 0.841
4 102 0912 0.127 0402 207 0324 0.181 0.814
5 30 0.900 0.037 0.382 39 0333 0.035 0.801
6 3 1.000 0.004 0.376 3 0333 0.003 0.799

Tools considered here: Cas-Designer, sgRNAScorer2, CHOPCHOP, CHOPCHOP-MM, PhytoCRISP-Ex and mm10db
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Fig. 3 Consensus, on the Wang dataset, when accepting guides selected by at least n tools (except those models trained on any of the test data and
poor performing tools): Cas-Designer, sgRNAScorer2, CHOPCHOP, CHOPCHOP-MM, PhytoCRISP-Ex, mm10db
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Fig. 4 Consensus, on the Doench dataset, when accepting guides selected by at least n tools (except those models trained on any of the test data

and poor performing tools): Cas-Designer, sgRNAScorer2, CHOPCHOP, CHOPCHOP-MM, PhytoCRISP-Ex, mm10db
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Table 4 Consensus between procedural methods
Wang Doench

Consensus level n Accepted Precision Recall NPV Accepted Precision Recall NPV
1 790 0.696 0.752 0.522 1411 0.220 0.838 0.861
2 299 0.769 0315 0424 595 0.259 0415 0.826
3 61 0.853 0.071 0.387 97 0.392 0.102 0.809
4 7 0.714 0.007 0375 10 0.500 0.014 0.800

Cas-Designer, CHOPCHOP, PhytoCRISP-Ex, mm10db

should have completed at least two tests in the bench-
mark. Here, we optimise for the highest possible pre-
cision, while maintaining a recall of approximately 0.2.
The best approach was obtained using sgRNAScorer2,
CHOPCHOP, PhytoCRISP-Ex and mm10db; the results
are shown in Table 6, Figs. 7 and 8. If accepting guides
selected by at least three of these four tools, we obtained a
precision of 0.912 (recall 0.185) and 0.356 (recall 0.216) for
Wang and Doench, respectively. These results outperform
those from individual tools or from the simple consensus
approach.

One limitation is that this approach is using two of the
slowest tools (sgRNAScorer2 and PhytoCRISP-Ex), as per
our earlier benchmark [6]. It is possible to be computa-
tionally more efficient by excluding PhytoCRISP-Ex, at a
cost in terms of precision, but still outperforms individual
tools: 0.857 for Wang (recall 0.360) and 0.293 for Doench
(recall 0.453), with n = 2.

Discussion
Our results clearly show that there is scope for further
development of CRISPR guide design methods. While
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Fig. 5 Consensus, on the Wang dataset, between procedural methods: Cas-Designer, CHOPCHOP, PhytoCRISP-Ex, mm10db
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Fig. 6 Consensus, on the Doench dataset, between procedural methods: Cas-Designer, CHOPCHOP, PhytoCRISP-Ex, mm10db
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most tools taken in isolation tend to produce high-quality
guides, the lack of overlap between their results is striking.
This has two main implications.

First, it means that using a single design tool would
lead to some quality guides being incorrectly rejected.
While most tools report enough guides for most applica-
tions, this can be an issue for contexts where the search
region is small: only SSC, Tuscan and sgRNAScorer2 have
a high recall on both datasets. Using a single design tool
would also lead to some lower quality guides still being
incorrectly selected. None of the tools had a precision
over 0.85 on Wang or over 0.3 on Doench. The design
strategy (machine learning vs. procedural approaches) did
not make a difference, whether we considered individual
tools, tools grouped by approach, or even the consensus
between the approaches.

Second, it means that further development is needed.
We showed that the consensus between four tools (sgR-
NAScorer2, CHOPCHOP, PhytoCRISP-Ex and mm10db)
can be used to generate a set of guides where up
to 91.2% are efficient (on the Wang dataset), while
still maintaining appropriate recall. However, this comes
with several downsides: (i) the time required to pre-
pare four tools and datasets in the various formats
required, and to perform the consensus analysis; and (ii)

the limitations of some of these tools in terms of com-
pute resources and scalability. In particular, we previously
reported that two of the tools (PhytoCRISP-Ex and sgR-
NAScorer2) did not scale to exhaustive searches on large
genomes [6].

When taking speed into account and trying to only use
tools that have been shown to scale to large genomes, a
consensus approach can still generate useful results. Here,
we achieved precision of up to 0.852. However, this still
does not remove the need to run multiple tools.

Rather than combining the output of tools, future work
will need to focus on integrating and optimising the most
useful features of these tools.

Conclusions
A number of tools have been developed to facilitate
CRISPR-based genome engineering. Most of them per-
form adequately, but the overlap between their results is
strikingly limited. In this study, we investigated whether
existing tools can be combined to produce better sets of
guides. We found that consensus approaches were able to
outperform all individual tools.

In particular, we found that, by considering four
tools (sgRNAScorer2, CHOPCHOP, PhytoCRISP-Ex and
mm10db) and accepting all guides selected by at least

Table 5 Consensus between machine-learning methods, removing models trained on the associated test dataset

Wang Doench
Consensus level n Accepted Precision Recall NPV Accepted Precision Recall NPV
1 927 0.695 0.881 0.641 1655 0216 0.965 0.930
2 624 0.793 0.677 0.567 1242 0.241 0.806 0.880
3 295 0.881 0.356 0461 653 0.254 0447 0.827
4 120 0.892 0.146 0.405 221 0.290 0.173 0.811
5 20 0.950 0.026 0.380 - - - -

Tools considered for Wang: sgRNAScorer2, CHOPCHOP-MM, WU-CRISPR, FlashFry and TUSCAN. Tools considered for Doench: sgRNAScorer2, SSC, CHOPCHOP-MM and

CHOPCHOP-Xu
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Table 6 Consensus when optimising for both datasets (excluding models trained on test data, excluding poor performing tools, no

more than five tools, recall approx. 20%)

Wang Doench
Consensus level n Accepted Precision Recall NPV Accepted Precision Recall NPV
1 811 0.724 0.803 0.598 1327 0.229 0.819 0.870
2 453 0.817 0.506 0.496 762 0.280 0.574 0.854
3 148 0912 0.185 0416 225 0.356 0216 0.820
4 23 0.957 0.030 0.381 24 0.500 0.032 0.802

Tools considered here: sgRNAScorer2, CHOPCHOP, PhytoCRISP-Ex, mm10db

three of them, we were able to generate a set of guides that
contained over 91.2% of efficient guides.

These results provides a short-term solution for guide
selection. They also emphasise the need for new methods.
Running four separate tools is computationally expensive.
Future tools will be able to directly combine the most use-
ful features of these methods, and produce high-quality
guides in a reasonable amount of time.

Methods

Guide design tools

We previously benchmarked the leading open-source
tools for guide design for the Streptococcus pyogenes-Cas9

(SpCas9) nuclease, to evaluate them in terms of computa-
tional performance as well as in terms of the guides they
produce [6]. Some of these tools do not filter guides based
on anticipated efficiency, for instance because they focus
on off-target predictions.

Here, we therefore focused on nine tools that actively
filter or score candidate guides: CHOPCHOP [7], SSC [8],
WU-CRISPR [9], Cas-Designer [10], mm10 CRISPR
Database — mm10db [11], PhytoCRISP-Ex [12], sgRNA
Scorer 2.0 [13], FlashFry [14], and TUSCAN [15]. CHOP-
CHOP, in default mode, provides a flag indicating whether
a guanine is present at position 20 (CHOPCHOP-G20),
and also provides models from [8] (CHOPCHOP-Xu)
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Fig. 7 Consensus, on the Wang dataset, when optimising for both datasets (excluding models trained on test data, excluding poor performing
tools, no more than five tools, recall approx. 20%): sgRNAScorer2, CHOPCHOP, PhytoCRISP-Ex, mm10db
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Fig. 8 Consensus, on the Doench dataset, when optimising for both datasets (excluding models trained on test data, excluding poor performing
tools, no more than five tools, recall approx. 20%): sgRNAScorer2, CHOPCHOP, PhytoCRISP-Ex, mm10db

and [16] (CHOPCHOP-MM). All tools are available for
download, with access details summarised in Table 7.

There is a broad range of approaches. Some tools are
using machine-learning models, while others take a pro-
cedural approach to implement specific biological rules.
Within the latter group, the rules also vary between
tools. They can include considerations such as avoiding
poly-thymine sequences [17], rejecting guides with inap-
propriate GC-content [18], or considering the secondary
structure of the guide RNA. Because of the different
approaches taken by the developers, it can be expected
that each tool would produce different guides.

For tools that produce a score and require a threshold
to accept or reject a guide, we used the recommended
where available. The values we used are: 0.5 for Flash-
Fry, 70 for Cas-Designer, 50 for WU-CRISPR, 0.55 for
CHOPCHOP-MM, and 0 for SSC, CHOPCHOP-Xu and
sgRNAScorer2. Given that our objective is to investigate
how existing tools may complement each other, we did not

Table 7 Tools selected in this study

try to change these thresholds, or to improve any of the
filtering or scoring of any tool.

Experimental data

There is not one tool that can be considered as the gold
standard to compare performance. Instead, we use two
collections of guides for which experimental validation
data is available, collated by [18] and [19]. We refer to
these datasets as the Wang and Doench datasets, respec-
tively. The Wang dataset pre-processed as in [8] contains
1169 guides used in screening experiments of two human
cells lines; 731 were deemed to be ‘efficient’ based on anal-
ysis of the gene knock-outs. The Doench dataset contains
1841 guides from nine mouse and human transcripts, with
372 of the guides deemed to be ‘efficient! When compar-
ing a consensus approach across the two datasets, a lower
precision was observed for Doench than Wang. This is
expected due to the higher threshold used to determine
guide efficacy.

Tool Availability Approach Language Training Dataset
Cas-Designer (8 May 2018) Tool website Procedural Python

mm10 CRISPR Database (92d208¢) GitHub Procedural Python / C

PhytoCRISP-Ex (v1.0) Tool website Procedural Perl /Bash

WU-CRISPR (77107166) GitHub ML Perl Doench

sgRNA Scorer 2.0 Tool website ML Python Other

FlashFry (2 July 2018) GitHub ML Java Doench and one other
TUSCAN (offline edition - 24 January 2019) By request ML Python Doench and four others
SSC (v0.1) Sourceforge ML C Wang and four others
CHOPCHOP (384743¢) BitBucket Both Python Wang or Doench or other

ML is Machine Learning; TUSCAN and SSC combined the listed training datasets as one; CHOPCHOP and FlashFry provide each of the listed efficacy scoring models;
CHOPCHOP offers efficacy scoring via a procedural approach. The italicised text in the Tool’ column is the git hash to identify which version of the tool was used. Similarly, for

the date obtained or version number indicated
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We constructed an artificial sequence that contains
these guides, interspaced by 50 Ns to ensure that unex-
pected overlapping targets cannot be detected. We also
created all the files required by any of the tools: custom
annotation file (derived from the refGene table available
via UCSC), 2bit compression file, Bowtie and Bowtie2
indexes, and Burrows-Wheeler Aligner file.

Evaluation metrics
For each tool (or combination of tools), we classified a
guide as:

e A true positive (TP) if the method correctly classified
the guide as being efficient;

o A false positive (FP) if it was selected as a good guide
but the data shows it to be inefficient;

e A true negative (TN) if the guide was correctly
identified as being inefficient;

o A false negative (FN) if it was incorrectly discarded.

Based on this, we were able to calculate the precision
(Eq. 1) and recall (Eq. 2) for each tool or combination
of tools. The precision gives us how many guides clas-
sified as efficient actually were efficient, while the recall
tells us how many of the efficient guides were correctly
selected. We also considered the negative predictive value
(NPV, Eq. 3), which tells us how confident we can be that
a rejected guide really would be inefficient.

Precision = TP/(TP + FP) 1)
Recall = TP/(TP + FN) 2)
NPV = TN/(IN + EN) 3)

All these metrics range from 0 to 1, with 1 being best.
An ideal guide design tool would obviously have a perfect
precision and recall (which would also imply NPV = 1),
but there are not necessarily equally important. In the
context of CRISPR-based gene editing, there are possible
target sites: more than 245 million in the entire mouse
genome, and typically dozens per gene. Even using strate-
gies that require multiple guides, e.g. triple-targeting for
gene knock-outs [11], only a handful of efficient targets
are needed for each gene of interest. As a result, a per-
fect recall is less important than a high precision. In this
paper, we set a recall of 0.2, meaning that at approxi-
mately 20% of the efficient guides are identified. For some
applications that are more restricted in terms of target
location, such as CRISPR-mediated activation of a pro-
moter or enhancer [20], it may be appropriate to choose a
higher recall. Here, we set it at 0.5.
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