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Abstract

Background: Super-enhancer RNAs (seRNAs) are a kind of noncoding RNA transcribed from super-enhancer
regions. The regulation mechanism and functional role of seRNAs are still unclear. Although super-enhancers play a
critical role in the core transcriptional regulatory circuity of embryonic stem cell (ESC) differentiation, whether
seRNAs have similar properties should be further investigated.

Results: We analyzed cap analysis gene expression sequencing (CAGE-seq) datasets collected during the
differentiation of embryonic stem cells (ESCs) to cardiomyocytes to identify the seRNAs. A non-negative matrix
factorization algorithm was applied to decompose the seRNA profiles and reveal two hidden stages during the ESC
differentiation. We further identified 95 and 78 seRNAs associated with early- and late-stage ESC differentiation,
respectively. We found that the binding sites of master regulators of ESC differentiation, including NANOG, FOXA2,
and MYC, were significantly observed in the loci of the stage-specific seRNAs. Based on the investigation of genes
coexpressed with seRNA, these stage-specific seRNAs might be involved in cardiac-related functions such as
myofibril assembly and heart development and act in trans to regulate the co-expressed genes.

Conclusions: In this study, we used a computational approach to demonstrate the possible role of seRNAs during
ESC differentiation.
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Background
During embryonic development and cellular differenti-
ation, distinct sets of genes are selectively expressed in
cells to give rise to specific tissues or organs. One of the
mechanisms controlling such highly organized molecular
events are enhancer–promoter contacts [1]. The disrup-
tion of enhancer–promoter contacts can underlie disease
susceptibility, developmental malformation, and cancers

[1, 2]. In addition, a cluster of enhancers speculated to
act as switches to determine cell identity and fate is named
the ‘super-enhancer’ [3–5]. Super-enhancer is generally
characterized as a class of regulatory regions that are in
close proximity to each other and densely occupied by
mediators, lineage-specific or master transcription factors,
and markers of open chromatin such as H3K4me1 and
H3K27ac [3]. Under the current definition, super-
enhancers tend to span large genome regions, and several
studies have reported that they tend to be found near
genes that are important for pluripotency, such as OCT4,
SOX2, and NANOG [6, 7].
Recently, a class of noncoding RNAs transcribed from

the active enhancer regions has been recognized due to
advances in sequencing technology, and termed enhancer
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RNAs (eRNAs). Because enhancers tend to be tissue- and
state-specific, eRNAs derived from the same enhancers
may differ across tissues [8], and the same stimulation
could induce the production of eRNAs via divergent sig-
naling pathways [9]. Although the functions and regula-
tion mechanisms of these eRNAs are unclear, they may
play an active role in the transcription of nearby genes,
potentially by facilitating enhancer–promoter interactions
[10], and the abnormal expression of eRNAs is associated
with various human diseases [11].
Although several studies have shown that eRNAs are

associated with super-enhancer regions [12–14], no work
has yet been done to investigate the role of super-enhancer
RNAs (seRNAs) during embryonic stem cell differentiation.
Here, we propose a computational approach to characterize
seRNAs based on eRNA profiles derived from cap analysis
gene expression sequencing (CAGE-seq) and identify stage-
specific seRNAs using non-negative matrix factorization
(NMF). A previous study has used NMF to dissect seRNA
profiles and found that different cell types were well classi-
fied, suggesting seRNA expression is associated with the de-
termination of cell fate [15]. In this study, we ask if seRNAs
play a critical role during the embryonic stem cell (ESC)
differentiation. We analyzed the seRNA profiles by NMF to
determine the hidden stages during ESC differentiation.
Finally, we identified the stage-specific seRNAs and further
investigated their functional roles via their co-expressed
genes.

Results
Identification of super-enhancer RNAs underlying the
differentiation of embryonic stem cells
To investigate seRNAs during embryonic differentiation,
we used time-resolved expression profiles of embryonic
stem cells (ESCs) from the FANTOM5 project, which
were profiled using CAGE-seq techniques [16]. These
datasets contain 13 time-points (range: 0–12 days) and
provide expression profiles for both mRNAs and eRNAs
during differentiation from ESCs to cardiomyocytes. After
removal of lowly expressed eRNAs, there were 28,681
expressed eRNAs during differentiation from ESCs to car-
diomyocytes qualified and quantified by CAGE-seq.
The typical approach for super-enhancer identification

is to stitch together enhancer regions within 12.5 kb of
each other and analyze the ChIP-seq binding patterns of
active enhancer markers using the Rank Ordering of
Super-enhancers (ROSE) algorithm [6]. However, it is
unclear whether seRNAs inherit these properties. To ad-
dress this issue, we used the expression values of
unstitched and stitched eRNAs and identified seRNAs
by ROSE algorithm. We combined the eRNAs that lo-
cated within 12.5 kb of each other into a single larger
eRNA [6], and obtained 16,990 stitched eRNAs contain-
ing median of 1 expressed eRNA (range: 1–155).

To determine the seRNAs, we performed the ROSE al-
gorithm on unstitched and stitched eRNAs, respectively.
Briefly, the unstitched and stitched eRNAs were each
ranked on the basis of corresponding expression values,
and their expression values were plotted (Fig. 1a, b). These
plots revealed a clear point in the distribution of eRNAs
where the expression value began increasing rapidly, and
this point was determined by a line with a slope of one
was tangent to the curve. eRNAs that were plotted to the
right of this point were designated as seRNAs. Altogether,
3648 and 491 (median of 4 expressed eRNAs, range: 1–
155) seRNAs were identified from the unstitched and
stitched enhancer regions, respectively.
To identify stage-specific seRNAs, first, the non-negative

matrix factorization (NMF) was employed to decompose
the seRNA expression profiles and identify hidden stages
during the differentiation of ESCs to cardiomyocytes. We
performed the NMF with different number of stages (from
2 to 12), and evaluated the clustering performance by com-
puting silhouette scores (good cluster have higher silhou-
ette scores). On the basis of the best average silhouette
scores (Additional file 1: Figure S1), two and four stages
were determined for unstitched and stitched seRNA ex-
pression profiles, respectively. We can assign each time
point into a stage based on the values in the stage vs. sam-
ple matrix decomposed from NMF (Fig. 1c,d). We noted
that the expression profile of the unstitched enhancers
achieved a higher average silhouette score than that of the
stitched enhancers. In addition, the stages determined from
the unstitched enhancers appear to delineate the boundary
between the day 0–4 (named early stage) and day 5–12
(named late stage) of differentiation (Fig. 1c). Although
there were four stages determined from the stitched
seRNA profiles, the samples could majorly be classified
into early- (Stage C: day 0–4) and late-stage (Stage A: day
5–11 and Stage B: day 12), consistent with the result of
unstitched seRNAs. Therefore, we focused on the seRNAs
derived from unstitched enhancer regions. Next, according
to the result of NMF, the stage-specific seRNAs were de-
termined by comparing the expression values between two
stages. Finally, there were 95 and 78 seRNAs active in the
early and late stages of ESC differentiation, respectively
(Additional file 2).

Transcription factors driving expression of stage-specific
seRNAs
A primary role of transcription factors (TFs) is the control
of gene expression necessary for the maintenance of cellular
homeostasis and the promotion of cellular differentiation.
To investigate the association between stage-specific
seRNAs and TFs, TF over-representation analysis was
performed to assess whether these seRNA loci are unex-
pectedly bound by TFs (Fig. 2). In early stage of ESC differ-
entiation, stage-specific seRNAs were significantly driven
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by NANOG and FOXA2. Indeed, NANOG is a master TF
of ESC pluripotency [17]. Additionally, although FOXA2 is
not a master TF of ESC differentiation, it is strongly upreg-
ulated during the early stages of endothelial differentiation
[18]. In contrast, besides MYC/MAX complexes, more
basal TFs involved in the maintenance of cellular states
were enriched in the late-stage seRNAs: POLR2A, TAF1,
SPI1, and IRF1.

Inference of seRNA functions from the seRNA-associated
genes
Although the functional roles of eRNAs remain unknown,
we can investigate the possible role of seRNAs using their
co-expressed mRNAs [19, 20]. We hypothesized that the

co-expressed genes imply the possible mechanisms of
seRNA-mediated regulation and tend be involved in simi-
lar biological pathways or processes. We performed a co-
expression analysis of seRNAs and mRNAs to determine
the seRNA-associated genes. To determine the seRNA-
coexpressed mRNAs, the Pearson’s correlation coefficient
among seRNAs and mRNAS were calculated and then
converted into the mutual rank [21]. A mRNA with mu-
tual ranks to seRNAs of ≤5 was considered as a seRNA-
associated mRNA. Each seRNA was found to have a me-
dian of 15 associated mRNAs (range: 6–28), but most of
the mRNAs were co-expressed with a seRNA, suggesting
that a given set of genes is regulated by a specific enhan-
cer–promoter loop (Fig. 3a,b).

Fig. 1 Super-enhancer RNA identification and NMF decomposition of time-coursed ESC differentiation to cardiomyocytes. a and b Ranking of
unstitched (left) and stitched enhancers (right) based on the expression values. c and d Stage to sample matrix of the decomposition from the
unstitched (left) and stitched super-enhancer RNA profiles (right)
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Fig. 2 Enrichment of transcription factors associated with stage-specific super-enhancer RNAs. Scatter plot showing the over-representation
analysis P-values for each TF. Significantly enriched TFs and some nearly significant TFs are annotated with their gene symbols

Fig. 3 Distribution of interactions in the seRNA–mRNA co-expression network. a The distribution of the numbers of co-expressed mRNAs above
the cutoff. b The distribution of the number of co-expressed seRNAs
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Even though a few cases in which the enhancers act in
trans were observed [22], most of them act in cis (i.e., the
enhancers and their cognate genes are located on the
same chromosome). In addition, several studies show that
the level of expression of eRNAs is positively correlated
with the expression level of genes near their correspond-
ing enhancer [10, 23, 24]. However, we examined the gen-
omic distance between seRNAs and their corresponding
associated genes and found that most seRNA–mRNA
pairs are not located on the same chromosome (Fig. 4 and
Additional file 1: Figure S2). In addition, even though
other seRNA–mRNA pairs are on the same chromosome,
the genomic distances between them are up to 10,000 kb
(Fig. 4 and Additional file 1: Figure S2). This suggests the
possibility that seRNAs might act in trans or trigger path-
way activity, leading to the expression of distal genes.
To examine the global functions of stage-specific seRNAs,

Gene Ontology (GO) over-representation analysis using

topGO [25] was applied to the genes associated with early-
or late-stage-specific seRNAs, respectively. The GO terms
with q-value < 0.05 were visualized as a scatter plot via
REVIGO. Interestingly, the genes associated with early-
stage-specific seRNAs are related to the process of cell prolif-
eration (such as cell cycle, q-value = 0.004) and determin-
ation of cell fate (such as endodermal cell fate commitment,
q-value = 0.016) (Fig. 5a and Additional file 3), whereas late-
active seRNAs are associated with genes involved in stem
cell differentiation (q-value = 0.0002) and heart morphogen-
esis (q-value = 0.0002) (Fig. 5b and Additional file 4).

Stage-specific seRNAs bound by TFs are associated with
important cardiac genes
Next, we examined seRNAs individually by performing
TF and GO over-representation analyses on each set of
seRNA-associated genes. We found that each of these
sets was mediated by different regulators, and in some

Fig. 4 Location distribution of associated genes for late-stage-specific seRNAs. Bar plot showing the number of associated genes and scatter plot
showing the distance between associated genes and their seRNAs. The distance is defined as the absolute difference between two locus midpoints.
The number of associated genes located on the same chromosome as their seRNA is indicated above the scatter plot
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cases, the regulator mediated not only its associated
genes but also the seRNA itself (Fig. 6 and Additional
file 1: Figure S3). For example, a late-stage-specific
seRNA (chr17:72764600–72,764,690) located in close
proximity to solute carrier family 9 member 3 regulator
1 (SLC9A3R1) has a CTCF binding site within its locus

and the promoters of its associated genes show enrich-
ment for CTCF (Fig. 6). We further examined the CTCF
ChIP-seq performed on human ESCs and the derived
cells [26], and found a stronger CTCF binding signal on
this seRNA locus in ESCs, compared to other ESC-
derived cells (Additional file 1: Figure S4). The functions

Fig. 5 The statistically over-represented GO terms within genes related to early- and late-stage-specific seRNAs. The scatter plots generated by
REVIGO show the cluster representatives in a two dimensional space derived by applying multidimensional scaling to a semantic similarity matrix
of GO terms for early- (a) and late-stage-specific seRNAs (b). Bubble color indicates the q-value of GO over-representation analysis and size
indicates the frequency of GO term used in human genome. Names of several cluster representatives are shown

Fig. 6 The regulator binding matrix of late-stage-specific seRNA-associated genes. Heatmap visualizing the results of TF over-representation
analysis on seRNA-associated genes. Red borders indicate that the TF also binds to the super-enhancer. The color denotes −log10 of the P-value
obtained by the Fisher’s exact test. (* P < 0.05)
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of these seRNA-associated genes are related to embry-
onic heart tube formation and ion transmembrane trans-
port (Fig. 7 and Additional file 5). Indeed, CTCF is
required during preimplantation embryonic develop-
ment [27], and several ion transporter genes, such as
CLCN5 and ATP7B, are expressed to maintain the
rhythmicity and contractility of cardiomyocytes [28].
Besides the seRNA located at chr17:72764600–72,764,

690, we did not find any TFs that both bind to late-stage
seRNA loci and are enriched for the promoters of the
corresponding associated genes (Fig. 6). However, two
seRNAs might be important for ESC differentiation. For
the seRNA at chr14:44709315–44,709,338, JUND and
TEAD4 binding sites were unexpectedly observed in the
promoters of its associated genes (both p-values < 0.05,
Fisher’s exact test). JUND is a critical TF in the limiting
of cardiomyocyte hypertrophy in the heart [29], whereas
TEAD4 is a muscle-specific gene [30]. There were strong
functional associations among these associated genes
(Fig. 7b) and the functions of these associated genes are
significantly related to cardiovascular system develop-
ment and the organization of collagen fibrils (Additional
file 5). In the developing cardiovascular system, LUM
(lumican) and COL5A1 (collagen type V, alpha 1) can
participate in the formation of collagen trimers, which
are required for the elasticity of the heart septa [31]. In
addition, SPARC exhibits calcium-dependent protein–
protein interaction with COL5A1 [32]. The other
seRNA, which is located at chr17:48261749–48,261,844
near the type-1 collagen gene (COL1A1), has two
enriched TFs: FOSL1 and TBP (Fig. 6). FOSL1 is a crit-
ical regulator of cell proliferation and the vasculogenic
process [33] and is a component of the transcriptional
complex AP-1, which controls cellular processes related
to cell proliferation and differentiation [34]. TBP is a
general TF that helps form the RNA polymerase II pre-
initiation complex. The interactions among these associ-
ated genes show that FMOD may cooperate with TBP to
promote the differentiation of mesenchymal cells into
cardiomyocytes in the late stages of cardiac valve devel-
opment [35] (Fig. 7c). This group of seRNA-associated
genes also includes SPARC and COL5A1, suggesting a
similar role to the seRNA located within chr14 men-
tioned above. These two cases reveal that these seRNAs
might be involved in cardiomyocyte differentiation, but
whether seRNAs play as a key regulator have to be fur-
ther experimentally validated.
Although we did not find any super-enhancer–promoter

loops driven by TFs, we identified one group driven by a
key regulator that has functions critical for cardiomyo-
cytes. We also found two groups of seRNA-associated
genes, which include many genes critical for cardiomyo-
cyte formation and are driven by multiple TFs. Despite
the connection between late-stage-specific seRNAs and

cardiomyocyte differentiation, the early-stage-specific seR-
NAs do not have any obvious association with cardiac-
related functions (Additional file 1: Figure S3 and Add-
itional file 6). The possible reason is that the early stage
corresponds to the time before commitment during hu-
man ESC differentiation into cardiac mesoderm (about
day 4) [36]. Therefore, the cells may not express cardiac-
related genes during that period.

Discussion
Super-enhancers, which are defined by a high occupancy
of master regulators, have been studied by many re-
searchers in order to exploit their functions and regulatory
mechanisms. However, these studies did not take enhan-
cer RNAs (eRNAs) into account. Therefore, we employed
a novel approach and defined super-enhancer RNAs (seR-
NAs) based on their RNA expression levels. To justify the
identification of hidden stages of ESC differentiation and
the selection of stage-specific seRNAs, we demonstrated
that our selected stage-specific seRNAs are significantly
bound by key transcription factors and related the result
to the possible roles of each differentiation stage.
The definition of super-enhancer is still ambiguous [3].

In general, the term ‘super-enhancer’ refers to an enhan-
cer cluster with high density of active markers. Actually, a
few identified super-enhancers contain single enhancers
[6]. Therefore, the impact of super-enhancer on gene
regulation might be its activity, not size. In this study, we
identified seRNAs from stitched and unstitched eRNAs
based on the procedure of the ROSE algorithm and deter-
mine the differentiation stages by the decomposition of
NMF on unstitched and stitched seRNA profiles. Al-
though there is a slight difference between the results of
the unstitched and stitched seRNAs, the major two stages
of ESC differentiation could be identified by both datasets
(Fig. 1c and d). However, it seems that unstitched seRNAs
have better discriminatory ability, compared to the
stitched seRNAs. The possible reasons include each eRNA
may have independent functional role [37] and some
eRNAs may act in trans, different from enhancers [11].
The definition of seRNAs used in this work differs from
the general definition of super-enhancer, but the further
function and regulatory analyses of these identified seR-
NAs reveal these seRNAs have the similar capacity of
super-enhancers during ESC differentiation [38, 39].
To infer the functions of stage-specific seRNAs, we

investigated the associations between them and their co-
expressed mRNAs. We found that the co-expressed
mRNAs had annotated functions related to the formation
of cardiomyocytes. Some key regulators bind to both
super-enhancers and their associated genes, and the
encoded proteins form a significant interaction network.
These results suggest that the stage-specific seRNAs con-
tribute to ESC differentiation. However, the analysis was
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only performed on ESC differentiation profiles and correla-
tions among genes and thus does not reveal true interac-
tions. More evidence is required to conclusively report the
functions of seRNAs.
Genomic distances between the loci of seRNA–mRNA

co-expression pairs raised a question about the possible
trans-acting property of seRNA. In an attempt to assess
whether seRNA exhibits trans-acting regulation activity
towards its target genes, we analyzed the seRNAs with
functional homogeneity and co-regulation based on their
associated genes. Although we cannot prove the trans-
acting property of seRNA, we nevertheless propose this
as a potential avenue for future research.

However, the functions and regulatory mechanisms of
seRNA remain obscure, and more evidence is needed
due to the complexity of gene regulation. Since seRNAs
are expressed in a cell-specific manner [6], and cells
regulate their gene expression in many implicit ways, we
propose the computational approach employed in this
study to help others explore the intricate nature of seR-
NAs. In the meantime, various other approaches can
also be adopted, such as modeling hidden stages
using a nonlinear method known as auto-encoder, in
addition to other methods for the construction of co-
expression network to identify more informative
associations.

Fig. 7 The protein–protein interaction (PPI) network of late-stage-specific seRNA-associated genes. The PPI network obtained from STRING ver.10.5, in which
each node is a protein and each edge has a different kind of evidence of interaction. Captions are the loci of super-enhancers. Driving TFs were also included
in the network: a chr17:72764600–72,764,690: CTCF; b chr14:44709315–44,709,338: JUND and TEAD4; and c chr17:48261749–48,261,844: FOSL1 and TBP

Chang et al. BMC Genomics 2019, 20(Suppl 10):896 Page 8 of 12



Conclusions
Using a computational approach, we identified and dem-
onstrated the importance of stage-specific seRNAs. One
stage-specific seRNA is driven by the same TF as its asso-
ciated genes, and two seRNAs are driven by multiple TFs.
All of these seRNAs are significantly bound by TFs related
to cardiac muscle development. The associated genes also
perform critical functions in heart development. Based on
the genomic distance between co-expression pairs, we
propose the possibility that seRNA might act in trans dur-
ing regulation. Although our analysis cannot conclusively
verify this property, we have provided an exploratory re-
source and approach for further investigation.

Methods
Expression data preprocessing
The time-resolved expression profiles of ESCs during the
process of differentiation into cardiomyocytes were down-
loaded from FANTOM5. Genes and eRNAs with counts of
zero in more than 75% of samples were discarded. The ex-
pression values were transformed by log2 and normalized
using the upper-quartile normalization method. Finally, the
expression levels were averaged across replicates.

Stitching enhancer regions
Enhancer regions on the same chromosome were stitched
together if they were within 12.5 kb of each other. In the
case of genes located within the stitched regions, these en-
hancer regions were kept separate. We constructed a
graph in which nodes denote enhancer regions and edges
connect enhancers located within 12.5 kb, and identified
the connected components of the graph. The enhancer re-
gions within connected components of the graph were
stitched together. The expression levels of the stitched en-
hancers were determined as the sum of the expression
levels of the individual enhancers.

Identification of seRNAs
We used the Rank Ordering of Super-enhancers (ROSE)
algorithm [3] to identify active seRNAs. Briefly, the eRNAs
from the unstitched or stitched enhancer regions were
ranked by their expression level, and in the plots the x-axis
is the rank of the eRNAs and the y-axis is the correspond-
ing expression level. To determine this ‘elbow point’, the
data were scaled such that the x and y axis were from 0 to
1 and the point for which a line with a slope of 1 was tan-
gent to the curve was found. eRNAs above this point were
defined as super-enhancer RNAs (seRNAs) and eRNAs
below that point were typical eRNAs.

Identification of differentiation stages using NMF
We derived the differentiation stages by applying NMF
to the seRNA expression profiles. NMF is a dimension-
reduction technique and can identify hidden stages in

data by specifying the number of stages (k). We factor-
ized the seRNA expression profiles (V) into two matri-
ces, W (stage vs. sample matrix, m x k) and H (seRNA
vs. stage matrix, k x n), such that:

V ≈ WH

Here, we determine the W and H matrices by minim-
izing the cost function [40]:

f W ;Hð Þ ≡ 1
2
∥V−WH∥2; Wia≥0;Hbj≥0; ∀i; a; b; j

We performed the NMF using the function imple-
mented by the python package scikit-learn with follow-
ing parameters: init = ‘nndsvd’, tol = 0.0001, max_iter =
200, alpha = 0.0, l1_ration = 0.0, and shuffle = False. Since
the number of hidden stages (k) is a hyperparameter, we
used the average of the silhouette scores to find the opti-
mized number of hidden stages. The definition of the sil-
houette score for each sample is as follows [41]:

b−a
max a; bð Þ

where a is the mean of the intra-cluster distance and b
is the mean of the nearest-cluster distance. The distance
used here is the Euclidean distance between sample
based on stage vs. sample matrix. The silhouette score
ranges from − 1 to + 1, and a high silhouette score indi-
cates that the sample is well matched to its own cluster
and poorly matched to neighboring clusters. We calcu-
lated the average silhouette score for k = 2 to 12, and
chose the number of stages (k) with the maximum of the
average silhouette.

Selection of stage-specific seRNAs
We decomposed the seRNA expression profiles using NMF
and obtained the seRNA vs. stage matrix that contained a
column for each stage and a row for each seRNA (as men-
tioned above). We converted this seRNA vs. stage matrix
into a difference matrix by scaling the values of each stage
to unity mean and subtracting the maximum value for
other stages. The seRNAs with a difference greater than
two times the standard deviation of the differences in a
given stage were defined as stage-specific seRNAs.

Identification of seRNA-associated genes via seRNA-mRNA
coexpression network
To identify the seRNA-associated genes, we constructed a
seRNA-mRNA coexpression network. First, the absolute
values of the Pearson’s correlation coefficient (PCC)
among seRNAs and mRNAs were calculated. Next, for
each pair, seRNA A and mRNA B, the mutual rank (MR)
index was calculated as the geometric average of the PCC
rank from A to B and that from B to A [21]. mRNAs with
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mutual ranks to a seRNAs of ≤5 were determined to be
the associated mRNAs of the given seRNA .

Transcription factor over-representation analysis
Transcriptional factor binding sites (TFBSs) were ob-
tained via the Table Browser of the UCSC Genome
Browser (http://genome.ucsc.edu/) from the “Txn Factor
ChIP” track (table name: wgEncodeRegTfbsCluster-
edV3). This dataset was generated by ENCODE Analysis
Working Group which uniformly processed the EN-
CODE ChIP-seq data for 161 transcription factors in 91
cell types and combined the identified peaks into clus-
ters to produce a summary display.
An eRNA was defined as a target of a specific TF if the

binding site of the given TF fell within 500 bp upstream or
downstream of the given eRNA locus. Similarly, a gene
was considered to be a target gene of a specific TF if the
binding site of the given TF fell within the promoter of
the given gene. Promoters were defined as the upstream
and downstream 500 bp of a transcription start site (TSS).
To assess whether the binding sites of a specific TF

were over-represented in a set of genomic regions of
interest, such as seRNA loci or the promoters of seRNA-
associated genes, a one-sided Fisher's exact test was per-
formed using a 2 × 2 contingency table. This test and the
table include the following numbers: n, N − n, r, R − r,
where n denotes the number of target seRNAs or genes
of the given TF, N denotes the number of seRNAs or
genes of interest, R is equal to N, and r denotes the
mean number of randomly selected R seRNAs or genes
which are also the target of the given TF after 1000
rounds. TFs with a P-value of < 0.05 in these tests were
defined as enriched TFs.

Gene ontology over-representation analysis
Gene ontology (GO) over-representation analysis was ap-
plied to each group of seRNA-associated genes using the
Bioconductor package topGO [25], with the ‘classic’ algo-
rithms and the Benjamini–Hochberg procedure for multiple
test correction. We only focused on the GO terms of bio-
logical process ontology with FDR < 0.05. The statistically
over-represented GO terms were visualized by REVIGO
with ‘SimRel’ semantic similarity measurement [42].

Function-association network of seRNA-associated genes
The function-association network of the seRNA-
associated genes was constructed using the STRING
database (version 10.5) [43]. Each query consists of a
group of associated genes and the significantly bound
TFs. The required interaction score for connecting
nodes was set to “low confidence (0.150)”.

CTCF ChIP-seq datasets
The processed ChIP-seq (BigWig format) of CTCF in hu-
man embryonic stem cells (ESC) and ESC-derived cells
were download from ChIP-Atlas [44] with accession num-
ber SRX378281, SRX378282, SRX378283, SRX378284,
and SRX378285. The processed datasets were visualized
by the Integrative Genomic Viewer (IGV) [45].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-019-6293-x.

Additional file 1: Figure S1. Average silhouette scores with various
number of stages for NMF decomposition of the unstitched (A) and
stitched seRNA profiles (B). Figure S2. Location distribution of associated
genes for early stage-specific seRNAs. Bar plot showing the number of as-
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