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Abstract

Background: Identification of protein-protein interactions (PPIs) is crucial for understanding biological processes
and investigating the cellular functions of genes. Self-interacting proteins (SIPs) are those in which more than two
identical proteins can interact with each other and they are the specific type of PPIs. More and more researchers
draw attention to the SIPs detection, and several prediction model have been proposed, but there are still some
problems. Hence, there is an urgent need to explore a efficient computational model for SIPs prediction.

Results: In this study, we developed an effective model to predict SIPs, called RP-FIRF, which merges the Random
Projection (RP) classifier and Finite Impulse Response Filter (FIRF) together. More specifically, each protein sequence
was firstly transformed into the Position Specific Scoring Matrix (PSSM) by exploiting Position Specific Iterated
BLAST (PSI-BLAST). Then, to effectively extract the discriminary SIPs feature to improve the performance of SIPs
prediction, a FIRF method was used on PSSM. The R’classifier was proposed to execute the classification and predict
novel SIPs. We evaluated the performance of the proposed RP-FIRF model and compared it with the state-of-the-art
support vector machine (SVM) on human and yeast datasets, respectively. The proposed model can achieve high
average accuracies of 97.89 and 97.35% using five-fold cross-validation. To further evaluate the high performance of
the proposed method, we also compared it with other six exiting methods, the experimental results demonstrated
that the capacity of our model surpass that of the other previous approaches.

Conclusion: Experimental results show that self-interacting proteins are accurately well-predicted by the proposed
model on human and yeast datasets, respectively. It fully show that the proposed model can predict the SIPs
effectively and sufficiently. Thus, RP-FIRF model is an automatic decision support method which should provide
useful insights into the recognition of SIPs.

Keywords: Self-interacting proteins, PSSM, Random projection, Finite impulse response filter

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: zhuhongyou@ms.xjb.ac.cn
1The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy
of Sciences, Urumqi 830011, China
2University of Chinese Academy of Sciences, Beijing 100049, China
Full list of author information is available at the end of the article

Chen et al. BMC Genomics 2019, 20(Suppl 13):928
https://doi.org/10.1186/s12864-019-6301-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-019-6301-1&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:zhuhongyou@ms.xjb.ac.cn


Background
Protein is a significant component of all cells and tissues
of an organism. It is organic macro-molecule or large
biological molecule, comprising of many amino acids
with different length. It is the basic material of life and
the main undertaker of life activity. A number of
proteins often associate with their partner or other pro-
teins which is called protein-protein interactions (PPIs)
[1]. Self-interacting proteins (SIPs) is a particular type of
PPIs, where can interact in terms of duplicate their own
genes. SIPs occupy an important role in cellular func-
tions and cellular signal transduction. The majority of
chemical reactions occur in living systems which mainly
depend on the activity of enzymes. Its essence is a large
of protein self-interactions. But it exists a certain di-
fficulty for researchers to discover whether protein can
interact with each other or not. The functionality of
protein refers to that it could handle the transport of
ions and small molecules across cell membranes, de-
pends on their homo-oligomers [2]. In particular, homo-
oligomerization can also contribute proteins to compose
large structures with increasing error control during syn-
thesis and without increasing genome size [3]. From the
past years, many researchers elucidated the overall prop-
erties of proteins. Ispolatov et.al discovered that the
average homodimers of SIPs is more than double the
total amount of non-SIPs in the protein interaction net-
works (PINs) [4]. It is crucial for clarifying the function
of SIPs to further understand the regulation of protein
function and comprehend whether protein can interact
with each other, so that we can better comprehend the
mechanism of disease [5]. Liu et al analyzed the proper-
ties of SIPs from various aspects information, and ap-
plied a logistic regression framework to develop a SIPs
prediction model by integrating multiple features [6].
Hence, SIPs will help to improve the stability and
prevent the denaturation of a protein via reducing its
surface area [7].
So far, a large number of previous methods on the

PPIs detection have been proposed [8–10]. For instance,
Zhang et al. summarized all sorts of computational
methods based on their present knowledge, and pro-
posed an algorithm which integrates structural infor-
mation with other functional clues [11]. Zou et al.
presented a novel fingerprint features and dimensionality
reduction strategy for predicting TATA binding pro-
teins, which could improve the prediction accuracy [12].
Hamp et al. introduce a new technique to predict PPIs
based on evolutionary profiles and profile-kernel support
vector machine [13]. Wan et al. exploited an ensemble
multi-label classifier for human protein subcellular loca-
tion prediction with imbalanced protein source [14].
Song et al. designed a predictor to identify DNA-binding
proteins based on unbalanced classification [15]. Sylvain

et al. put forward a new PPIs Prediction Engine named
PIPE, which is capable of predicting PPIs for any target
pair of the yeast Saccharomyces cerevisiae proteins from
their original structure and without any additional infor-
mation [16]. Xia et al. presented a sequence-based
multi-classifier system that employed autocorrelation de-
scriptor to code an interaction protein pair and chose
rotation forest as classifier to infer PPIs [17]. Li et al.
provide a scored human PINs with several-fold more in-
teractions and better functional biological relevance than
comparable resources by the means of data integration
and quality control [18].
However, these approaches could be applied to detect

PPIs well [19], but they are not good enough to predict
SIPs. Mainly exist in terms of following points: (1) In es-
sence, they also have certain limitations that take the
correlation between protein pairs into account for SIPs
detection, for example co-expression, co-localization and
co-evolution. Nevertheless, these info are of no use for
SIPs. (2) The datasets applied to predict PPIs are differ-
ent from those of SIPs, the datasets of the former are
balanced and those of the latter are unbalanced. (3) Be-
sides, prediction of PPIs datasets have no PPIs between
same partners. In virtue of reasons, these computational
approaches are not suitable for predicting SIPs. Hence,
It is becoming more and more significant to exploit an
effective calculation method to predict SIPs.
In this paper, we put forward a random projection

(RP) bind with Finite Impulse Response Filter (FIRF)
model for predicting SIPs from protein sequence in-
formation. Furthermore, the main ideas of our raised
method includes the following four aspects: (1) The
PSI-BLAST could be exploited to convert each pro-
tein sequence to a Position Specific Scoring Matrix
(PSSM); (2) Employing Finite Impulse Response Filter
(FIRF) method to calculate the eigenvalues from pro-
tein sequences on a PSSM; (3) To reduce the dimen-
sion of feature values which obtained from WT
method by applying the Principal Component Ana-
lysis (PCA) technique, and removed the noise features
from the data, thus the pattern in the data is discov-
ered; (4) RP classifier is applied to build a training set
on which the classifiers will be trained. More specific-
ally as follows: first of all, the PSSM of each protein
sequence is converted into a 400-dimensional feature
vector by employing FIRF method to extract helpful
information; then, to remove the influence of noise,
we reduced the dimension from 400 to 300 by apply-
ing PCA method; At last, realized classification on
yeast and human datasets by relying on RP classifier.
The experimental results show that this method out-
performs the SVM-based method and other previous
methods. It is revealed that the presented method is
suitable and perform well for predicting SIPs.
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Results and discussion
Five-fold cross-validation on human and yeast datasets
The performance of the proposed method is estimated
on the human and yeast datasets. Aiming at the fairness
and over-fitting problems, we repeated the experiment
five times on the two same datasets, termed five-fold
cross validation. Further, described it in details, we split
the human dataset which was mainly composed of char-
acteristic values into five non-overlapping pieces, and
four parts was randomly chosen as training set and
selected the remaining characteristic values as independ-
ent test set. Then, we can obtain the results by repeating
five times to test our model. To illustrate the rationality,
toughness and stability of our algorithm, we also imple-
mented the method of RP-FIRF on the yeast dataset.
To guarantee impartiality and objectivity of the test,

the parameters for human and yeast datasets should be
set in the same way. In our task, we obtained the better
result by adjusting the diverse parameters of RP classifier
constantly. Thus, we set the number of blocks B1 = 10
for independent projections to classify the training and
test sets, the size of each block was carefully chosen as
B2 = 30, and then applying the K-Nearest Neighbor
(KNN) base classifier and the leave-one-out test error
estimate, where k = seq (1, 30, by = 8).
Afterwards, we test our RP-FIRF prediction method

on the two mentioned datasets, and got the results of
the two datasets based on 5-fold cross-validation are
discovered in Tables 1 and 2. From the Table 1, the data
is observed that our proposed method exhibited the five
outcomes of average Accuracy (Acc), Sensitivity (Sen),
Precision (PE), and Matthews correlation coefficient
(MCC) of 97.89, 74.46, 100.00, and 85.31% on human
dataset and the standard deviations of them of 0.17,
2.18, 0.00, and 1.29%, respectively. Similarly, we can get
the results in Table 2 by running experiment on yeast
dataset, the average Accuracy is 97.35%, average Sensi-
tivity is 77.03%, average Precision is 99.62%, and average
MCC is 86.31% and the standard deviations of them of
0.15, 1.17, 0.52, and 0.79%, respectively.
As mentioned above, It is apparent that our method

can receive good effect of SIPs detection because of
the appropriate feature extraction and classifier. The

presented feature extraction technique plays a critical
part in enhancing the calculation accuracy. The spe-
cific reasons can be summed up in the following
three aspects: (1) PSSM could describe the protein se-
quence in the form of numerical values. It can be
employed to find an amino acid that matches a spe-
cific location to give the score in a target protein se-
quence. Not only can it represents the information of
protein sequence, but also it preserves helpful enough
information as much as possible. Accordingly, A
PSSM contains almost the whole information of one
protein sequence for detecting SIPs. (2) Finite impulse
response filter (FIRF) feature extraction method of
protein sequence can further optimize the perform-
ance of our proposed model. (3) To drop the negative
influence of noise, PCA was employed to reduce the
dimension of data on the condition of the integrity of
FIRF feature vector, thus the helpful information in
the data will be mined. In a few words, experimental
results revealed that our RP-FIRF model is extreme
fit for SIPs prediction.

Compare our proposed model with the SVM-based
method
Although the RP-FIRF model achieved accuracy more
than 90%, It still needs further test and verify the effect-
iveness of our presented model. From the point of classi-
fication, support vector machine (SVM) is a generalized
linear classifier. The SVM-based method has been widely
known in many fields of scientific research. Therefore,
it’s necessary to compare the prediction accuracy of our
RP-FIRF model with the SVM-based method by using
the same eigenvalues based on the two above mentioned
datasets. We mainly employed the LIBSVM packet tool
[20] to implement classification in the experiment. Our
first task was to adjust the main parameters of SVM
classifier. A radial basis function (RBF) was chosen as
the kernel function, and then the two parameters of RBF
were adjusted via a grid search algorithm, which were
set c = 0.6 and g = 0.02.
As is shown in Tables 3 and 4, we trained and com-

pared the RP-FIRF model with SVM-based model on
yeast and human datasets by employing 5-fold cross-

Table 1 Results measured by RP-FIRF method on human
dataset with 5-fold cross-validation

Testing set Acc (%) Sen (%) PE (%) MCC (%)

1 98.10 76.84 100.00 86.77

2 97.76 74.51 100.00 85.28

3 97.70 71.63 100.00 83.59

4 98.01 73.05 100.00 84.57

5 97.87 76.28 100.00 86.34

Average 97.89 ± 0.17 74.46 ± 2.18 100.00 ± 0.00 85.31 ± 1.29

Table 2 Results measured by RP-FIRF method on yeast dataset
with 5-fold cross-validation

Testing set Acc (%) Sen (%) PE (%) MCC (%)

1 97.43 78.01 99.10 86.65

2 97.35 77.08 100.00 86.51

3 97.35 75.57 99.00 85.22

4 97.51 78.32 100.00 87.28

5 97.11 76.16 100.00 85.87

Average 97.35 ± 0.15 77.03 ± 1.17 99.62 ± 0.52 86.31 ± 0.79
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validation respectively. The data from Table 3 can be
displayed that the mean of Accuracy, the mean of Sensi-
tivity, the mean of Precision, and the mean of MCC
from SVM classifier are 92.32, 32.89, 100.00, and 53.07%
on yeast dataset, respectively. However, the RP-FIRF
method reached 97.35% average Accuracy, 77.03% aver-
age Sensitivity, 99.62% average Precision, and 86.31%
average MCC on yeast dataset. Equally, the data from
Table 4 can be shown that the average Accuracy, the
average Sensitivity, the average Precision, and the aver-
age MCC of SVM classifier are 96.21, 54.44, 100.00, and
72.30% on human dataset. Nevertheless, the proposed

model achieved 97.89% average Accuracy, 74.46% aver-
age Sensitivity, 100.00% average Precision, and 85.31%
average MCC on human dataset. Stated thus, it is clear
that the overall prediction results of RP classifier are
much better than those of SVM classifier.
Meanwhile, receiver operating characteristic (ROC)

curves was applied to analysis the binary classification
system (the outcome results only have two categories),
was widely applied in many fields such as bioinformatics
[21], forecasting of natural hazards [22], machine learn-
ing [23], data mining [24] and so on. Therefore, we also
used ROC curves to measure the comprehensive index
between sensitivity and specificity continuous variable.
The area under curves (AUC) could be shown the dis-
criminating capability of the classifier. The closer the
top-left corner of the curve is, the higher the prediction
accuracy is. Otherwise, the lower the diagnosis result is.
In other words, The larger the AUC, the stronger the
capability of discernment.
From Fig. 1, we plotted the ROC curves by making

a comparison between RP and SVM on human data-
set, it is clearly that the AUC of SVM classifier is
0.7754 and that of RP classifier is 0.8842. Plots of the
RP and SVM classifier on yeast dataset in the ROC
space are plot in Fig. 2, it is sharply that the AUC of
SVM classifier is 0.6631 and that of RP classifier is
0.8896. Anyhow, we demonstrate that the AUC of RP
classifier is also significantly larger than that of SVM
classifier. So the RP method is an accurate and robust
technique for SIPs detection.

Measure our proposed model against other previous
methods
In the process of practice, we measured the quality of
proposed model named RP-FIRF with other existing
methods based on the two above mentioned datasets to
further testify that our approach could obtain better re-
sults. We listed a clear statement of account in Tables 5
and 6, which are the comparison results on the two
datasets. From Table 5, it is obvious that the RP-FIRF
model achieved the highest average accuracy of 97.35%
than the other six methods (range from 66.28 to 87.46%)
on yeast dataset. At the same instant, it is clear to see
that the other six methods got lower MCC (range from
15.77 to 28.42%) than our proposed model of 86.31% on
the same dataset. In exactly the same way, from Table 6,
the overall results of our prediction approach is also out-
perform the other six methods on human dataset. To
make a summary of it, we measured our RP-FIRF model
against with the other six approaches on yeast and hu-
man datasets respectively, the prediction accuracy of the
overall experimental results can be improved. This fully
illustrates that a good feature extraction tool and a suit-
able classifier is very important for predicting model. It

Table 3 Comparison results of RP and SVM with FIRF feature
vectors on yeast dataset

Testing set Acc (%) Sen (%) PE (%) MCC (%)

SVM + PSSM+FIRF

1 92.36 32.62 100.00 54.81

2 89.15 6.25 100.00 23.59

3 94.21 45.04 100.00 65.04

4 93.65 44.76 100.00 64.62

5 92.21 35.76 100.00 57.31

Average 92.32 ± 1.96 32.89 ± 15.86 100.00 ± 0.00 53.07 ± 17.08

RP + PSSM+FIRF

1 97.43 78.01 99.10 86.65

2 97.35 77.08 100.00 86.51

3 97.35 75.57 99.00 85.22

4 97.51 78.32 100.00 87.28

5 97.11 76.16 100.00 85.87

Average 97.35 ± 0.15 77.03 ± 1.17 99.62 ± 0.52 86.31 ± 0.79

Table 4 Comparison results of RP and SVM with FIRF feature
vectors on human dataset

Testing set Acc (%) Sen (%) PE (%) MCC (%)

SVM + PSSM+FIRF

1 96.32 55.09 100.00 72.78

2 95.94 53.92 100.00 71.85

3 96.37 55.32 100.00 72.95

4 96.78 56.25 100.00 73.73

5 95.66 51.60 100.00 70.18

Average 96.21 ± 0.43 54.44 ± 1.79 100.00 ± 0.00 72.30 ± 1.36

RP + PSSM+FIRF

1 98.10 76.84 100.00 86.77

2 97.76 74.51 100.00 85.28

3 97.70 71.63 100.00 83.59

4 98.01 73.05 100.00 84.57

5 97.87 76.28 100.00 86.34

Average 97.89 ± 0.17 74.46 ± 2.18 100.00 ± 0.00 85.31 ± 1.29
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is further illustrated that our method is superior to the
other six approaches and quite suitable for SIPs
preditcion.

Conclusion
In the study, a machine learning model was put for-
ward to predict SIPs which based on protein primary
sequence. This model was developed by combining
Finite Impulse Response Filter with Random Projec-
tion classifier, which was termed RP-FIRF. The mainly
improvements for this method are attributable to the
following aspects: (1) A reasonable representative
method FIRF is used to effectively extract the discri-
minary features, which can process and analyze pro-
tein sequence data well. (2) The RP classifier is
strongly suitable for predicting SIPs, and a high rec-
ognition accuracy can be obtained. The experimental
results measured by the presented model on yeast

and human datasets revealed that the performance of
RP method is significantly better than that of the
SVM-based method and other six previous methods.
It fully shows that the integration of FIRF method
with RP classifier is able to significantly improve the
accuracies of SIPs prediction. Overall, we have pre-
dicted a reliable set of SIPs suitable for further com-
putational as well as experimental analyses. For the
future research, there will be more and more effective
feature extraction methods and machine learning ap-
proaches exploited for detecting SIPs.

Materials and methodology
Datasets
In our study, we constructed the datasets mainly de-
rived from the UniProt database [29] which contains
20,199 curated human protein sequences. There are
many different types of resources such as DIP [30],

Fig. 1 Comparison of ROC curves between RP and SVM on human dataset

Fig. 2 Comparison of ROC curves between RP and SVM on yeast dataset
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BioGRID [31], IntAct [32], InnateDB [33] and
MatrixDB [34], we can get the PPIs related informa-
tion from them. In relational databases, we mainly set
up the datasets for SIPs which embodies two identical
interacting protein sequences and whose type of
interaction was characterized as “direct interaction”.
Based on that, we can construct the datasets for the
experiment by applying 2994 human self-interacting
protein sequences.
For the 2994 human SIPs, we need to single out the

datasets for the experiment and assess the performance
of the RP-FIRF model, which mainly includes three steps
[28]: (1) If the protein sequences which may be frag-
ments, we will remove it and retain the length of protein
sequences between 50 residues and 5000 residues from
all the human proteome; (2) To build up the positive
dataset of human, we formed a high-grade SIPs data
which should meet one of the following conditions: (a)
the self-interactions were revealed by at least one small-
scale experiment or two sorts of large-scale experiments;
(b) the protein has been announced as homo-oligomer
(containing homodimer and homotrimer) in UniProt; (c)
it has been reported by more than two publications for
self-interactions; (3) For the human negative dataset, we
removed the whole types of SIPs from all the human
proteome (contains proteins annotated as ‘direct inter-
action’ and more extensive ‘physical association’) and
SIPs detection in UniProt database. To sum it up, we

obtained the ultimate human dataset for the experiment
which was mainly composed of 1441 SIPs and 15,938
non-SIPs [28].
Just as the construction of human dataset, we also

further assess the cross-species ability of the RP-FIRF
model by repeating the same strategy mentioned
above to generate the yeast dataset. Finally, 710 SIPs
was assigned to form the yeast positive dataset and
5511 non-SIPs was allocated to constitute the yeast
negative dataset [28].

Assessment tools
In the field of machine learning, confusion matrix is
always employed in evaluating the classification
model, also known as an error matrix [35, 36]. It in-
dicates information about actual and predicted classi-
fications for two class classifier which could be shown
as the follow Table 7.
In our study, in the interest of size up the steadiness

and effectiveness of our present model, we computed
the values of 5 parameters: Accuracy (Acc), Sensitivity
(Sen), specificity (Sp), Precision (PE) and Matthews’s
Correlation Coefficient (MCC), respectively. These
parameters can be described as follows:

Acc ¼ TP þ TN
TP þ FP þ TN þ FN

ð1Þ

Sen ¼ TP
TP þ FN

ð2Þ

Sp ¼ TN
FP þ TN

ð3Þ

PE ¼ TP
FP þ TP

ð4Þ

MCC ¼ TP � TNð Þ− FP � FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ � TN þ FPð Þ � TP þ FPð Þ � TN þ FNð Þp

ð5Þ
where, TP (i.e. true positives) is the quantity of true
interacting pairs correctly predicted. FP (i.e. false posi-
tives) represents the number of true non-interacting
pairs falsely predicted. TN (i.e. true negatives) is the
count of true non-interacting pairs predicted correctly.
FN (i.e. false negatives) represents true interacting pairs
falsely predicted to be non-interacting pairs. On the
basis of these parameters, a ROC curve was plotted to
evaluate the performance of random projection method.

Table 5 Performance results between RP-FIRF model and the
other methods on yeast dataset

Model Acc (%) Sp (%) Sen (%) MCC (%) AUC

SLIPPER [6] 71.90 72.18 69.72 28.42 0.7723

DXECPPI [25] 87.46 94.93 29.44 28.25 0.6934

PPIevo [26] 66.28 87.46 60.14 18.01 0.6728

LocFuse [27] 66.66 68.10 55.49 15.77 0.7087

CRS [28] 72.69 74.37 59.58 23.68 0.7115

SPAR [28] 76.96 80.02 53.24 24.84 0.7455

Proposed method 97.35 99.96 77.03 86.31 0.8896

Table 6 Performance results between RP-FIRF model and the
other methods on human dataset

Model Acc (%) Sp (%) Sen (%) MCC (%) AUC

SLIPPER [6] 91.10 95.06 47.26 41.97 0.8723

DXECPPI [25] 30.90 25.83 87.08 8.25 0.5806

PPIevo [26] 78.04 25.82 87.83 20.82 0.7329

LocFuse [27] 80.66 80.50 50.83 20.26 0.7087

CRS [28] 91.54 96.72 34.17 36.33 0.8196

SPAR [28] 92.09 97.40 33.33 38.36 0.8229

Proposed method 97.89 100.00 74.46 85.31 0.8842

Table 7 Confusion Matrix

Predict

Negative Positive

Actual Negative TN FN

Positive FP TP
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And then, we can calculate the area under curve (AUC)
to measure the performance of the classifier.

Position specific scoring matrix
In our experiment, Position Specific Scoring Matrix
(PSSM) is a helpful technique which was employed to
detect distantly related proteins [37]. Accordingly, each
protein sequence information was transformed into
PSSM by using the PSI-BLAST [38]. And then, a given
protein sequence can be converted into an H × 20 PSSM
which could be represented as follow:

M ¼ Mαβ α : 1 ¼ 1⋯H ; β ¼ 1⋯20f g ð6Þ
where H denotes the length of a protein sequence, and
20 is the number of amino acids due to every sequence
was constituted by 20 different amino acids. For the
query protein sequence, the score Cαβ indicates that the
β-th amino acid in the position of α assigned from a
PSSM. Therefore, Cαβ could be described as:

Cαβ ¼
X20

k¼1
p α; kð Þ � q β; kð Þ ð7Þ

where p(α,k) represents the occurrence frequency of the
k-th amino acid at location of α, and q(β,k) is the Dayh-
off’s mutation matrix value between β-th and k-th amino
acids. In addition, diverse scores determine different
relative location relationships, a greater degree means a
strongly conservative position, and otherwise a weakly
conservative position can gain a lower value.
Overall, PSSM has been more and more important in

the research of SIPs prediction. In a detailed and exact
way, we employed PSI-BLAST to obtain the PSSM from
each protein sequence for detecting SIPs. To achieve a
better score and a large scale of homologous sequences,
the E-value parameter of PSI-BLAST was set to be 0.001
which reported for a given result represents the quantity
of two sequences’ alignments and selected three itera-
tions in this experiment [39, 40]. Afterwards we can
achieve a 20-dimensional matrix which consists of M×
20 elements based on PSSM, where M represents the
count of residues of a protein, and 20 denote the 20
types of amino acids.

Finite impulse response filters
In the field of digital signal processing (DSP) [41], finite
impulse response filter (FIRF) is one of the most com-
monly used components, which can perform the func-
tion of signal pre-modulation and frequency band
selection and filtering. FIRF are widely employed in
many fields such as communications [42], image pro-
cessing [43], pattern recognition [44], wireless sensor
network [45] and so on. Many methods of DSP were
applied in the fundamental research of cytology, brain
neurology, genetics and other fields. In our work, we

applied FIRF to process the characteristics of protein se-
quences, which would be used to predict the SIPs.
Therefore, many important features of the problem can
be fully highlighted by the FIRF method, and then it
could devote to the details of the problem. We design it
by using Fourier series method in details as follows.
At first, the corresponding Frequency Response

Function of FIRF transfer function can be described
as:

H ejw
� � ¼ XN−1

n¼0

h nð Þe−jwn ð8Þ

where, h(n) is the available impulse response sequence,
and N represents the sample sizes of frequency response
H (ejw). Given the frequency response Hd (ejw) of ideal
filter, and let H (ejw) approach Hd (e

jw) infinitely.

Hd ejw
� � ¼ X∞

n¼−∞

hd nð Þe−jwn ð9Þ

And then, we can achieve the -hd(n) by employing in-
verse Fourier transform of Hd (e

jw). The hd(n) is built as

hd nð Þ ¼ 1
2π

Z π

−π
Hd ejw

� �
ejwndw ð10Þ

where hd(n) is a finite length. If hd(n) is an infinite
length, we can intercept hd(n) by applying a finite length
of the windows function sequence w(n).

h nð Þ ¼ hd nð Þw nð Þ ð11Þ
According to the above formula, we can gain the unit

sample response for our designed FIR filter. To check
the filter whether meet the design requirements by fol-
low formula.

H ejw
� � ¼ DTFT h nð Þ½ � ð12Þ

The integral square error (ISE) between the frequency
response of ideal filter and our designed filter can be
defined as follow:

ε2 ¼ 1
2π

Z π

−π
Hd ejw

� �
−H ejw

� ��� ��2dw ð13Þ

In our study, we cannot directly extract the eigen-
values from the protein because of each protein
sequence have the different amino acids composition.
To prevent the generation of unequal lengths of feature
vectors, we multiply the transpose of PSSM by PSSM to
achieve 20 × 20 matrix. and then, we employ the FIRF
technique to transform the PSSM of each protein se-
quence into a feature vector which have the same size
with 20 × 20 matrix. Afterwards, these feature values
could be computed as a 400-dimensional vector.
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Eventually, every protein sequence from the two above
mentioned datasets was transformed into a 400-
dimensional vector by employing FIRF approach.
For the sake of remove the influence of noise and

improve the result of SIPs prediction, we applied the
Principal Component Analysis (PCA) to remove the
influence of noisy features on the two above mentioned
datasets. So as to we can reduce the dimension of the
two datasets from 400 to 300. Accordingly, we could
employ a small number of information to represent the
whole data and push the complexity into smaller, so as
to improve the generalization error.

Random projection classifier
In mathematics and statistics, Random Projection (RP) is
a classifier for dimensionality reduction of some points
which lie in Euclidean space. RP classifier showed that N
points in N dimensional space can almost always be
mapped to a space of dimension ClogN with command
on the ratio of error and distances [46, 47]. It has been
successfully applied in rebuilding of frequency-sparse
signals [48], face recognition [49], protein subcellular
localization [50] and textual and visual information
retrieval [51].
We formally describe the RP classifier as follow in

details. At first, let

Γ ¼ Aif gNi¼1;Ai∈R
n ð14Þ

be the primitive high dimensional space dataset, where
n represents the high dimension and N denotes the
number of the dataset. The goal of dimensionality reduc-
tion is embedding the vectors into a lower dimensional
space Rq from a high dimension Rn, where q < <n. The
output of data is defined as follow:

~Γ ¼ ~Ai
� �N

i¼1;
~Ai∈Rq ð15Þ

where q is close to the intrinsic dimensionality of Γ.
Thus, the vectors of Γ was regarded as embedding
vectors.
If we want to reduce the dimension of Γ via ran-

dom projection method, a random vector set γ = {ri} k
i = 1 must be constructed at first, where ri∈R

q. The
random basis can be obtained by two common
choices as follow [46]:

(1) The vectors {ri} k i = 1 are normally distributed over
the q dimensional unit sphere.

(2) The components of the vectors {ri} k i = 1 are
chosen Bernoulli + 1/− 1 distribution and the
vectors are standardized so that ||ri||l2 = 1 for
i = 1, …,n.

Then, the columns of q × n matrix R are consisted of
the vectors in γ. The embedding result Ãi of Ai can be
got by

~Ai ¼ R � Ai ð16Þ
In our proposed method, random projection classifier

will be trained on a training set. And we enrich the com-
ponent of the ensemble method based on random
projection.
Next, the size of target space was set to a part of

around the space where the training members reside.
We built a size of n × N matrix G whose columns are
made up the column vectors in Γ. The training set Γ
have given in Eq.14.

G ¼ A1jA2j:::jANð Þ ð17Þ
Then, we construct k random matrices {Ri} k i = 1

whose size is q × n, q and n are introduced in the above
mentioned paragraph, and k is the quantity of classifiers.
Here, the columns of matrices are normalized so as to
the l2 norm is 1.
And then, in our method, to construct the training

sets {Ti} k i = 1 by projecting G onto {Ri} k i = 1 which is
the k random matrices. It can be represented as follow:

Ti ¼ Ri � G; i ¼ 1; :::; k ð18Þ
The training sets are imported into an inducer and the

export results are a piece of classifiers {ℓi} k i = 1. How
to classify a new dataset I through classifier ℓi. At first,
we embed I into the dimensionality reduction space Rq.
Then, It can be owned via mapping u to the random
matrix Ri as follow:

~I ¼ Ri � I ð19Þ
where Ĩ is the inlaying of u, the classification of Ĩ can
be garnered from the classification of I by ℓi. In this
ensemble method, the random projection classifier
use a data-driven voting threshold which is employed
to classification outcomes of the whole classifiers {ℓi}
k i = 1 for the Ĩ to decide produce the ultimate classi-
fication result of Ĩ.
In this experiment, the random projections were split

up non-overlapping blocks where B1 = 10 and each one
carefully chosen from a block of size B2 = 30 that
achieved the smallest estimate of the test error. We
used the k-Nearest Neighbor (KNN) as base classifier
and the leave-one-out test error estimate, where k = seq
(1, 30, by = 8). The prior probability of interaction pairs
in the training sample set was taken as the voting par-
ameter. Our classifier integrates the results of taking
advantage of the base classifier on the selected projec-
tion, with the data-driven voting threshold to confirm
the final mission.
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