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Abstract

Background: Phenotypic variability of human populations is partly the result of gene polymorphism and
differential gene expression. As such, understanding the molecular basis for diversity requires identifying genes with
both high and low population expression variance and identifying the mechanisms underlying their expression
control. Key issues remain unanswered with respect to expression variability in human populations. The role of
gene methylation as well as the contribution that age, sex and tissue-specific factors have on expression variability
are not well understood.

Results: Here we used a novel method that accounts for sampling error to classify human genes based on their
expression variability in normal human breast and brain tissues. We find that high expression variability is almost
exclusively unimodal, indicating that variance is not the result of segregation into distinct expression states. Genes
with high expression variability differ markedly between tissues and we find that genes with high population
expression variability are likely to have age-, but not sex-dependent expression. Lastly, we find that methylation
likely has a key role in controlling expression variability insofar as genes with low expression variability are likely to
be non-methylated.

Conclusions: We conclude that gene expression variability in the human population is likely to be important in
tissue development and identity, methylation, and in natural biological aging. The expression variability of a gene is
an important functional characteristic of the gene itself and the classification of a gene as one with Hyper-Variability
or Hypo-Variability in a human population or in a specific tissue should be useful in the identification of important
genes that functionally regulate development or disease.
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Background
Within the last decade, many studies have established
that gene expression patterns vary between individuals,
across tissue types [1], and within isogenic cells in a
homogenous environment [2]. These differences in gene
expression lead to phenotypic variability across a popu-
lation. Differential gene expression gene expression is
typically detected by analyzing expression data from a
population of samples in two or more genetic or pheno-
typic states, for example a cancerous and non-cancerous
sample or between two different individuals. Various
differential gene expression algorithms, such as edgeR
and DESeq, are then used to identify genes whose

expression mean differs significantly between the states.
While differential co-expression analyses have success-
fully been used to identify novel disease-related genes
[3], the statistical methods used in these analyses con-
sider gene expression variance within the sample popu-
lation as a component of the statistical significance
estimate. However, expression variability within popula-
tions has been emerging as an informative metric of cell
state an informative metric of a phenotypic state, par-
ticularly as it relates to human disease [4, 5].
There are several sources of expression variability in a

population. The first are polymorphisms that contribute,
both genetically and epigenetically, to promoter activity,
message stability and transcriptional control. Another
source of gene expression variability is plasticity,
whereby an organism adjusts gene expression to alter its
phenotype in response to a changing environment [6].
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However, gene expression patterns can also vary among
genetically identical cells in a constant environment [7–10].
This is commonly described as “noise”.
Expression variability, whatever its source, is an evolv-

able trait subject to natural selection, whereby each
genes have an optimal expression level and variance re-
quired for an organism’s fitness and selection minimizes
this variability [7, 8, 11–14]. In this case, genes with low
variability have been subjected to heavy selection pres-
sure to minimize population expression variance. Con-
versely, high variability genes have been selected for high
variance. Genes with high expression variability could be
drivers of phenotypic diversity, as suggested by position
association between expression noise and growth [15–18].
In this interpretation, genes with high variability allow for
growth in fluctuating environments. Understanding the
role of the gene expression variability patterns across
human populations and in isogenic mice will therefore
provide crucial insights into how genetic differences con-
tribute to phenotypic diversity, susceptibility to disease
[19, 20], differentiation of disease subtypes [4], develop-
ment [21–24], and alterations in gene network architec-
ture [25].
In this analysis, we used a novel method to analyze

global gene expression variability in non-diseased human
breast, cerebellum, and frontal cortex tissues. Our
method differs from other protocols in that we account
for sampling error in our analysis as well as estimate
expression variability independent of expression magni-
tude. In addition, we analyzed gene methylation in con-
junction with expression variability. Our work suggests
that expression variability is an important part of the de-
velopment and aging process and that identifying genes
with very high or very low expression variability is one
way to identify physiologically and important genes.

Results
Estimating expression variability
We measured human gene expression variability (EV)
[1] in post-mortem non-diseased cerebellum (n = 465)
and frontal cortex samples (n = 455) and biopsied nor-
mal breast tissues (n = 144). Gene expression was mea-
sured using the Illumina HumanHT-12 V3.0 expression
BeadChip. We excluded probes corresponding to non-
coding transcripts as well as those with missing probe
coordinates, resulting in a list of 42,084 probes. We
chose to estimate EV of a microarray probe independent
of its expression magnitude. In this respect, neither the
coefficient of variation nor variance are suitable. The
former has a bias for genes with low mean expression
and the latter has a bias for high mean expression genes.
We modified the method initially described by Alemu
et al. [1]. First, we calculated the median absolute devi-
ation (MAD) for each probe. Then we modelled the

expected MAD for all probes as a function of median
expression using a locally weighted polynomial regres-
sion (Fig. 1a, red line). The expected MAD regression
curves for each tissue type exhibit a flat, negative parabolic
shape where the lowest and highest expression probes
represent the troughs of the curve. Variability in gene ex-
pression levels has previously been shown to decrease as
expression approaches either extrema [7, 10, 26]. The EV
for each probe was calculated as the difference between its
bootstrapped MAD and the expected MAD at each me-
dian expression level (Fig. 1a). Positive EV values indicate
that the probe has a greater expression variability than
probes with the same expression magnitude mean. Con-
versely, negative EV values imply reduced population ex-
pression variability. We next plotted the kernel density
estimation function of EV for each tissue (Fig. 1b). The
EV distribution in all three tissue types exhibit large peaks
around the zero mean and a long tail for positive EV
probes. Breast tissue exhibited a larger shoulder of the
negative EV probes compared to cerebellum and frontal
cortex tissues. This is likely attributable to the lower num-
ber of breast samples (144 compared to 456 and 455 sam-
ples respectively).
We then confirmed the independence of EV on ex-

pression by modelling the relationship between the two
variables using a linear regression (Fig. 1c) and calculat-
ing the Kendall rank correlation coefficient for each tis-
sue type (Table 1). Based on the poor adjusted R2 values
and Kendall rank correlation coefficients, we conclude
that there is no substantial correlation between probe
EV and expression magnitude.
Next, we then classified each probe into three categor-

ies based on their EV. We used the term “Hyper-Vari-
able” to describe probes whose EV was greater than
~xEV þ 3�MADEV . Probes with an EV less than ~xEV−3�
MADEV were deemed “Hypo-Variable”. The remaining
probes that fell within the range of ~xEV � 3�MADEV

were considered “Non-Variable”. A probe classified with
a “Non-Variable” EV means that its bootstrapped MAD
is similar to the MAD of all genes with similar expres-
sion magnitude. It is important to note that these probes
still have expression variability across the population.
We propose that these three distinct groups, categorized
based on EV, correspond to distinct functional and
phenotypic gene characteristics.

Statistical nature of hyper-variability
A previously unexplored aspect of expression Hyper-
variability is the statistical characteristics of expression
amongst genes with this wide range of gene expression.
Specifically, high EV could be the result of a multimodal
distribution of gene expression with two or more dis-
tinct expression means or might simply result from a
broadening of expression values around a unimodal
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Fig. 1 Expression variability (EV) in human breast, cerebellum, and frontal cortex tissue. (a) Expected expression MAD for curve as a function of
median probe expression (solid black line). (b) Kernel density estimation function of EV. The vertical black lines represent the EV classification
ranges. (c) Expression variability as a function of median gene expression. Adjusted R2 values for the linear regression model shown in red were
0.0002, 0.0008, and 0.005 and the associated Kendall rank correlation coefficients were − 0.208, − 0.201, − 0.213 for breast, cerebellum, and frontal
cortex tissues respectively
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mean value. In order to distinguish between the two
possibilities, we modeled each probe expression as a
mixture of two Gaussian distributions prior to estimat-
ing probe EV (Fig. 2). Next, we identified the peaks of
the kernel density estimation function for each Gaussian
distribution and compared the distance between the
peaks as well as the ratio of peak heights. Probes with
peaks that were greater than one median absolute devi-
ation apart and displayed a peak ratio greater than 0.1
were classified as having a bimodal expression distribu-
tion. Probes that did not satisfy both criteria were con-
sidered to have a unimodal distribution. Only a small
minority of the probes (16/41,968 breast tissue probes,
6/41,968 cerebellum probes, and 6/41,968 frontal cortex
probes) showed a bimodal distribution of gene expres-
sion. The remaining majority of Hyper-Variable probes
had a unimodal distribution. This indicates that high ex-
pression variability is a result of a widening of possible
expression values across a single mean rather than the
gene expression existing in two or more discrete states.

Accounting for sampling error in EV classification
We were concerned that the classification of a probe
into Hyper-, Hypo- and Non-Variable classes might be
the result of sampling errors. To minimize this possibil-
ity and to increase the accuracy of our EV classification
method, we divided each of our tissue samples into two
equally sized sample probe subsets and repeated the EV

analysis. This 50–50 split-retest procedure was repeated
100 times with each iterative retest using a random split
of the probes. Figure 1b shows the kernel density estima-
tion function of a concordant EV classification for each
probe into Hyper-, Hypo- and Non-Variable class across
the three subsets in each tissue type. Figure 3a demon-
strates that classification of a probe as Hyper or Hypo-
Variable based on a single analysis of the population is
problematic due to sampling bias. We see a substantial
decrease in the number of probes in the Hyper- and
Hypo-Variable probe sets after conducting our split-
retest protocol (Fig. 3b and Table 2). Thus, our split-
retest method likely increases the robustness and
accuracy of EV classification.

Tissue-specificity of EV
We next mapped Hyper-, Hypo and Non-Variable
probes onto their respective genes. Individual genes can
have multiple probes attached to them and we refer to
the identified genes as being “probe-mapped”. A probe-
mapped gene is assigned to a Variability group if one or
more of its probes have that characteristic Variability.
Thus, the possibility exists that an individual gene could
be placed in one or more Variability groups based on
differential behavior of probes mapped to that gene.
However, the number of genes that have are classified in
one or more Variability groups involved is small (Breast:
2.22%, Cerebellum: 2.76%, Frontal Cortex: 3.18%).

Table 1 Correlation analysis of EV and probe expression. Adjusted R2 values were calculated using a linear regression model

Breast Cerebellum Frontal Cortex

Kendall Rank Correlation Coefficient −0.208 − 0.201 −0.213

Linear Regression Adjusted R2 Value 2 × 10− 4 8 × 10− 4 5 × 10− 3

Fig. 2 Bimodal Hyper-Variable gene expression detection. Gaussian mixture modelling method of detecting bimodal probes. The dashed lines
represent the overall gene kernel density estimation function of gene expression. The two Gaussian models are shown in dark grey and light
grey, and the dotted vertical lines represent the distribution means
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Fig. 3 Cross-Validation of EV Classifications. (a) Relative frequency of EV classification accuracy between original distribution and 50–50 split retest
replicates (n = 100). (b) Number of probes in each EV probe set before and after split-retest protocol

Table 2 Count summary of probes before and after 50–50 split-retest procedure. Hypervariable and Hypovariable probes that were
not retained after the split-retest were relabeled as “Non-Variable”

Probe Set Tissue Number of Probes
Before Retesting

Number of Probes
After Retesting

% of Probes After
Retesting

Hypervariable Breast 3125 1448 46.34

Cerebellum 2987 1640 54.90

Frontal Cortex 2949 1760 59.68

Hypovariable Breast 4371 957 21.89

Cerebellum 2619 837 31.96

Frontal Cortex 3019 1254 41.54

Non-Variable Breast 34,456 39,547 114.78

Cerebellum 36,356 39,485 108.61

Frontal Cortex 35,994 38,948 108.21

Bashkeel et al. BMC Genomics          (2019) 20:941 Page 5 of 19



Because we have calculated EV from different tissues,
we were able to determine the extent to which tissue-
specific factors might contribute to EV. This is an
important question because expression variability exists
not only between individuals but between different tissues
in the same organism. As shown in Fig. 4a, only a small
minority of Hyper-Variable and Hypo-Variable probe-
mapped gene sets are shared between the three tissues.
16% of the Hyper-Variable probe-mapped genes were
classified as such in the three tissues and 18–26% of the
Hypo-Variable were so classified. The Non-Variable
probe-mapped gene sets contained over 82% of genes in
each tissue type, with over 71% of the measured genes
commonly classified as NV in all three tissue types.

EV and gene structural characteristics
To understand possible genomic mechanisms by which
population expression variability occurs, we first explored

the relationship between EV and various structural fea-
tures of the genes. Expression variability has previously
been reported to be associated with gene size, gene struc-
ture, and surrounding regulatory elements [1]. However,
we found no significant linear correlation between EV and
a gene’s exon count, sequence length, transcript size, or
number of isoforms (Additional file 1). While certain
linear models exhibited statistical significance (p < 0.05),
the fit of the model and subsequent comparison of the lin-
ear model against a local polynomial regression curve
showed that the correlation was either too small to draw a
conclusion or not correctly defined by a linear model.
While we did not find that the physical gene characteris-

tics were correlated to EV, previous studies have shown
that the position of a gene on a chromosome has consid-
erable effects on stochastic gene expression variability
[27]. We next tested if there is a relationship between ex-
pression variability and chromosomal position (Fig. 4b).

Fig. 4 Tissue Specificity of EV. (a) Venn diagrams comparing EV classifications of probe mapped genes sets between breast, cerebellum, and
frontal cortex tissues. (b) Effect of genomic position on EV. Each chromosome is divided into 100 bins (x-axis) based on the maximum gene
coordinate annotation, and the average EV in each bin is measured (y-axis). Bins with an average EV greater than 0 are represented in green,
while those with a negative EV are represented in red. Bins with less than three probes were assigned an average EV of zero
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To this end, each chromosome was divided into 100 bins
and the mean EV all the genes within each bin deter-
mined. We display mean EV so that the graphed value
does not depend on the probe density. However, bins that
have a small number of probes may skew positional
values. We therefore introduced a minimal threshold for
number of probes in each bin. Any bin with less than 3
probes would be considered to have a zero EV value. We
found that EV is not uniformly distributed across the gen-
ome, and individual regions of chromosomes exhibited
peaks of high expression variability or troughs of low ex-
pression variability. To further confirm our conclusion, we
tested the cosine similarities of the chromosomes within
and across the tissue types (Additional file 2). This similar-
ity analysis is consistent with the idea that EV is not ran-
domly distributed throughout the genome. Furthermore,
chromosomal EV distributions across chromosomes
exhibited low similarities with each other. Because the
probes used for the three different tissues are identical,
this conclusion is not affected by probe density.

Functional analysis of hyper-, hypo- and non-variable
genes
In order to understand the overall biological significance
of EV, we examined the functional aspects that are
enriched in the Hyper-Variable, Hypo-Variable, and Non-
Variable probe-mapped gene sets by conducting a gene
set enrichment analysis in each category. We conducted a
functional enrichment analyses of the gene symbols

corresponding to the probes in each probe-mapped gene
set. We determined the over-represented Gene Ontology
(GO) terms that were unique in each tissue type, as well
as GO terms that were common in all three tissue types.
The resulting GO annotations were simplified and visual-
ized using a REVIGO treemap. The top five terms for each
tissue type can be found in Table 3, while the complete list
of GO term treemaps can be found in Additional file 3. It
should be noted that the GO term “Proteolysis involved in
cellular catabolism” appears both in the “Common Probe-
Mapped Genes” and “Breast-Specific Probe Mapped
Genes” for the Hypo-Variable set. The genes involved in
both cases are unique but they are members of the same
GO pathway.
The breast Hyper-Variable probe-mapped gene set was

uniquely enriched for epithelial cell differentiation, primary
alcohol metabolism, and positive regulation of cellular com-
ponent movement. The cerebellum Hyper-Variable probe-
mapped gene set was uniquely enriched for regulation of
nervous system development, transmembrane transport,
and neuron death. The frontal cortex Hyper-Variable
probe-mapped gene set was enriched for histamine secre-
tion, regulation of cell morphogenesis, and trans-synaptic
signalling. The breast, cerebellum, and frontal cortex
Hyper-Variable probe-mapped gene sets were commonly
enriched for regulation of tissue remodeling, inflammatory
responses, and responses to inorganic substances. Of note,
many of the enriched GO annotations of the Hyper-
Variable genes are involved in signalling pathways.

Table 3 Top 5 common and tissue-specific REVIGO GO annotations in the Hyper-Variable and Hypo-Variable probe mapped gene
sets of breast, cerebellum, and frontal cortex tissues

Common Probe-Mapped Genes Breast-Specific Probe-Mapped Genes Cerebellum-Specific Probe-
Mapped Genes

Frontal Cortex-Specific
Probe-Mapped Genes

Hyper-
Variable

Regulation of bone remodeling Epithelial cell differentiation Regulation of nervous
system development

Histamine secretion

Regulation of inflammatory response Primary alcohol metabolism Regulation of
transmembrane transport

Regulation of cell
morphogenesis

Response to zinc ion Positive regulation of cellular
component movement

Regulation of neuron death Trans-synaptic signaling

Carboxylic acid biosynthesis Response to corticosteroid Negative regulation of
response to external
stimulus

Regulation of
neurological system
process

Regulation of ion transport Transmembrane receptor protein
tyrosine kinase signaling pathway

Response to calcium ion Dephosphorylation

Hypo-
Variable

Proteolysis involved in cellular protein
catabolism

Golgi vesicle transport DNA conformation change ncRNA metabolism

Ribonucleoprotein complex assembly Nucleoside monophosphate
metabolism

Modification-dependent
macromolecule catabolism

Response to interleukin-1

Regulation of cellular amino acid
metabolism

Proteolysis involved in cellular
protein catabolism

Response to camptothecin Regulation of enter of
bacterium into host cell

Innate immune response activating cell
surface receptor signaling pathway

Cellular response to nitrogen
starvation

Retrograde transport,
endosome to Golgi

Negative regulation of autophagy Mitochondrial respiratory chain
complex I assembly

Regulation of ubiquitin-
protein transferase activity
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In the case of the Hypo-Variable probe-mapped gene
sets, all three tissue types were enriched for protein ca-
tabolism and metabolism, ribonucleoprotein complexes,
and negative regulation of autophagy. In this respect,
many of the shared Hypo-Variable genes could be con-
sidered housekeeping genes. The breast Hypo-Variable
probe-mapped gene set was enriched for Golgi vesicle
transport, nucleoside metabolism, and protein catabol-
ism. The cerebellum Hypo-Variable probe-mapped gene
set was enriched for DNA conformation change,
modification-dependent macromolecule catabolism, and
retrograde transport.

Essentiality enrichment in variable genes
Previous studies in yeast have shown that gene expres-
sion variability is reduced in genes that are essential for
survival. It is believed that evolution has selected for
transcriptional networks that limit stochastic expression
variation of essential genes [12]. If this were true for
humans, we would expect a significant number of essen-
tial genes to exhibit Hypo-Variable expression and a de-
pletion of essential genes within the Hyper-Variable
probe sets.
In order to examine a potential correlation between

expression variability and essentiality in human tissues,
we first tested the independence between EV classifica-
tion and annotation of human essentiality (Table 4). Es-
sentiality annotations were obtained from the CCDS
[28] and MGD [29] databases. Here, direct human
orthologs of genes essential for prenatal, perinatal, or
postnatal survival of mice were classified as essential.
Using the Pearson’s chi-square test using the chisq.test
function [30] in R for the number of essential genes in
each probe set (Additional file 4), we find that that the
Hypo-Variable probe-mapped gene set in breast, cere-
bellum, and frontal cortex tissues were significantly
enriched for genes with essentiality annotation. Thus,
expression variability for many essential genes is con-
strained in humans, likely reflecting a similar biology to
essential yeast genes. However, we surprisingly observe a

significant enrichment of essential genes within the
Hyper-Variable probe-mapped gene sets.
To better understand the implications of high variabil-

ity in essential genes, we examined the functional anno-
tations associated with Hyper-Variable essential genes
(Table 5 and Additional file 5). The breast essential
Hyper-Variable probe-mapped gene set was enriched for
chordate embryonic development, cellular response to
growth factor stimulus, mesenchymal cell apoptotic
process, carboxylic acid biosynthesis, and cell-substrate
junction assembly. The cerebellum essential Hyper-
Variable probe-mapped gene set was enriched for
regulation of cell development, epithelial cell migration,
positive regulation of cell proliferation, cellular response
to growth factor stimulus, and anterograde trans-
synaptic signalling. Lastly, the frontal cortex essential
Hyper-Variable probe-mapped gene set was enriched for
positive regulation of cell differentiation, transmembrane
receptor protein tyrosine kinase signalling pathway, epi-
thelial cell migration, regulation of actin cytoskeleton
organization, and regulation of lipase activity. Overall,
the Hyper-Variable essential probe-mapped gene sets
tended to be enriched for morphogenic, tissue, and
organ system development.

DNA methylation and expression variability
One factor that has been postulated to regulate EV is
DNA methylation. While the relationship between
methylation and gene expression is complex, low pro-
moter methylation is associated with high levels of gene
expression [31–34]. Like gene expression, DNA methyla-
tion is highly variable at the cell, tissue, and individual
level [35], suggesting that EV could result from varia-
tions in gene methylation. To explore this idea, we used
DNA methylation annotations that were available in 724
out of 911 brain tissue samples.
DNA methylation in CpG sites is thought to be bi-

modal, meaning that the gene is either hypomethylated
or hypermethylated [34]. In order to differentiate
between low, medium, and high methylation states in

Table 4 Pearson’s Chi-squared test for Essentiality in Hyper-Variable, Hypo-Variable, and Non-Variable probe mapped gene sets

Tissue Probe Set Total Gene Count Essential Gene Counts Standardized Residuals P-Value

Breast Hyper 1448 165 8.65 1.48 × 10−22

Hypo 957 103 4.94

NV 39,547 2095 −9.87

Cerebellum Hyper 1640 160 5.88 4.85 × 10−10

Hypo 837 76 2.69

NV 39,485 2128 −6.42

Frontal Cortex Hyper 1760 181 7.28 1.43 × 10−16

Hypo 1254 121 4.15

NV 38,948 2062 −8.38
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our samples, we modelled gene methylation using Gauss-
ian mixture models for the mean methylation for each
gene. The distribution of gene methylation in both cere-
bellum and frontal cortex tissue was best modelled as a
three-component system. The first component was a sub-
population Gaussian mixture while the second and third
components were modelled as single Gaussian distribu-
tions. Genes whose methylation fell within the first com-
ponent were classified as Non-Methylated genes. Genes
were classified as Medium Methylated for those in the

second component and Highly Methylated if they were in
third. The distribution of methylation amongst the genes
is predominantly bimodal with only a minority of genes
being Medium Methylated (Fig. 5a). In contrast, over 62%
of cerebellum genes are non-methylated and 23% highly
methylated. Similarly, 58% of frontal cortex genes are
non-methylated and 22% are highly methylated).
Next, we explored the correlation between methylation

and expression based on the EV. When we subset the
methylation distribution by EV classification (Fig. 5b),

Table 5 Top 5 common and unique REVIGO GO annotation subsets of Hyper-Variable and Hypo-Variable essential genes in breast,
cerebellum, and frontal cortex tissues

Breast-Specific Probe-Mapped Genes Cerebellum-Specific Probe-Mapped
Genes

Frontal Cortex-Specific Probe-Mapped
Genes

Hyper-Variable Essential
Genes

Chordate embryonic development Regulation of cell development Positive regulation of cell differentiation

Cellular response to growth factor
stimulus

Epithelial cell migration Transmembrane receptor protein tyrosine
kinase signalling pathway

Mesenchymal cell apoptotic process Positive regulation of cell
proliferation

Epithelial cell migration

Carboxylic acid biosynthesis Cellular response to growth factor
stimulus

Regulation of actin cytoskeleton
organization

Cell-substrate junction assembly Anterograde trans-synaptic signalling Regulation of lipase activity

Hypo-Variable Essential
Genes

DNA repair DNA repair DNA repair

Regulation of cellular protein
localization

Protein oligomerization Peptide transport

Mitochondrial genome maintenance Positive regulation of viral process Regulation of type I interferon
production

Chordate embryonic development Negative regulation of cell cycle Response to UV

Protein modification by small protein
removal

Lysosomal transport Phosphorylation

Fig. 5 Methylation in human cerebellum and frontal cortex tissue. (A) Kernel density estimation function of average gene methylation. Gaussian
mixture models were used to classify the genes into Non-, Medium- and Highly- methylated clusters. (B) Kernel density estimation function of
average gene methylation by EV classification. The dashed vertical lines represent the methylation state cluster cut-offs generated by the
Gaussian mixture modelling
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we observe that Hypo-Variable genes have a visibly dif-
ferent methylation pattern than Hyper- or Non-Variable
genes insofar as Hypo-Variable genes are visibly overrep-
resented in the Non-Methylated gene group compared
to both the Hyper-Variable and Non-Variable genes.
To further quantify the overrepresentation of Hypo-

Variable genes in the Non-Methylated gene group, we
conducted a chi-squared test of independence between
the methylation state clusters and the EV classifications
(Table 6 and Additional file 4). Both the cerebellum and
frontal cortex tissues exhibited a significant relationship
between the methylation clusters and EV classifications
(p = 7.57 × 10− 36 and p = 1.58 × 10− 59, respectively). By
examining the standardized residuals of the chi-square
test of independence, we quantitatively confirmed the
enrichment of Non-Methylated genes within the Hypo-
Variable probe-mapped gene set. We also observe a
significant enrichment of Highly Methylated genes in
the Non-Variable gene set as well as an enrichment of
Medium Methylated genes in the Hyper-Variable probe-
mapped gene set. This indicates that methylation and
EV classification are correlated.

Effects of age, sex, and PMI on variability
To further understand the biological relevance of EV, we
focused on the Hyper-Variable genes to identify poten-
tial mechanisms of decreased constraint on gene expres-
sion across the samples. We systematically analyzed
expression as a function of sex, age, and post-mortem
interval (PMI). The breast tissue dataset lacked these
clinical annotations and was excluded from this analysis.
We employed a probe-wise linear regression analysis to
model the relationship between Hyper-Variable probe
expression and age, sex, and PMI. The resulting p-values
were adjusted for multiple comparisons using the
Benjamini-Hochberg procedure and considered signifi-
cant when the adjusted p-value was less than 0.01. The
total number of Hyper-Variable probes with sex, PMI or
age as co- are shown in Table 7.
PMI might be a source of apparent expression variabil-

ity because an extended PMI might compromise sample
RNA integrity and lead to degradation of labile RNA
[36]. Brain samples had PMI times ranging from 1 h to
94 h (mean = 36.14 h), but we observe a negligible

number of probes that are correlated with PMI (2 out of
1640 and 16 out of 1760 probes for cerebellum and
frontal cortex, respectively). This suggests that sample
integrity is unlikely to be a source of EV changes. Some-
what more surprisingly, however, is the low number of
probes that are correlated with sex. Only 22 out of 1640
Hyper-Variable cerebellum probes and 23 out of 1760
Hyper-Variable frontal cortex probes show sex-
dependent differences in EV. While other studies have
shown widespread sex differences in post-mortem adult
brain gene expression [37], EV is not substantially
dependent on sex in our analysis.
However, we observe that age has a substantial effect

on expression variability. Age is correlated with over
31% of Hyper-Variable cerebellum probes and over 41%
of Hyper-Variable frontal cortex probes. This means that
the expression of these probes becomes either more or
less constrained during aging. In the cerebellum, there
were 247 Hyper-Variable probes whose expression
increased as a function of age and 267 genes with
decreased expression. Similarly, the frontal cortex con-
tained 373 probes with increased expression and 354
probes with reduced expression. Given that age is corre-
lated with a considerable number of Hyper-Variable
probes, we classified the age of the samples in the cere-
bellum and frontal cortex tissues into three age clusters
according to BIC for expectation-maximization (EM)
initialized by hierarchical clustering for parameterized
Gaussian mixture models. The oldest cluster contained
samples whose ages were between 58 and 98 (x1 ¼ 79).
The second cluster ranged between 32 and 57 years (x2
¼ 45), while the youngest age cluster contained samples
aged 1 through 31 (x3 ¼ 17).
To further explore this effect, we examined the age-

dependent changes in expression of the Hyper-Variable
probes across the three clusters. In each tissue type, we
labeled probes whose expression was positively corre-
lated with age as “Upregulated”, while the negatively cor-
related probes were termed “Downregulated”. Then, we
used a hierarchical clustering method with an expression
heatmap to visualize how these upregulated and down-
regulated probes are expressed throughout the age
clusters (Fig. 6). The resulting probe hierarchical trees
were clustered into groups via manual tree cutting. The

Table 6 Pearson’s Chi-Squared Test Standardized Residuals. We tested the independence between the methylation state clusters
and the EV classifications in cerebellum and frontal cortex tissues and found a significant relationship between the two variables
(p = 7.57 × 10–36 and p = 1.58 × 10–59, respectively)

Cerebellum Tissue Frontal Cortex Tissue

Non-Methylated Medium Methylated Highly Methylated Non-Methylated Medium Methylated Highly Methylated

Hypo-Variable 11.98 − 5.69 −9.04 14.84 − 7.11 −10.79

Non-Variable −7.52 0.06 8.59 −10.00 −0.04 11.73

Hyper-Variable 0.07 4.21 −3.58 −0.23 6.23 −5.47
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complete list of GO term treemaps for significant gene
clusters can be found in Additional file 6.
While the cerebellum is generally considered a regulator

of motor processes, it is also implicated in cognitive and
non-motor functions [38]. Many of these age-dependent
upregulated Hyper-Variable genes corroborate previous
studies exploring the relationship between brain aging and
changes in gene expression, including cellular responses
to chemical stimuli (gold cluster). In particular, reactive
oxygen and nitrogen species have been shown to change
ion transport channel activity, and serve as an important
mechanism in brain aging [39]. While all the genes se-
lected were age-regulated, some genes exhibit outlier sam-
ples whose expression remains high across all genes in the
dark orange cluster, regardless of age. These genes are
more likely to be overexpressed in the samples as age in-
creases and are enriched for peripheral nervous system
neuron development and neuron apoptotic pathways.
Similar enrichments of neurogenic and chemical stimuli
response pathways are seen in the upregulated frontal cor-
tex genes (gold cluster). The dark orange cluster in the

upregulated frontal cortex age-dependent genes exhibits a
sample-specific over- or under-expression of genes. These
bimodally expressed genes are enriched for glial cell differ-
entiation, adenosine receptor signaling pathways, and anti-
gen processing. Lastly, we see a random scattering of
expression in the yellow cluster of the frontal cortex heat-
map that steadily increases with age. These genes are
enriched for glial cell differentiation, cellular response to
alcohol, and defense responses to fungus.
Most of the downregulated age-dependent Hyper-

Variable genes in the cerebellum fall into the green
cluster where expression of the genes in the cluster
increases with age. These genes are involved in
leukocyte-mediated immunity and defense responses to
other organisms, which is supported by previous studies
[40]. Interestingly, the yellow cluster exhibits U-shaped
expression levels, whereby the lowest expression is seen
in the middle age cluster. These genes are enriched for
optic nerve development, response to interferon-gamma,
and synaptic signalling. In the frontal cortex, the major-
ity of downregulated age-dependent genes fall in the red
cluster, and are enriched for ion transport, cell morpho-
genesis, and trans-synaptic signalling. Overall, the func-
tional annotations of the age-regulated Hyper-Variable
gene clusters suggest that population EV is one outcome
of age-dependent gene expression changes.
We next investigated a possible impact of methylation

status on gene expression in the Up- and Down-
regulated Hyper-Variable genes. Figure 7 shows the
histogram distribution of correlation between paired

Fig. 6 Hierarchical clustering of Hyper-Variable genes by age in (A) cerebellum tissue, and (B) frontal cortex tissue. The vertical axis represents the
age-regulated Hyper-Variable genes while the samples were clustered by age and plotted on the horizontal axis. The top heatmaps represent the
positively correlated age-regulated genes while the bottom heatmaps represent the negatively correlated age-regulated genes. The age clusters
decrease in age from left to right in both heatmaps and correspond to the following age ranges: x1 ¼ 79 ½58; 98�, x2 ¼ 45 ½32; 57�,
and x3 ¼ 17 ½1; 31�

Table 7 Probe-Wise Multiple Linear Regression of Sex, PMI, and
Age. Probes that exhibit an FDR < 0.01 are considered significant
for the specific coefficient

Sex PMI Age

Up Down Total Up Down Total Up Down Total

Cerebellum 12 10 22 2 0 2 247 267 514

Frontal 8 15 23 7 9 16 373 354 727
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gene expression and gene methylation for each gene. We
observe no strong correlation between expression and
methylation, suggesting age-dependent changes in ex-
pression of the age-regulated Hyper-Variable genes are
not the result of methylation changes.

Discussion
Gene expression variability in a population is the cumu-
lative result of intrinsic genetic factors, extrinsic envir-
onmental factors, and stochastic noise. A fundamental
issue in biology is understanding the cause of expression
variability within an individual organism and between
isogenic and genetically dissimilar individuals of a popu-
lation [41]. Expression variability has been postulated to
be part of evolution, differentiation and organ homeosta-
sis [42, 43]. In this report, we study population gene
expression variability in human breast, cerebellum, and
frontal cortex tissues.
Our investigation into human gene expression variabil-

ity yielded several main findings. First, we find that
Hyper-Variability in population gene expression is fun-
damentally unimodal and does not represent population
switching between two or more discrete expression
stages. In addition, both Hypo-Variable (highly con-
strained expression) and Hyper-Variable (lowly con-
strained expression) probe-mapped gene sets are
enriched for essential genes. We observe only a small
(16–26%, Fig. 4a) overlap in Hyper- and Hypo-Variable
probe-mapped gene sets between the three tissues, con-
sistent with the idea that EV could be controlled by
tissue-specific factors. We also find that gene methyla-
tion could have a role in expression variability. Lastly,
we find that only a small number of Hyper-Variable

probe-mapped genes exhibit co-variability with sex (22/
1640 cerebellum probes, and 23/1760 frontal cortex
probes). On the other hand, substantially more Hyper-
Variable probes exhibit a strong linear association with
age (514/1640 in Cerebellum and 727/1760 in Frontal
Cortex).
A confounding issue with our study is the bulk nature

of the tissue samples used. It is likely that multiple cell
types are found in each tissue sample and that the mag-
nitude of this heterogeneity varies between samples. This
issue is not unique to our study and is common to all
non-single cell sequencing studies. With respect to
expression variance, cell type heterogeneity is likely to
manifest itself in the identification of a gene as Hyper-
Variable based on the fluctuating presence of a cell type
with a unique gene expression profile. This could be one
explanation for the presence of cell-type specific process
in the Hyper-Variable genes associated with aging (e.g.
Glial Cell Differentiation) or in the Frontal cortex-
specific Hyper-Variable genes (e.g. Histamine Secretion).
However, tissue heterogeneity is only one possible ex-

planation for Hyper-Variability. We have several reasons
to suspect that tissue heterogeneity and concomitant
sampling heterogeneity does not fatally compromise our
analysis. First, we used large samples sizes (n > 400)
which would help mitigate (but not completely elimin-
ate) heterogeneity issues. Secondly, we identified
common Hyper-Variable genes between the breast, cere-
bellum and frontal cortex. Because of the drastic tissue
type differences between these three tissues, we propose
that tissue composition heterogeneity is a poor explan-
ation for high variance gene expression common across
these three tissue types. Rather, we propose that this

Fig. 7 Expression and methylation correlation. Histogram of Pearson correlation coefficient between paired gene expression and gene
methylation levels in the Hyper-Variable and Hypo-Variable probe sets
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common high variability reflects an important functional
descriptor of the genes involved. Lastly, we observed that
Hyper-Variable probes have an almost exclusively uni-
modal expression pattern (41,956/41,968 breast tissue
probes, 41,962/41,968 cerebellum probes, and 41,962/41,
968 frontal cortex probes). This is significant because it
suggests that high EV is not the result of a chance obser-
vation of rare cell types with an unusual gene expression
pattern. Nonetheless, we acknowledge that this study
has not taken tissue heterogeneity into account and is a
caveat to our interpretations of Hyper-Variability.
Ideally, single cell analysis or sorting of the cell samples
will clarify the issue. In one single cell study, Osorio
et al. [44] used single cell RNA-Seq to estimate gene ex-
pression variability in genetically identical human cells
of three different types. Their analysis revealed that
within these lines, subsets of genes with high and low
expression variability could be found. They also found a
positive correlation between a gene’s expression variabil-
ity within a specific cell group to its variability between
individuals in a population. Some genes, notably those
with GO annotations for B cell activation involved in the
immune response, cytokine receptor activity, cellular re-
sponse to drug, and regulation of tyrosine phosphoryl-
ation of STAT protein, have a strong correlation
between expression variability in single cells and in that
in the population. Thus, it is likely that some of the Hy-
perVariable genes we identified from our individuals will
be genes with highly variable expression amongst cells of
the same type.
On the other hand, our identification of Hypo-

Variable probe-mapped genes is not affected by any
potential tissue and sampling heterogeneity. These
Hypo-Variable probes exhibit a restricted range of
expression values in each of the samples, independent of
sample heterogeneity. Shared GO annotations provided
by the functional enrichment analysis of the Hypo-
Variable probe-mapped genes in breast and brain tissues
(Table 3) indicate that many of these genes are likely to
have housekeeping functions. The definition of what
constitutes a housekeeping gene is arbitrary but, in a
traditional sense, it implies a strong requirement in all
cell types of an organism and a limited tolerance for var-
iations in gene expression. Some common Hypo-variable
genes that would typically be considered housekeeping
ones include genes for Ribonucleoprotein Complex
Assembly and Regulation of Cellular Amino Acid Me-
tabolism and Proteolysis. However, we were surprised to
find a broad range of functional annotations amongst
the Hypo-Variable genes. Amongst these are Negative
Regulation of Autophagy, Cellular Response to Nitrogen
Starvation, and Response to Interleukin-1, which would
be typically be thought of as induced processes rather
than obligate ones. Thus, tissues tightly regulate the

expression of genes in a wide variety of processes and
Hypo-Variability, similar to Hyper-Variability, is likely to
be an important physiological characteristic of a gene.
The enrichment of essential genes in the Hypo-

Variable probe-mapped gene sets is in agreement with
previous findings in yeast showing that essential yeast
genes are likely to have low expression variability. How-
ever, we detected a significant number of essential genes
amongst the Hyper-Variable probe-mapped gene sets in
breast, cerebellum, and frontal cortex tissue. Inactivation
of these essential genes leads to pre- or neonatal fatality
in mice and humans [45]. This was a surprise to us since
we expected that expression of developmental genes
should be tightly regulated. Our functional enrichment
analysis indicates that these Hyper-Variable genes are
enriched for morphogenic, tissue, and organ system
development, consistent with an “essential” function yet
we observe highly variable expression being tolerated.
One possible explanation would be tissue heterogeneity
in the samples (see above). Another possibility is these
“essential” genes are required for embryonic develop-
ment but have different post-embryonic roles and may
not be essential postnatally. Alternatively, it is possible
that these essential genes are not dose-sensitive in
humans, meaning that only a certain level of baseline ex-
pression is required and expression above this baseline
might be well tolerated. One additional possibility is that
their protein abundance could be regulated translation-
ally rather than transcriptionally. Inefficient translation
of certain genes may have been selected for during evo-
lution to prevent fluctuations in protein concentrations
[33]. Perhaps a combination of these factors is at play.
The non-random distribution of Hyper-Variable and

Hypo-Variable genes across the genome suggests that EV
is dependent on epigenetic factors. Examining the methy-
lation status of the genes allowed us to determine the rela-
tionship between gene methylation and expression
variability. Firstly, we find that Non-Variable genes in the
cerebellum and frontal cortex are likely to have high gene
methylation. Secondly, we find that Hypo-Variable genes
are likely to be non-methylated. We propose a model for
methylation-dependent expression variability where the
highly constrained levels of Hypo-Variable gene expres-
sion require non-methylated genes. We speculate that the
lack of methylation allows transcriptional regulators
requiring non-methylated DNA for binding to tightly con-
trol gene expression. On the other hand, high gene methy-
lation reduces transcription noise and epigenetically
inhibits promoter variability in human populations. Future
studies should investigate the role that these putative reg-
ulators of expression play on EV, including cis-regulatory
elements and transcription factors.
We find that there is limited (< 26%) overlap in gene

identity between Hyper- and Hypo-Variable probes in
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breast and brain tissue. Indeed, the chromosomal pat-
tern of EV differs between tissue types. Our favored ex-
planation for this is that tissue identity is created and
preserved, at least in part, by changes in gene expression
control pathways. Thus, genes mapped by Hypo-
Variable probes in any given tissue have a constrained
expression pattern because they are likely to be import-
ant in the tissue-specific function and physiology of that
organelle. While there is limited overlap of genes within
the corresponding EV probe-mapped gene sets of differ-
ent tissues, the Hyper-Variable probe-mapped gene sets
of the different tissues have similar functional enrich-
ments and cellular protein localizations. Specifically,
proteins encoded by genes mapped by Hyper-Variable
probes tend to localize at the cell periphery and are
enriched for cell surface signalling pathways and tissue
development, including tissue remodeling and ion
transport. In this respect, our work is broadly consistent
with previous findings on transcript abundance in mice
[23, 24]. We therefore propose that tissue identity
involves high expression variability in specific tissue
development pathways.
We did not observe any substantial sex dependent

effects in expression variability. However, an important
conclusion of our study is that many Hyper-Variable
probes have age-dependent expression variability: that is,
their expression significantly increases or decreases during
aging. One main cause of accelerated brain aging and a
causal factor of neurodegeneration is a reduction in
immunological functions [46, 47]. We see evidence of
downregulated immune responses in the cerebellum,
specifically Leukocyte Mediated Immunity, Defense
Responses to Other Organisms, and Interferon-Gamma
Response pathways. Many studies also suggest that aging
is associated with the upregulation of inflammatory re-
sponses [48], which is a pathogenic mechanism implicated
in many age-related diseases, including cardiovascular dis-
ease, Alzheimer’s disease, and Parkinson’s disease [49].
Consistent with this idea, we see an enrichment of acute
inflammatory response in the cerebellum gold cluster.
Another mechanism that has been implicated with age-
related diseases, such as Alzheimer’s disease and
Parkinson’s disease, is synaptic dysfunction that can affect
neuroendocrine signaling [50–52]. We see a downregula-
tion of ion transport and trans-synaptic signaling in the
frontal cortex, which are key components of neurotrans-
mission and membrane excitability, and whose downregu-
lation likely causes deficiencies in these complex
processes. Furthermore, we see an upregulation of genes
associated with glial cell differentiation in the frontal cor-
tex across multiple gene clusters. Initially thought of as
cells that merely support neurons, emerging research
shows that neuron-astrocyte-microglia interactions are
crucial for the functional organization of the brain [53]. In

addition, genes specific to astrocytes and oligodendro-
cytes, two different types of glial cells, have been shown to
shift regional expression patterns upon aging, and are bet-
ter predictors of biological age than neuronal-specific
genes [54]. This suggests that the Hyper-Variability and
age-dependent upregulation of genes associated with glial
cell differentiation or an increase in the number of glial
cells in the samples.
Without examining the mechanistic control of individ-

uals genes, it is difficult to determine if changes in gene
expression result in repression or activation of their asso-
ciated pathways. For example, we see an upregulation in
neurogenesis-associated genes during aging in both the
cerebellum and the frontal cortex, despite the common
theory that neurodegeneration is a ubiquitous effect of
normal brain aging. An emerging concept in neuroscience
is that homeostatic plasticity of neurons is maintained
through local adjustments of neural activities [55]. This
overexpression of genes in pathways whose function is
known to decline over time may be a compensatory mech-
anism for an inefficient, aging system. Within the cerebel-
lum, a decline in neuronal function that occurs with aging
may cause an upregulation of genes associated with
neurogenesis pathways. In addition to mitigating neuronal
dysfunction, localized increases in neurogenesis may be
induced in response to cerebral diseases or acute injuries
for self-repair [56]. Lastly, chronic antidepressant usage
has also been shown to result in an increase in neurogen-
esis [57], suggesting that psychopharmaceuticals can alter
neurochemistry and mimic compensatory anti-aging
responses. Overall, EV plays an important role in aging,
specifically in immune responses and inflammation,
neurotransmission, and neurogenesis. Age-dependent
gene expression could reflect a loss of regulatory control
or be a part of a regulated pathway of development.

Conclusion
Our work shows that gene expression variability in the hu-
man population is likely to be important in development,
tissue-specific identity, methylation, and in aging. As such,
the EV of a gene is an important feature of the gene itself.
Therefore, the classification of a gene as one with Hyper-
variability or Hypovariability in a human population or in
a specific tissue should be useful in the identification of
important genes that functionally regulate development or
disease. In addition, we propose that the split-retest pro-
cedure describer here is a useful technique for quantifying
gene expression differences in a sample population.

Methods
Illumina gene expression and methylation microarray
data
The analysis was conducted on two separate datasets, both
utilizing the Illumina HumanHT-12 V3.0 expression
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BeadChip. The first dataset provides high quality RNA-
derived transcriptional profiling of breast-adjacent tissue
from 144 samples. The associated genotype and expres-
sion data have been deposited at the European Genome-
Phenome Archive (EGA, http://www.ebi.ac.uk/ega/),
which is hosted by the European Bioinformatics Institute,
under accession number EGAS00000000083. The micro-
array readings were preprocessed using the author’s own
custom script based on existing functionality within the
beadarray package [58] in R and were reported as a log2
intensity. This dataset is referred to as breast tissue.
The second gene expression and the methylation data-

sets were catalogued by the North American Brain Ex-
pression Consortium and UK Human Brain Expression
Database (UKBEC) [37, 59]. The expression data was ob-
tained from the Gene Expression Omnibus (GEO) data-
base [60] under accession number GSE36192. A total of
911 tissue samples were analyzed from frozen brain tis-
sue from the cerebellum and frontal cortex from 396
subjects (Table 8). The microarray readings were proc-
essed using a cubic spline normalization method in Illu-
mina Genome Studio Gene Expression Module v3.2.7.
The expression levels were log2 transformed before any
analysis. The methylation data was also obtained from
GEO under accession number GSE36194. A total of 724
tissue samples were analyzed from frozen brain tissue
from the cerebellum and frontal cortex from 318 sub-
jects. The methylation microarray readings were proc-
essed using BeadStudio Methylation Module v3.2.0 with
no normalization.

Preprocessing the datasets
Since the brain expression and methylation datasets
were individually processed by different tissue banks and
in several batches, we corrected for the batch effect
using the limma package [61] in R. The breast tissue
dataset was previously batch corrected by the authors.
Next, we subset the data into groups based on the avail-
able clinical annotations provided by the NABEC/
UKBEC database. These annotations included tissue type
(Cerebellum and Frontal Cortex), sex (Male and

Female), and age (ranging from 0 to 98 years old). We
clustered the age annotations into groups using a K-
Means clustering algorithm (Additional file 7), whereby
the optimal number of clusters was determined using
the elbow method. After four clusters, the change in
total within-clusters sum of squares did not explain a
significant amount of additional variance, therefore k = 3
was chosen as the optimal number of clusters for the
age annotation. We then converted the continuous, nu-
meric age annotation into three categorical age groups
(0–21 years, 22–73 years, 74+ years).
We then compared the 12 possible clinical annotation

permutations to determine the optimal method to subset
the brain samples. For each of the 12 groups, we calculated
the median expression for each probe and performed a
hierarchical clustering via multiscale bootstrap resampling
using the pvclust package [62] in R (Additional file 7).
Using an approximately unbiased (AU) p-value of 0.99,
analogous to a p-value significance level of 0.01, the ideal
clustering method was to subset the data solely by tissue
type. Thus, we divided the brain dataset into the cerebel-
lum tissue and frontal cortex tissue datasets. Due to the
paired nature of the methylation and expression data, the
methylation brain dataset was also subset into cerebellum
and frontal cortex tissue subsets.

Estimating expression variability
To calculate a magnitude-independent measure of vari-
ability for expression and methylation, we used a modi-
fied method described in Alemu et al. [1]. Briefly, we
first calculated a bootstrapped estimate of the median
absolute deviation of each gene using 1000 bootstrap
replicates. Next, a local polynomial regression curve
(loess function with default parameters on R version
3.4.2) was used to determine the expected gene expres-
sion MAD as a function of the median value. No add-
itional smoothing was used for the regression curve. We
calculated gene EV as the difference between the boot-
strapped MAD and the expected MAD at each gene’s
median expression level.

Table 8 Description of brain sample dataset cohorts. Clinical annotations were not available for breast tissue samples

Clinical Annotation Dataset Min Q1 Median Mean Q3 Max

Age Expression 1 24 46 47.79 71 98

Methylation 1 21 44 47.48 74 96

PMI Expression 1 14 25 36.14 61 94

Methylation 1 14 21 26.65 36 62

Dataset Females (n) Males (n) Females (%) Males (%)

Sex Expression 289 622 31.72% 68.28%

Methylation 243 481 33.56% 66.44%
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Identification and removal of bimodal expression probes
Probes expressions that exhibited a bimodal distribution
were thought of as having two exclusive phenotypic
states. However, our focus in this analysis was to exam-
ine the factors affecting the tightly regulated expression
of Hypo-Variable probes or the highly variable gene ex-
pression of Hyper-Variable probes. In order to identify if
a gene’s expression was unimodal or bimodal, we mod-
eled each gene expression as a mixture of two gaussian
distributions using the mixtools package [63] in R. Next,
we identified the peaks of the kernel density estimation
functions for each gaussian distribution and compared
the distance between the peaks as well as the ratio of
peak heights. Probes with peaks that were greater than
one MAD apart and displayed a peak ratio greater than
0.1 were treated as having a bimodal expression and
subsequently removed from the analysis. Probes that did
not satisfy these criteria were considered to have a uni-
modal distribution and were kept for further analysis.

EV gene set classification
We classified the probes into three distinct probes sets
based on their expression variability:

~xEV � 3�MADEV ð1Þ

where ~xEV is the EV median for each dataset, and
MADEV is the bootstrapped estimate of the median ab-
solute deviation of EV using 1000 replicates. Probes
whose EV fell within the range were considered Non-
Variable, those above this range termed Hyper-Variable,
and the remaining were considered Hypo-Variable.
For the subsequent analyses, we used the probe sets

for initial classifications then proceeded with the list of
corresponding gene symbols. As such, there is a small
subset of duplicate gene symbols in different EV classifi-
cations. However, the small number of duplicate genes
does not significantly affect the results of the analyses.

Bootstrapping EV gene set classifications
To statistically validate our EV classifications, we split
our data into two equally sized subsets and repeated
the previously explained EV method. This 50–50
split-retest procedure was repeated 100 times per tis-
sue. Next, we determined the accuracy our of original
classifications by comparing original classification of
each gene with the 50–50 split classifications using a
binomial test with a probability of success greater
than 0.5. In this hypothesis, a “success” is defined as
consistent EV classification across all three subsets,
and gene classifications were considered significant
with a p-value < 0.05. We also calculated the methyla-
tion variability (MV) using an identical method to
EV, but did not find significant correlations between

any MV classes and EV classes based on Spearman’s
rank-order correlation (Additional file 8).

Structural analysis of EV genes
Data regarding the structural features of the genes was
obtained from the GRCh38/hg38 assembly of UCSC
Table Browser [64]. Linear regression analyses were con-
ducted to find any correlation between gene EV and
their structural features. For the linear regression ana-
lysis of transcript size, we individually examined the lar-
gest and smallest transcripts separately. The sequence
lengths excluded introns, 3′ and 5′ UTR exons, and any
upstream or downstream regions.

Gene cluster analysis
The GO term enrichment analyses were conducted
using ConsensusPathDB gene set over-representation
analysis [28]. The complete list of unique Illumina
HumanHT-12 V3.0 expression BeadChip genes was used
as a background list of genes. The resulting GO terms
were then filtered manually using a q-value cutoff of
0.05. Common and unique GO terms were summarized
using REVIGO [65] and visualized through treemaps by
the provided R scripts. The parameters used were a
medium allowed similarity (0.7) using Homo sapiens
database of GO terms.

Enrichment analyses
Using the Pearson’s chi-square test, we tested for enrich-
ment of essential genes in each probe-mapped gene set
relative to the total number of essential genes in the Illu-
mina HumanHT-12 V3.0 expression BeadChip. A list of
20,029 protein coding genes from the CCDS database
was used to test for essentiality enrichment [28]. Only
genes that are solely classified as essential are considered
in the analysis, resulting in a list of 2377 essential genes
present in the dataset. Once the number of annotated
genes and gene sets were deemed dependent variables,
we determine the enrichment of annotated genes using
the Pearson residuals.
The Pearson’s chi-square test was also used to test the

enrichment of methylation clusters across the Hyper-
Variable, Hypo-Variable, and Non-Variable probe sets.

Classification of methylation status
In order to merge the brain expression dataset with the
brain methylation dataset, we first identified the corre-
sponding ID_REF to match the samples from each data-
set. Since we could not match specific expression probe
mappings to specific methylation probe mappings of
CpG islands, we calculated the median probe values with
a single gene mapping for both expression and methyla-
tion for each sample. This resulted in a list of median
expression and median methylation of each gene for
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each sample. Next, we calculated the correlation be-
tween paired expression and methylation values for each
gene. Lastly, we classified the genes into one of three
methylation clusters based on their median methylation
using Gaussian mixture models for each tissue type. In
both the cerebellum and frontal cortex tissue, the distri-
bution of median gene methylation was best modelled as
a three-component system. The first component was a
sub-population Gaussian mixture while the second and
third components were modelled as single Gaussian dis-
tributions. Genes whose methylation fell within the first
component were classified as Non-Methylated genes.
Genes were classified as Medium Methylated for those
in the second component and Highly Methylated if they
were in third.

Hierarchical clustering of age-dependent hyper-variable
genes
With the exception of a few groups, the hierarchical clus-
tering groups with the opposite sex and the same age
groups tended to cluster together. While the p-values of
the sex and age groupings during the hierarchical cluster-
ing were too high to warrant further subsetting of the
brain dataset samples into distinct groups, they were sig-
nificant enough to inspect on a gene-by-gene basis.
We used a multiple linear regression model to meas-

ure the changes in expression of the Hyper-Variable
probes as a function of age, sex, and post-mortem inter-
val (PMI):

Y i ¼ βþ β1Ageþ β2Sexþ β3PMI ð2Þ

where Yi is the expression level of a probe and βn is the
coefficient for each term. The p-values were calculated
using a type III sum of squares regression and adjusted
for multiple comparisons using the Benjamini-Hochberg
method. Probes that exhibit an FDR < 0.01 were consid-
ered significant for the specific coefficient, and the sign
of the coefficient determines if the probe is positively or
negatively correlated with the factor.
The choice to use three age clusters as the optimal

number of clusters to examine changes of EV across age
samples was determined using an expectation-
maximization (EM) algorithm initialized by hierarchical
clustering for parameterized Gaussian mixture models in
the mclust package of R. The Bayesian information cri-
terion for each hierarchical clustering model was deter-
mined, and both the cerebellum and frontal cortex
displayed identical optimal numbers of age clusters.
Once the samples were correctly clustered by age, the
gene clusters were selected by cutting the gene dendro-
grams manually. The gene expressions were then visual-
ized as heatmaps using the gplots package [66] in R.
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