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Abstract

Background: Identification of antibiotic resistance genes from environmental samples has been a critical sub-domain
of gene discovery which is directly connected to human health. However, it is drawing extraordinary attention in
recent years and regarded as a severe threat to human health by many institutions around the world. To satisfy the
needs for efficient ARG discovery, a series of online antibiotic resistance gene databases have been published. This
article will conduct an in-depth analysis of CARD, one of the most widely used ARG databases.

Results: The decision model of CARD is based the alignment score with a single ARG type. We discover the occasions
where the model is likely to make false prediction, and then propose an optimization method on top of the current
CARD model. The optimization is expected to raise the coherence with BLAST homology relationships and improve
the confidence for identification of ARGs using the database.

Conclusions: The absence of public recognized benchmark makes it challenging to evaluate the performance of ARG
identification. However, possible wrong predictions and methods for resolving the problem can be inferred by
computational analysis of the identification method and the underlying reference sequences. We hope our work can
bring insight to the mission of precise ARG type classifications.
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Background
In recent years, the emergence of antibiotic resistance is
accelerating across the world [1]. A wide spectrum of
antibiotics which have saved millions of lives since the
1950s are getting less effective in the treatment of bac-
terial infections [2], arousing serious attention of medical
researchers and public health institutions over the world
[3]. The major factors that account for the spread of re-
sistant bacteria are recognized to be the unrestricted use
of antibiotic drugs for the treatment of both human and
animal diseases, combined with the insufficient efficiency
of new drug development [1]. Nonetheless, fast and reli-
able analysis of genes that cause the resistance to certain
drugs is the prerequisite to carry out further steps to de-
sign and build solutions. Fortunately, at the same time

genome sequencing technology and dedicated bioinfor-
matics software are also evolving rapidly, boosting our
ability to deal with the deepening crisis [4].
To satisfy the needs of ARG detection for researchers

and medical institutions, a series of antibiotic resistance
gene databases have been published online, such as ARDB
[5], CARD [6], SARG [7, 8], and NCBI-AMRFinder
(https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-re-
sistance/AMRFinder/). These databases provide a public
platform for efficient computational analysis and collabora-
tive researches [4].
The ARDB [5], a classical comprehensive database that

contains over 1000 genes with annotations of their ARG
types, has been used in a lot of applications. It’s now no
longer maintained and mainly replaced by The Compre-
hensive Antibiotic Resistance Database (CARD) [6]. Ini-
tially online in 2015 and expanded in 2016, CARD now
has over 2500 ARG entries with a monthly update. Each
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entry represents a type of ARG like mcr-1 [9, 10], mcr-2
[11], etc. And these entries are placed in a hierarchical
structure of gene ontology terms which are compatible
with the system published by the GO consortium
(http://geneontology.org/). For each entry, CARD pro-
vides both DNA and protein representative sequences
and a bit score threshold to report ARG hits by BLAST
alignment. Also, CARD collects over 140,000 sequences
from NCBI and classifies them to generate the preva-
lence data of ARG types in the environment. In later
parts of the article, we will use these prevalence se-
quences to study CARD in detail.
SARG is a more recent ARG databases published in

2016 [7] and expanded in 2018 [8]. Based on ARDB
and CARD, it now contains more than 12,000 protein
sequences, organized into 1208 categories of ARGs.
The categories of sequences are decided by keyword-
searching in the ARG type annotations of ARGB and
CARD, combined with similarity search of classified se-
quences in the NCBI-NR database [9]. Its open-source
ARG discovery pipeline will let users set BLAST e-
value and identity threshold as parameters (https://
github.com/biofuture/Ublastx_stageone).
Another novel ARG database, AMRFinder (NCBI pro-

ject ID: PRJNA313047), is developed by NCBI bases on
CARD. It contains significantly more sequences than
CARD (totally over 4000), but additional sequences mostly
show high similarity to existing sequences in CARD). An
important feature of AMRFinder is the adoption of
Hidden-Markov Models (HMM) instead of BLAST align-
ment. HMM models are constructed for each family of
antibiotic resistance genes. And then TC cut-offs are
trained with proteins catalogs such as ResFam [12] and
PFam [13], where protein families are collected with func-
tional annotations.
Despite the progress on building ARG databases, the

lack of universally accepted benchmark hinders the val-
idation of query precision and integration across differ-
ent references and methods. A previous review [14] that
evaluate ARG databases with a small number of known
ARG sequences indicates that CARD reports the most
number of correct predictions.
The ARG type annotations in these databases are

mainly collected from past literatures, and approaches of
different databases to report a type of ARG are largely
different. In the ideal situation, we hope to have a
“golden standard” benchmark that contains test se-
quences and their reliable ARG type information. How-
ever, such universal accepted benchmark is still not
available, which makes validation of query precision and
integration of different ARG databases remain challen-
ging missions.
However, we can still find insights on potential false

cases by dedicated analysis of the specific methods

adopted by a certain database. Here we will conduct an
in-depth inspection of the decision model used by CARD
database. Not only the computational methods are de-
scribed, but also the effects of trained models on certain
query data will be analyzed. In result, we spot occasions
where the database is likely to make false prediction.
Moreover, we will formally describe ambiguous cases due
to the logic of the ARG type decision process which
merely tests whether a query sequence is sufficiently simi-
lar to a single ARG type. After locating and defining the
problem, we propose an optimization method on top of
current CARD models. The optimization is expected to
make the models more coherent with BLAST homology
relationships and reduce the expected error rate.

Methods
Inconsistency between CARD models and BLAST
homology
To discover ARGs from query DNA sequences, CARD
predicts Open Reading Frames from query data using
Prodigal [15], and then performs protein-protein align-
ment with BLASTP [16]. A critical feature of CARD is
that it provides a trained BLASTP alignment bit-score
threshold for each type of antibiotic resistance gene. In
contrast, other existing databases mainly use an empir-
ical or user-set parameter for the discovery of all genes.
For example, another popular database Resfinder [17]
requires percent-identity and coverage on reference
genes as input parameters. The reason the approach of
CARD is more appropriate is that ARGs in one category
may be almost identical to each other while some cat-
egories can contain ARGs with relatively low similarity.
We take two types of ARGs which are represented both
CARD and Resfinder for illustration – tet(A) [18] and
mcr-1 [9, 10]. When all sequences of tet(A) in Resfinder
are aligned to sequences of the same type in CARD, the
mean percent identity is 99.6%. However, for mcr-1 the
mean percent identity is 47.2%. The degree of similarity
inside a type of ARG could be very different, therefore
it’s more reasonable to have a specific threshold for a
specific type of ARGs. However, the flexible models
could give type classifications that are not coherent with
BLAST alignment homology relationships. Since the
model only considers whether the bit score passes the
threshold of a single ARG type, it can happen that the
type classification of a query sequence is not the best
BLAST hit. For example, if ARG type A reports higher
bit score than type B for a given query sequence, but the
pre-trained threshold of A is much higher than B, then
type B could be chosen instead of A. Since BLAST align-
ment serves as a generally accepted method to evaluate
the similarity between genome sequences, we consider
the occurrences of incoherence to BLAST homology to
be ambiguous cases that need special attention.
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Ambiguity in RND efflux pumps
RND efflux pumps [19] are a superfamily of transporters
that have garnered intensive research efforts. Studies
have revealed that they play critical roles in the develop-
ment of multidrug resistance in various kinds of bac-
teria. In CARD databases, a series of ARG types in this
family are presented. We notice that one gene (adeF) in
this family is given a relatively low threshold – bit score
750 which allows sequences lower than 50% identity to
be reported as an instance of this type. However, other
genes mainly require much higher identity. MexF, an-
other ARG in RND family, requires bit score 2200,
which only allows almost totally identical sequence to be
reported. Since genes in the RND family can display a
certain level of homology even though they belong to
different sub-types, ambiguous cases described in the
last section are likely to occur. This can be clearly dem-
onstrated with the help of ARG sequences in SARG [7],
another ARG databases that contain ARG protein se-
quences in the RND family. There are over 300 protein
sequences with MexF annotation in SARG. We align
these sequences to CARD databases. In result, the MexF
entry in CARD is certainly the best BLAST alignment
hits for these sequences. However, they will be classified
to adeF under the curated model of CARD since their
bit score does not reach the threshold of MexF. Instead,
their bit score to the adeF entry exceeds the threshold of
the ARG type so that MexF sequences in SARG are all
classified to the adeF entry by the CARD model.

Describe ambiguity in CARD database
To describe and quantify the ambiguity inside the classi-
fication model of CARD in a systematic manner, we de-
fine FN-ambiguity and Coherence-ratio.
First of all, we have several basic variables:

1) Ni = the number of prevalence sequences that can
align to ARO entry Ai

2) Ci = the number of sequences that are currently
classified to entry Ai

Then we define two indicators with the pre-trained
bit-score cut-off. One is potential False-Negatives for
some ARO entries, which we would like to reduce, and
Coherence-ratio with respective to BLAST best-hits
which we intend to maximize.

A) FN-ambiguity:

If a prevalence sequence Si not annotated to the ARG
Aj has (bit-score, percent identity) both larger than an-
other sequence Sk which is annotated to the ARG, then
Si is potential FN for this ARO. Let Mj = the number of
such potential FN sequences, we have:

FNratio A jð Þ ¼ Mj=N j ð1Þ

Also, we say that each such (Si, Sj) is an FN-ambiguous
pair for ARO Aj.
For each potential FP sequence Si respect to ARO entry Aj,

Ki = the number of sequences with lower (bit-score, identity)
than Si and annotated to Gj. We can calculate the probability
of the occurrence of FN-ambiguous for an ARO Aj by:

PFN−ambiguous pair ¼
P

Ki; j
Nj−Cjð Þ�Cj ð2Þ

In the worst case, each of the sequences not annotated
to the entry (N-C) has (bit-score, identity) larger than all
sequences annotated to the entry (C), then P = 1.
In the above example of MexF the FN-ratio is 0.79%,

with PFN-ambiguous pair at 0.07%. Over the whole database,
the mean (sequence-ambiguity-ratio, pair-ambiguity-
ratio) is (3.1, 1.6%). We can see in Fig. 1 that both ratios
gather below 5% with a smaller number of exceptions.
Ratio coordinates of MexF, adeF, and entries with excep-
tionally high ratios are shown in Fig. 2.

B) Coherence Ratio:

For a prevalence sequence Si, suppose its best-hit ARO
entry Ai (the entry with the highest BLASTP alignment
bit-score. If current ARG type annotation of Si is also Ai,
we say Si is a coherent instance for Ai. Let the number of
coherent instances for Ai be TPi, and the total number of
sequences with Aj as the best-hit ARO be Bj, we define:

Coherence Aj
� � ¼ TP j=Bj ð3Þ

Since BLAST is the most well-established software to
measure the homology between sequences, it’s reasonable
to evaluate the coherence of the homology relationships
given by CARD ARG models and BLASP alignment. We
see that in many occasions that the ARG type annotation

Fig. 1 Ambiguity for all ARGs in CARD
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of the prevalence sequence is not its best-hit ARO entry.
Take MexF (ARO: 3000804) mentioned in previous experi-
ments as an example (Fig. 3). We see a large portion of
prevalence sequences with MexF as their best-hits but an-
notated to adeF (red points in figure).
Since BLAST is the most recognized tool for evaluat-

ing homology between sequences, it’s preferable for the
ARG identification models to be more coherent with the
homology relationship according to BLAST. Therefore,
we will seek to annotate more sequences to its best hit
ARO entry. For the above example, it means to “recolor”
all or a portion of red points (currently annotated to
adeF) to MexF. However, the type change may cause an
increase in the number of potential False-Negative in the
space of adeF, shown in Fig. 4. To reflect the trade-off
between, we set our objective function to be:

LS;A ¼
X

ðj Bi j
j s j Coherence Aið Þ− j Ai j

j s j FN ratio Aið ÞÞ

ð4Þ

where |Ai| is the number of sequences currently anno-
tated to Ai, |S| is the total number of sequences.

In the next section, we will show how we can largely
elevate the coherence ratio while keeping FN-ratio in a
significantly smaller scale.

Resolve ambiguity by recoloring with support vector
machine
Given a set of query sequences S, we align them to the
representative sequences of all ARO entries in CARD
database. For each sequence Si, only the best hit with
both highest bit-score and highest percent-identity is
kept. If the best-hit ARO Ai of a query sequence is dif-
ferent from the ARO Aj assigned by the CARD model,
we include this sequence to the “Problem Set” of Ai (de-
noted by PSi). The key point of this step is: when se-
quences in the problem set are aligned to two similar
ARO entries, we view Align_ARO_Ai (Si) as a transform
from sequence to 2D-coordinates space (Percent Iden-
tity, Bit-score). For the same set of sequences, if in the
transformed space Align_ARO_Ai (Si) they are clearly
distinguished with other negative hits, but in another
space they are mixed together, then it’s reasonable to
think that the set of sequences are true positive of Ai in-
stead of Aj. We can illustrate the argument with the
problem set of ARO entry cmeB, which are annotated to
adeF (Fig. 5). In the space of cmeB, the best hits of the
red points are cmeB but they are annotated to adeF
since bit-score cut-off of cmeB set by CARD is much
higher than that of adeF. However, when we observe the
problem set with the negative hits with respect to either
space, we can see that in cmeB space, the problem set is
clearly above negatives but in adeF space there are nega-
tives both above the below the problem set. Therefore,
it’s reasonable to say these sequences are potential false
positive of adeF and true positive of cmeB.
To quantify how far the problem set are divided with

the negatives, we compute a support vector machine
(SVM) in each space. The idea to use SVM is inspired
by the clear linear-divisibility between a part of the

Fig. 2 Exceptional ARO entries with high-ambiguity ratios

Fig. 3 Problem set of MexF

Fig. 4 Sequences with MexF as best BLAST hits but classified to
adeF by CARD
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problem set and the whole negatives of MexF (Fig. 6). In
this situation, it’s reasonable to believe that the upper-
right part of the problem set are not negatives of MexF
(currently they are classified to adeF) and thus should be
recoloring to MexF.
Here SVM serves as a measurement for the divisi-

bility of points of different classes in a space. There

is an established computational method for evaluating
such divisibility of an SVM in python scikit-learn
package, namely Platt scaling. The mean probability
of the prediction on all these points can be calculated
by Platt scaling. The probability computed in this way
increases when the point moves away from the div-
ision line of the SVM, thus it could be used to deter-
mine which space is a better transform.

Pspace ARO y ¼ 1jXð Þ ¼ 1= 1þ exp A� f xð Þ þ Bð Þð Þ
ð5Þ

f(x) = wx + b is the division line of the SVM, and A, B
are parameters trained from the prediction data by Plat
scaling.
If the space of current ARO (adeF in the above case)

of the problem set reports lower Platt probability, we
will recolor the portion of problem set above the div-
ision line of SVM (Fig. 7) to the ARO of the best hits
and update the cut-off of both AROs to their updated
lowest bit-score and lowest percent identity. For cmeB
where a SVM with high divisibility is computed, we use

Fig. 5 Problem Set of cmeB and their coordinates in adeF space

Fig. 6 Problem set and Negatives of MexF
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the decision function of SVM as an extra cut-off
method.
Besides cmeB, there are ten other ARO entries with

their problem sets containing more than 50 sequences
annotated to adeF. These ARO entries are {‘ceoB’,
‘mexY’, ‘cmeB’, ‘mexQ’, ‘mdsB’, ‘oqxB’, ‘MexB’, ‘MexF’,
‘acrD’, ‘adeB’, ‘acrB’, ‘AcrF’}. We compute their problem
sets, and then evaluate in which space these sequences
are better divided with the negatives compared with
adeF. We plot situation of acrB vs. adeF in Fig. 8. In this
case, the predicted log-probability of the SVM for acrB
is lower than the SVM for adeF, and we can also see
from the 2d-coordinates that red points and gray points
sequences in acrB displays tendency to mix with each
other. Thus, we won’t consider recoloring the problem
set of acrB.
In contrast, we can see a clear division between a large

portion of the problem set of MexF and its negatives

(Fig. 7). After computing the SVM, the right-hand por-
tion of the problem set will be recolored to MexF.

Formulation of categorical optimization problem
The last section demonstrated that we can increase the
coherence with BLAST homology relationships while
maintaining low FN ambiguous rate by “recoloring” a part
of sequences. However, the above transform is more an
empirical trial than a systematic optimization. Therefore,
in this section we will formulate a categorical optimization
problem [20] for the recoloring process between two
spaces - a fixed “origin” space (adeF in our problem in-
stance) and another “alternative space” (MexQ, MexF,
etc). For a set of protein sequences G [1..N], we define a
categorical variable Xi ∈{O, A, null (neither of the two
types)} for Gi representing its ARG category classification.
Every assignment of X[1..N] is called a “configuration”.
The initial configuration is the SVM result in the last

Fig. 7 space MexF vs. adeF and recoloring

Fig. 8 space acrB vs. adeF
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section. We have discussed that recoloring a sequence
from the origin (adeF) to the alternative (MexF) may in-
crease the coherence ratio of the alternative (MexF) space
but add ambiguity to the origin (adeF) space. Suppose P of
type O has higher (Percent Identity, Bit Score) than some
sequences of type origin. If P is recolored to another type,
then there should be a penalty to the confidence of those
sequences.
For computational efficiency, we divide the Percent

Identity – Bit Score map to a grid of M ×N equal-sized
cells. A point in the cell (x, y) in the origin space with
type A will impose one unit of penalty to all points of
type O in its left-down region excluding the cell itself.
Let no be the number of type O points in the rectangle
(0,0,x-1,y-1), NO (NA) be the total number of type O(A)
points. For each type A point (x,y) we have:

PenaltyO x; yð Þ ¼ no x−1; y−1ð Þ ð6Þ

Penalties of all type A points are added and normal-
ized to get the total penalty on the origin space:

Penalty Oð Þ ¼
X

point x;yð Þ of type A

no x−1; y−1ð Þ= NA�NOð Þ

ð7Þ
To make the optimization problem more reasonable

in the biological meaning, we add an extra restriction
such that the alternative space remains linear-
divisible, as drawn in Fig. 7. Formally speaking, we re-
quire that there exists a line Y = aX + b in the alterna-
tive space such that the points of type A are all
above the line. We intend to compute the slope and
intercept of the optimal division line w. Therefore,
our final objective function to maximize is:

f a; bð Þ ¼ Coherence Að Þ
þ k�Penalty Oð Þ k >¼ 1ð Þ ð8Þ

Higher coherence indicates high potential sensitivity
for A while higher penalty means potential wrong classi-
fication. Therefore, we tend to give larger weights to the
later term since usually we prioritize preventing false re-
sults. However, the specific value of k depends on the
need of the application and also the specific ARG type
that we are concerning. Here we use MexQ to set a valid
range of k, and then explore the results on MexF for k
in that range. The reason we choose MexQ to set the
range is that it gives the highest probability calculated by
Plat-scaling in the last section, which means the problem
set and the negatives of MexQ are already well-divided
in the space so that we can trust the initial configuration
of MexQ as the answer. Therefore, k is set to be in
(1100) so that the initial configuration for MexQ is
optimal.

Results
Results of recoloring with support vector machine
The final prevalence sequences that are classified to adeF
are shown in Fig. 9 below. For the objective function L,
the sum of coherence ratio is elevated by nearly 80% and
the FN-ratio increased by less than 20%. And the coher-
ence ratio is much larger than FN-ratio before or after. L
value for each step of recoloring is plotted in Fig. 10.
The coherence ratio rises from 56.5 to 88.4% and the
FN-ratio increases little from 3.3 to 3.8%. Consequently,
we increase L value from 53.1 to 84.5%.

Results of solving categorical optimization problem
To solve the optimization problem, we simply apply
the Monte-Carlo exploration of neighborhood config-
urations by randomly adjusting the slope and the
intercept. By the SVM process in the last section, we
have initial (slope0, intercept0) = (− 71.7, 6947.5). Ex-
ploring the optimal configurations for MexF under k
values in (1100), we discover that the k = 24 as the
boundary for extremely different behaviors. When k is
larger than 24, the penalty term always outweighs the

Fig. 9 Final left sequences for adeF

Fig. 10 Change of L value for each recoloring
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coherence, therefore the result is the less MexF points
the better. When k does not exceed 24, the optimal
points tend to fall along a line. This will be illustrated
by plotting f(a,b) for k = 10,24,50 in Figs. 11, 12, 13.
Notice that in all these figures (x,y) denotes the point
at (slope0 - x, intercept0 + 50y) and up-left means
more points assigned to MexF. For b) parts of these
3 figures, red stands for optimal points and gray are
their projection onto the ground to show their coor-
dinates clearly. We see that k = 10 and k = 24 behave
similarly through optimal points when k = 10 have
more MexF points.

Discussions
CARD is a comprehensive antibiotic resistance data-
base that provides over 2000 types of ARG entries

organized in a hierarchy of gene ontology terms, to-
gether with the corresponding resisted drug classes.
Moreover, the model curated from published litera-
tures for each type of ARGs and the prevalence data
are now a precious resource for researchers to know
about the degree of variation among sequences in
the ARG types of interest. Although we have not
settled a reliable benchmark to verify the precision
of an ARG discovery method, it’s already important
to discover that some ARG types contain a very
similar set of sequences while some others do not
behave in the same way. Moreover, through in-depth
analysis of approaches and effects of the classifica-
tion model used by CARD, we discover ambiguous
cases when sequences are aligned to ARGs of closely
related types, namely RND efflux pump superfamily,

Fig. 11 Optimization when k = 10

Fig. 12 Optimization when k = 24
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which is a family of ARGs with crucial clinical im-
portance. The decision model of CARD only con-
siders one target ARG type at a time, which causes
frequent occurrences of incoherence with BLAST
homology relationships.
Through an empirical recoloring experiment, we dis-

cover that by adjusting the linear decision function of
some ARG types, the occurrences of ambiguity could be
reduced. And then such repairment process is formu-
lated as a categorical optimization problem, where ran-
domized algorithms are applied to obtain the solution to
minimize the probability of ambiguous cases. Currently
the formulation is limited to solve optimization of just
two spaces. We look forward to developing models and
solutions to consider multiple ARG types in the same
family.

Conclusions
In this article, we reviewed state-of-art antibiotic resist-
ance gene databases and revealed ambiguous cases from
the decision model of CARD. After formally defining
metrics to quantify the ambiguity within CARD data-
base, we propose recoloring with support vector ma-
chine and categorical optimization techniques to resolve
the problem.
The method we raised is currently a prototype and

subject to verification of more data with high-confidence
annotation. Due to the rapid mutation of the pathogen
genome, novel antibiotic resistance genes are keeping
submitted by entities all over the globe. Therefore, the
answer to our problem is deemed to be continuously dy-
namic. We look forward that this article can serve as a
meaningful step to a systematic approach for comparing,
filtering and integrating ARG reports across different
reference databases.
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