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Abstract

Background: Europeans and American Indians were major genetic ancestry of Hispanics in the U.S. These ancestral
groups have markedly different incidence rates and outcomes in many types of cancers. Therefore, the genetic
admixture may cause biased genetic association study with cancer susceptibility variants specifically in Hispanics.
For example, the incidence rate of liver cancer has been shown with substantial disparity between Hispanic, Asian
and non-Hispanic white populations. Currently, ancestry informative marker (AIM) panels have been widely utilized
with up to a few hundred ancestry-informative single nucleotide polymorphisms (SNPs) to infer ancestry admixture.
Notably, current available AIMs are predominantly located in intron and intergenic regions, while the whole exome
sequencing (WES) protocols commonly used in translational research and clinical practice do not cover these
markers. Thus, it remains challenging to accurately determine a patient’s admixture proportion without additional
DNA testing.
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Results: In this study we designed an unique AIM panel that infers 3-way genetic admixture from three distinct
and selective continental populations (African (AFR), European (EUR), and East Asian (EAS)) within
evolutionarily conserved exonic regions. Initially, about 1 million exonic SNPs from selective three populations in
the 1000 Genomes Project were trimmed by their linkage disequilibrium (LD), restricted to biallelic variants, and
finally we optimized to an AIM panel with 250 SNP markers, or the UT-AIM250 panel, using their ancestral
informativeness statistics. Comparing to published AIM panels, UT-AIM250 performed better accuracy when we
tested with three ancestral populations (accuracy: 0.995 ± 0.012 for AFR, 0.997 ± 0.007 for EUR, and 0.994 ± 0.012 for
EAS). We further demonstrated the performance of the UT-AIM250 panel to admixed American (AMR) samples of
the 1000 Genomes Project and obtained similar results (AFR, 0.085 ± 0.098; EUR, 0.665 ± 0.182; and EAS, 0.250 ±
0.205) to previously published AIM panels (Phillips-AIM34: AFR, 0.096 ± 0.127, EUR, 0.575 ± 0.290, and EAS, 0.330 ±
0.315; Wei-AIM278: AFR, 0.070 ± 0.096, EUR, 0.537 ± 0.267, and EAS, 0.393 ± 0.300). Subsequently, we applied the UT-
AIM250 panel to a clinical dataset of 26 self-reported Hispanic patients in South Texas with hepatocellular
carcinoma (HCC). We estimated the admixture proportions using WES data of adjacent non-cancer liver tissues
(AFR, 0.065 ± 0.043; EUR, 0.594 ± 0.150; and EAS, 0.341 ± 0.160). Similar admixture proportions were identified from
corresponding tumor tissues. In addition, we estimated admixture proportions of The Cancer Genome Atlas (TCGA)
collection of hepatocellular carcinoma (TCGA-LIHC) samples (376 patients) using the UT-AIM250 panel. The panel
obtained consistent admixture proportions from tumor and matched normal tissues, identified 3 possible
incorrectly reported race/ethnicity, and/or provided race/ethnicity determination if necessary.

Conclusions: Here we demonstrated the feasibility of using evolutionarily conserved exonic regions to infer
admixture proportions and provided a robust and reliable control for sample collection or patient stratification for
genetic analysis. R implementation of UT-AIM250 is available at https://github.com/chenlabgccri/UT-AIM250.

Keywords: Admixture, Ancestry Informative Markers (AIMs), Hispanics population, STRUCTURE, Whole exome
sequencing, Hepatocellular carcinoma

Background
Over the past several hundred years, the America con-
tinent has been the hot spot attracting people from dif-
ferent continental populations that were originally
separated by geography, such as African (mass migration
due to Atlantic slave trade), European (the age of explor-
ation and Spanish colonization of the Americas), and
Asian (California gold rush) [1]. Due to meeting and
mixing of previously isolated populations through the
years, the resulting population admixture carries novel
genotypes with new genetic variations inherited from a
variety of ancestral populations [2]. In other words,
admixed individuals have a genetic mosaic of ancestry
that distinguishes them from their parental populations.
Hispanics in the U.S. have genetic ancestry from

European, African and Native American. The admixture
population presents opportunity for the study of health
disparity due to disease susceptibility [3, 4] or drug re-
sponse [5–7]. In cancer study, it has been shown His-
panics have clearly different cancer incidence rates and
outcomes [8]. The pattern of genetics and DNA varia-
tions of Hispanic individuals was affected by many his-
torical events [9]. Therefore, genetic admixture may bias
estimates of associations with cancer susceptibility genes
in Hispanics. The investigation of population structure
and admixture proportion is also important in disease
diagnosis. For example, the incidence rate of liver cancer

has been shown to be very different between Hispanic/
Asian and non-Hispanic white populations [10], espe-
cially the Hispanic population in South Texas [11, 12].
To estimate the admixture proportion of individuals,
most published ancestry informative marker (AIM)
panels were designed using up to a few hundred
genome-wide ancestry-informative single nucleotide
polymorphisms (SNPs) that exhibit large variation in
minor allele frequency (MAF) among populations that
are usually located in non-exonic regions [13–16]. To
estimate the admixture proportion, several model-based
clustering approaches have been developed for the deter-
mination of the genetic ancestry of human and other or-
ganisms. Pritchard et al. used a Bayesian algorithm
STRUCTURE to first define the populations and then
assign individuals to them [17]. An efficiently imple-
mented algorithm, ADMIXTURE, incorporated a similar
Bayes inference model, which enabled the analysis of
AIM panels with thousands of markers [18]. More algo-
rithms for estimating genetic ancestry can be found in
the literature [19].
Recently, whole exome sequencing (WES) has be-

come a standard protocol in translational research
and clinical diagnostics to identify the underlying gen-
etic cause of diseases due to the fact that most patho-
genic variants are located in exonic regions and the
drastically reduced cost of WES [20–22]. WES
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provides detailed information of genetic variants in-
cluding rare genetic events and unknown somatic
mutations between different genetic conditions for
large cohort of patients. Particularly in translational
research, WES offers an unbiased view than conven-
tional targeted molecular diagnostics approach, com-
monly available in many large genomic studies such
as The Cancer Genome Atlas (TCGA) [23]. Previous
studies showed that admixture proportions could be
determined by using principal component analysis
(PCA) with all variants [24], using allele frequency for
pooled DNA [25], and using off-target sequence reads
[26]. However, a panel of AIM within exome, if feas-
ible, will allow rapid determination of a patient’s an-
cestry admixture from WES data and thus validate
self-reported race/ethnicity.
In this study, we aimed to re-tune an AIM design pipe-

line to precisely determine ancestry admixture of Hispanic
populations using WES data. Using the 1000 Genomes
Project data, we selected SNPs that have different MAF of
African (AFR), European (EUR), and East Asian (EAS)
populations and quantified by In-statistics. We validated
our optimal panel with 250 AIMs using the admixed
American (AMR) of the 1000 Genomes Project, and com-
pared our results to several published AIM panels with
SNPs designed mostly in intronic/intergenic regions. Fi-
nally, we applied our AIM panel to TCGA-LIHC data and
an in-house hepatocellular carcinoma (HCC) study with
self-reported Hispanic patients enrolled in South Texas.

Methods
Population samples
We use the 1000 Genomes Phase III Whole Genome Se-
quencing (WGS) data as the resource to identify AIMs
[27]. Data was downloaded for each chromosome, exclud-
ing Mitochondrial, chrX, and chrY (ftp://ftp.1000genomes.
ebi.ac.uk/vol1/ftp/). The 1000 Genomes Phase III data
were aligned with hg19 human reference genome. The
SNPs were then extracted by ancestral populations
(Table 1) using VCFtools [28] and BCFtools [29]. Individ-
uals from the Caribbean and African Americans were ex-
cluded from the ancestral population of Africa due to high
levels of admixture observed. The Vietnamese population
was also excluded from the East Asian ancestral popula-
tion. Additionally, in order to eliminate Hispanics white
interference, we pruned the Iberian population in Spain
from the European population. For validation purpose, we
utilized the entire admixed American (AMR) collection,
including Mexican Ancestry from LA, Puerto Ricans,
Colombians and Peruvians (Table 1) to validate our panel.

Data processing and AIMs generation
The genome-wide data from the 1000 Genomes Project
were first constrained to exonic region. Obtained SNPs

were further subject to linkage disequilibrium filtering
(r2 < 0.2, plink option: --r2), allele frequency (AF)
calculation, and minor allele frequency (MAF < 0.01,
plink option: --maf 0.01) elimination by PLINK
(using vcftools to convert all three ancestral populations
to .ped format with option --plink). The output files
from PLINK were processed by the AIM generator (py-
thon script, AIMs_generator.py) [30]. This python script,
provided by Daya et. al, performs LD pruning and select
AIMs based on Rosenberg’s In Statistic [31] which
defines the informativeness of SNPs,

In ¼ −ðpAlnðpAÞ þ palnðpaÞÞ
þ
� 1
K

XK
i¼1

pi;Alnðpi;AÞ þ
1
K

XK
i¼1

pi;alnðpi;aÞ
�
; ð1Þ

where pA and pa are the frequencies of 2 alleles across
all individuals for a given marker, and pi,A and pi,a are
the corresponding allele frequencies in the ith popula-
tion. If a marker is unique in the ith population only,
the second term in Eq. (1) will be 0, or In will be the
largest, while In = 0 if the marker is equally distrib-
uted among all populations. To design our AIM
panel, we first obtained nested subsets of AIMs up to
5000 candidate SNPs (see Additional file 1: Table S1;
python code AIMs_generator.py, with ldfile/bim files
from PLINK, ldthresh = 0.1, distances = 100,000, strat-
egy = In). We expected 5000 SNP candidates would
allow us to select robust AIM panel considering SNPs

Table 1 Populations of the 1000 Genomes Project included in
this study

Super population Subpopulation # of
samples

East Asian (EAS) Chinese Dai in Xishuangbanna (CDX),
Han Chinese (CHB),
Southern Han Chinese (CHS),
Japanese in Tokyo, Japan (JPT)

405

African (AFR) Esan in Nigeria (ESN),
Gambian in Western Division, the
Gambia (GWD),
Luhya in Webuye, Kenya (LWK),
Mende in Sierra Leone (MSL),
Yoruba in Ibadan, Nigeria (YRI)

504

European
(EUR)

Utah residents (CEPH) with European
Ancestry (CEU),
Finnish in Finland (FIN),
British in England and Scotland (GBR),
Toscani in Italia (TSI)

396

Admixed
American (AMR)

Colombian in Medellin, Colombia
(CLM),
Mexican Ancestry in Los Angeles,
California (MXL),
Peruvian in Lima, Peru (PEL),
Puerto Rican in Puerto Rico (PUR)

347

The populations were downloaded from the 1000 Genomes Project database.
We excluded Vietnamese from EAS, African American from AFR, and Iberian of
Spain from EUR (see Methods)
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with balanced In from overall population, as well as
least bias between pair-wise In. The ancestry distribu-
tion of AIMs was provided in Table 2.

Optimal AIM panel selection
Ancestral proportions were inferenced by STRUCTURE
[17] and ADMIXTURE [18]. The error of estimation
was determined by the results of STRUCTURE and
ADMIXTURE:

ek ¼ 1=Nk

X
i∈fkthpopulationgð1:0− f k;iÞ; ð2Þ

where we assume fk,i is the admixture proportion of ith

person’s identified kth population (ideally 100% in kth

population), and k = {EUR, EAS, and AFR}. A person will
be classified into kth population if he/she has a max-
imum kth population proportion estimated by
STRUCTURE and ADMIXTURE, thus we can esti-
mate the error according to Eq. (2).
The optimal number of AIMs were determined

when the observed accuracy, (1− ek), of classified
known population did not improve by adding more
candidate SNPs within the 5000-SNP pool. We se-
lected AIMs with an optimal balance in three popu-
lations (Table 2) from pair-wise In statistics. The
final 250 AIMs (UT-AIM250) and its In Statistics
were provided in Additional file 2: Table S2.

WES of HCC samples
WES was performed with Illumina HiSeq 3000 system
at the GCCRI Genome Sequencing Facility, using Illu-
mina’s TruSeq Rapid Exome Library Prep kit (Illu-
mina, CA) which covers ~ 45Mb with 99.45% of
NCBI RefSeq regions. All exomeCapture sequencing

was performed with 100 bp paired-end (PE) module,
and pooled 6 samples per lane with targeted ~100x
fold coverage. Paired reads were aligned to human
reference genome hg19 (the same genome build used
by the 1000 Genomes Project) with Burrows-Wheeler
Aligner (BWA) [32]. Duplicated reads were removed
by SAMtools [33] and Picard (http://broadinstitute.
github.io/picard) and realigned with GATK [34] con-
sidering dbSNPs information. Variants were identified
by VarScan [35]. To report any variant statistics on
locations specified by AIMs, we only required a mini-
mum coverage of 2 and no variant calling threshold.

PCA of AIM genotypes
PCA was performed on dataset of multi-locus genotypes
to identify population distribution of each individual.
The genotype matrix was obtained by applying the
“read.vcfR” function of the R package [36]. Then, we
converted the genotype to numeric numbers (0|0 = 0,
1|0 or 0|1 = 1, 1|1 = 2, and .|. = NA) by the Admixture_
gt2PCAformat function (see the github site). For PCA,
we utilized dudi.pca (from “ade4” R package [37]). If
there were missing values, we used estim_ncpPCA
(“missMDA” R package [38]) to fill NA in genotype
matrix before performing PCA.

Performance evaluation of AIM panel
To assess the robustness of AIM panel that separates 3
continental populations, we first projected three popula-
tions into 3D space using PCA as described previously.
We assume each population follows multi-variate nor-
mal distribution,

f kðx; μk ;ΣkÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
jΣk jð2πÞd

!vuut
exp
�
−
1
2
ðx−μkÞΣ−1

k ðx−μkÞ0
�
;

where μk is 1xd mean vector (here d = 3) of the kth

population, and Σk is a d-by-d co-variance matrix. After
estimation of the multivariate distributions of all 3
continental populations, we estimated the probability
of mis-classified samples from one population to the
other two when the probability of a given sample
with known population origin was lower than those
assigned to the other two groups, or the misclassifica-
tion probability of samples in ith population into jth

population is Pmði; jÞ ¼ ∬ fx: f iðxÞ< f jðxÞg f iðx; μi;ΣiÞ . We

report the overall mis-classification probability, PAIM =
∑all i ≠ jPm(i, j) as a measure of the capacity separating
populations using a specific AIM panel. A smaller
PAIM indicates less chance of a sample to be misclas-
sified using a given AIM panel, or in other words,
farther separation between 3 populations.

Table 2 Proportions of AIMs among three ancestral populations

# of AIMs African East Asian European

10 4 (40%) 2 (20%) 4 (40%)

50 20 (40%) 12 (24%) 18 (36%)

100 40 (40%) 28 (28%) 32 (32%)

250 90 (36%) 80 (32%) 80 (32%)

500 172 (34%) 165 (33%) 163 (33%)

750 256 (34%) 265 (35%) 229 (31%)

1000 329 (33%) 355 (36%) 316 (32%)

2000 616 (31%) 763 (38%) 621 (31%)

3000 920 (31%) 1124 (38%) 956 (32%)

4000 1251 (31%) 1488 (37%) 1261 (32%)

5000 1582 (32%) 1810 (36%) 1608 (32%)

AIMs are determined by AIM_generator.py script. We examined AF of each
population for each AIM to assign the SNP to the dominant population
(presented as the number of SNPs and percentage in each AIM panels). Note
that larger AIM panels are not necessary contain markers in smaller panels
due to the requirement of balancing number of markers in 3 populations
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SNP processing of HCC patients
We started by pruning in-house WES data from 26
HCC patients with matched adjacent non-tumor (Adj.
NT) and tumor. Initial pruning was performed by se-
quencing depth of each SNP, and only biallelic SNPs
were considered (vcftools options: --min-al-
leles 2 --max-alleles 2 --recode). A SNP
was eliminated if it had more than 10% missing genotype
across all samples by VCFtools (vcftools options:
--max-missing 0.9 --recode).

SNP processing of TCGA–LIHC samples
We extracted specific SNP positions of UT-AIM250
from 788 TCGA-LIHC samples (376 patients) by using
GDC BAM slicing tool (https://docs.gdc.cancer.gov/API/
Users_Guide/BAM_Slicing/). The tool enables to down-
load specific regions of BAM files instead of the whole
BAM file for a given TCGA sample. These BAM slices
were then processed with VarScan to determine variant
fraction as described in previous sub-sections. The
TCGA-LIHC whole exome data were derived from 4
sample types (Fig. 5a). According to race and ethnicity
in clinical data of TCGA-LIHC, we re-classified 7 popu-
lation groups (White, Asian, Black, Hispanic White, Re-
ported as Hispanic, American Indian or Alaska Native,
and Unknown) (Fig. 5a). The SNPs were selected if it
has more than 90% genotype throughout all sample by
VCFtools, and further required biallelic SNPs.

Results
AIMs panel design and admixture estimation pipeline
We aim to design an AIM panel for estimating admix-
ture proportions for the Hispanic population using WES
data. We first focused our selection of continental popu-
lation from the 1000 Genomes Project, removing all pos-
sible sources of biases (removing African American from
AFR collection and Iberian of Spain from EUR collec-
tion, and Vietnamese which are further down south of
Asia; see Methods). We then constrained the ancestral
markers within the exome. Figure 1 outlined the flow-
chart of our AIM panel design pipeline (left panel). Here
we assumed that our targeted population was comprised
of three ancestry components: African (AFR), East Asian
(EAS), and European (EUR). For this study, we focused
only on SNPs (about 84.8 million variants in total) that
were extracted from three ancestry populations (n =
1305) in the 1000 Genomes Project (Table 1). These
SNPs were then filtered based on positions to ~ 1 mil-
lion exonic SNPs using VCFTools. To confirm these
markers are good AIM candidate SNPs, all SNPs were
pruned by following criteria: (1) linkage disequilibrium
(LD) r2 < 0.2 within 100 kb window to avoid redundancy,
(2) minor allele frequency (MAF) < 0.01 to avoid sequen-
cing artifact, and (3) evaluation of ancestral

informativeness by using Eq. (1) In-statistic for all pair-
wise comparisons of 3 continental populations as de-
scribed in the Methods section. A total of 100,295 SNPs
met the first 2 criteria, and among them, we generated
AIMs panels with 10, 50, 100, 250, 500, and up to 5000
AIMs (see Table 2, and Additional file 1: Table S1).

Comparisons of population structure tools and selection
of optimal AIM panel
Here we compared the two popular admixture tools,
STRUCTURE and ADMIXTURE. These two tools utilized
different algorithms (Bayesian statistics vs maximum like-
lihood estimation) to estimate population structure. The
efficiency of ADMIXTURE is known to be higher with
multi-thread capability compared to STRUCTURE with-
out much compromise in accuracy. As expected, the ac-
curacy of STRUCTURE in population estimation was
better than ADMIXTURE (both set at K = 3) (Fig. 2a, b).
For each population and its corresponding ancestral
proportion estimation, the mean and standard deviation
(SD) of ancestry estimation accuracy of STRUCTURE and
ADMIXTURE were AFR: 0.991 ± 0.016 vs 0.977 ± 0.027
(one-tailed t-test P = 7.20 × 10− 23), EUR: 0.988 ± 0.021 vs
0.969 ± 0.034 (P = 1.70 × 10− 20), and EAS: 0.996 ± 0.009 vs
0.989 ± 0.017 (P = 2.92 × 10− 13). With 250 AIMs, we ob-
served the best grouping accuracy and lowest SD in three
ancestral populations with the STRUCTURE algorithm
(AFR: 0.995 ± 0.012, EUR: 0.994 ± 0.012, and EAS: 0.997 ±
0.007), while ADMIXTURE required more than 250 AIMs
to gain desirable accuracy (Fig. 2a, b). Examining individ-
ual estimations carefully from both algorithms further
confirmed that ADMIXTURE was less robust (Fig. 2c, d;
much longer green tail in Fig. 2d, inset for the AFR popu-
lation). For these reasons, subsequent analysis was focused
on the 250-AIM panel (termed as UT-AIM250 thereafter)
and the STRUCTURE algorithm for admixture proportion
estimation. Within the UT-AIM250 panel, we identified
90 African AIMs (36%), 80 European AIMs (32%), and 80
East Asian AIMs (32%) (see Table 2 and Additional file 2:
Table S2). The ranges of In for pair-wise ancestral popula-
tions were: AFR vs EUR: (0 to 0.614), AFR vs EAS:
(1.185 × 10− 5 to 0.623); and EAS vs EUR: (0 to 0.645), and
overall population (0.134 to 0.569) (Additional file 2: Table
S2). We utilized genotypes from three ancestry popula-
tions (n = 1305) in the 1000 Genomes Project on UT-
AIM250 panel and confirmed that the UT-AIM250 panel
had sufficient discriminating capacity to separate three an-
cestral populations (Fig. 2e, with 95% and 99% confidence
ranges denoted by solid and dash circles, respectively).

Comparisons between the UT-AIM250 panel and
published 34-AIM and 278-AIM panels
We compared our UT-AIM250 panel and two published
panels, 34 AIM-panel [14] (Phillips-AIM34) and 278
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AIM-panel [39] (Wei-AIM278), on the Admixed Ameri-
can (AMR) population of the 1000 Genomes Project.
These panels were originally generated from the three
continental populations (AFR, EUR, and EAS) with
slightly different inclusion criterion and samples avail-
able at the time. The Phillips-AIM34 panel is composed
of SNPs in both exonic regions (2 SNPs) and non-exonic
regions (32 SNPs); the Wei-AIM278 panel is composed
of SNPs in exonic (3 SNPs) and non-exonic regions (275
SNPs). Figure 3 depicts the results from UT-AIM250
(Fig. 3a, b), Phillips-AIM34 (Fig. 3c, d) and Wei-AIM278
panels (Fig. 3e, f) of 3 continental ancestral populations
plus Admixed American (AMR). The AMR was com-
posed of four subpopulations, Colombian (CLM), Mexi-
can in LA (MXL), Peruvian (PEL), and Puerto Rican
(PUR). Following the analysis pipeline (Fig. 1, right
panel), genotypes of the AIMs of the three panels were
extracted from AMR (n = 347) and 3 continental popula-
tions (n = 1305). The admixture of populations was esti-
mated by STRUCTURE and plotted by both bar charts
and principal component plots (Fig. 3). All three panels

can separate continental populations, and UT-AIM250
achieved a much superior separation (Fig. 3a, c, e), with
misclassification probability PUT-AIM250, PPhillips-AIM34,
and PWei-AIM278 of 4.563 × 10− 37, 2.059 × 10− 5, and
3.221 × 10− 26, respectively (see the Methods section).
The population structure showed a very similar trend
among the three panels (Fig. 3b, d, f): within AMR sub-
populations, Puerto Rican had much higher European an-
cestral proportions (AFR: 0.149 ± 0.109, EUR: 0.789 ±
0.111, and EAS: 0.062 ± 0.051), while Peruvian had strong
influence from East Asian (AFR: 0.032 ± 0.066, EUR:
0.449 ± 0.111 and EAS: 0.519 ± 0.124), in line with previous
published studies [13, 40, 41]. For MXL, the proportions of
3 ancestral populations were AFR = 0.046 ± 0.046, EUR =
0.634 ± 0.142, and EAS = 0.320 ± 0.149. Pearson correlation
confirmed an overall agreement among the three panels
(Table 3; 0.70, 0.83 and 0.85 between UT-AIM250 and
Phillips-AIM34; 0.89, 0.93 and 0.96 between UT-AIM250
and Wei-AIM278 for AFR, EUR and EAS ancestral pro-
portions, respectively). Similar correlation coefficients for
each sub-population can be found in Table 3.

Fig. 1 Flowchart of our AIM panel design and analysis pipeline. The pipeline is separated into two parts, AIM panel design (AIM Design) and
Ancestral proportion estimation application (Application). For the AIM Design pipeline (left panel), variant files from the 1000 Genomes Project
(n = 1305) were position filtered to exonic region by VCFTools. The variant files were calculated linkage disequilibrium (LD) and minor allele
frequency (MAF) by PLINK. SNPs were selected as AIMs based on In-statistic for overall population or each continental population. Finally,
population ancestral proportions were estimated by STRUCTURE. For the Application pipeline (right panel), the 26 HCC tumors with matched Adj.
NT data were processed by standard WES analysis pipeline using BWA, GATK and genotype caller VarScan at AIM positions. The last step in this
panel was admixture estimation and reported the ancestral proportions of individual
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Ancestry estimation for HCC patients
The key to design UT-AIM250 is to validate self-
reported race/ethnicity of Hispanic patients for transla-
tional study without adding specific ancestral markers to

standard exome capture kits for sequencing library prep-
aration. We applied the UT-AIM250 panel to estimate
the ancestral proportion of a collection of 26 HCC pa-
tients (all self-reported as Hispanic from San Antonio or

Fig. 2 Selection of a tool for ancestral population proportion estimation. The results were presented as those from STRUCTURE (a, c) and from
ADMIXTURE (b, d). (a, b) Performance of AIM panels with different number of markers. Mean and SD were plotted for each population. At 250
markers, the accuracy plateaus when STRUCTURE algorithm is used. (c, d) Proportion plot for ancestral populations on 250 AIMs using STRUCT
URE and ADMIXTURE. The populations were ordered by groups: AFR: African, EUR: European, and EAS: East Asian. Individuals in (d) were ordered
identically to (c). (e) PCA plots for three ancestral populations on 250 AIMs
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Fig. 3 Comparisons between the proposed UT-AIM250 panel and two published AIM panels. (a, c, e) PCA plots for AMR population distributions
on UT-AIM250, Phillips-AIM34, and Wei-AIM278 panels. (b, d, f) Proportion plots for admixed Americans (AMR). Individuals are ordered within
each population group. PUR: Puerto Rican; CLM: Colombian; PEL: Peruvian and MXL: Mexican in LA
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South Texas regions) with matched tumor tissues and
Adj. NT tissues. We extracted genotypes of 250 SNPs
from Adj. NT and tumors using VarScan (see Methods),
merged with 1305 continental populations from the
1000 Genomes Project, and visualized using the first 2
principal components (Fig. 4a for Adj. NT and b for
tumor only). No obvious differences were observed be-
tween Adj. NT and tumor samples, indicating the feasi-
bility of using tumor data alone to assess the patient
ancestral proportion. We calculated ancestral compo-
nents by STRUCTURE (K = 3). The ancestral
proportions of our HCC patients are AFR = 0.065 ±
0.044, EUR = 0.595 ± 0.151, and EAS = 0.340 ± 0.163,
similar to those of MXL. In triangle plots (Fig. 4c, e),
HCC patients were mostly aligned along the axis of EAS
and EUR, similar to the PCA plot. One patient (HCC-3)
was predicted as Asian (in the Asian population in PCA
plot, and Asian proportion = 0.916; Fig. 4d, f), so we ex-
cluded this patient from subsequent genetic analysis.
Similar to the comparison between STRUCTURE and
ADMIXTURE algorithm, we examined the correlation
coefficient ρ between tumor tissues and Adj. NT tissues.
The results were 0.96, 0.99 and 0.99 for AFR-AFR, EUR-
EUR, and EAS-EAS, respectively (all P < 10− 14). Taken
together, our UT-AIM250 panel is accurate and robust
to determine the ancestral proportion from normal or
even tumor samples.

Ancestry estimation for TCGA-LIHC samples
In order to verify the accuracy of UT-AIM250 on differ-
ent samples, we evaluated all TCGA-LIHC 376 patients
and compared to their self-reported race/ethnicity.
TCGA-LIHC has a total of 788 samples with WES data,
derived from 4 sample types (41.2% blood derived nor-
mal, 10.7% solid tissue normal, 47.7% primary tumor,
and 0.4% recurrent tumor, Fig. 5a left panel, and Add-
itional file 3: Table S3). Based on race and ethnicity of
each patient reported, we divided all 376 patients to 7
populations (47.1% White, 41.1% Asian, 4.7% Black, 3.9%
Hispanic white, 0.8% Reported as Hispanic, 0.5% Ameri-
can Indian or Alaska Native, and 1.9% unknown, Fig. 5a
right panel, and Additional file 3: Table S3). We applied
UT-AIM250 to all 788 samples (normal n = 409, and

tumor n = 379). The PCA plots showed similar patterns
in both normal and tumor (Fig. 5b for normal and c for
tumor only), indicating our UT-AIM250 panel is robust
even if normal DNA is not available. In Fig. 5b-e, we se-
lected 375 TCGA-LIHC patients with matched primary
tumor and normal samples (325 blood derived normal
and 50 solid tissue normal), excluding TCGA-BC-4072
which had primary tumor sample only. We utilized
STRUCTURE (K = 3) to calculate ancestral components
(Additional file 3: Table S3). The ancestral proportions
of 375 TCGA-LIHC patients were plotted with bar chart
(Fig. 5d for normal, e for primary tumor). Two patients,
TCGA-DD-AACA and TCGA-ZS-A9CF, had three sam-
ple types, blood derived normal, primary tumor, and re-
current tumor. We compared the ancestral proportions
of three sample types on each patient, and the results
were consistent (TCGA-DD-AAC: EAS = 0.999, EUR =
0.001, and AFR = 0; TCGA-ZS-A9CF: EAS = 0.001,
EUR = 0.999, and AFR = 0.001). Our analysis also con-
cluded that there were three patients (TCGA-G3-A5SI,
TCGA-G3-AAUZ, and TCGA-FV-A4ZQ) with mis-
matched race/ethnicity from their self-reported data.
TCGA-G3-A5SI (self-reported as Asian) was predicted
as white (EUR proportion = 0.826; Fig. 5b-c). We also
predicted both patients TCGA-G3-AAUZ (self-reported
as Hispanics) and TCGA-FV-A4ZQ (self-reported as
White) to be Asian (EAS proportion = 0.992, and 0.984,
respectively). In addition, 7 patients with unknown race/
ethnicity status were assigned to their corresponding
genetic groups. Therefore, the SNP positions of our UT-
AIM25 is unaffected by possible tumor mutations and
UT-AIM250 is a robust panel of ancestral markers
within exome.

Discussion
In this study, we developed, validated and tested the
pipeline for designing AIM panels within the evolution-
arily conserved exome regions to distinguish genetic an-
cestry descendants base on three continental
populations (African, European, and East Asian). Al-
though WES could be applied to analyze population
structure using all variants [24], it may be problematic
since variants will be influenced by the number of

Table 3 Pearson correlation coefficients between UT-AIM250 and published panels of the AMR population

Panel Population PUR (n = 104) CLM (n = 94) PEL (n = 85) MXL (n = 64) All (n = 347)

Phillips-AIM34 AFR-AFR ρ 0.67 (P = 5.97 × 10− 15) 0.57 (P = 2.11 × 10− 9) 0.83 (P = 1.46 × 10− 22) 0.22 (P = 7.56 × 10− 2) 0.70 (P = 5.83 × 10− 52)

EUR-EUR ρ 0.69 (P = 9.72 × 10− 16) 0.67 (P = 9.39 × 10− 14) 0.57 (P = 1.60 × 10− 8) 0.81 (P = 4.09 × 10− 16) 0.83 (P = 7.30 × 10− 91)

EAS-EAS ρ 0.26 (P = 6.87 × 10− 3) 0.42 (P = 2.00 × 10− 5) 0.64 (P = 4.18 × 10− 11) 0.77 (P = 1.49 × 10− 13) 0.85 (P = 4.75 × 10− 96)

Wei-AIM278 AFR-AFR ρ 0.89 (P = 1.96 × 10− 37) 0.86 (P = 1.75 × 10− 28) 0.89 (P = 2.29 × 10− 30) 0.40 (P = 9.75 × 10− 4) 0.89 (P = 1.20 × 10− 122)

EUR-EUR ρ 0.80 (P = 1.74 × 10− 24) 0.84 (P = 1.55 × 10− 26) 0.83 (P = 6.24 × 10− 23) 0.92 (P = 1.24 × 10− 26) 0.93 (P = 1.60 × 10− 152)

EAS-EAS ρ 0.47 (P = 3.89 × 10− 7) 0.73 (P = 7.51 × 10− 17) 0.89 (P = 1.01 × 10− 29) 0.93 (P = 8.98 × 10− 29) 0.96 (P = 6.04 × 10− 193)

Pearson correlation coefficient (p-value)
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somatic mutations in tumor samples, which typically are
significantly different on germline and tumor [42–44].
By using UT-AIM250 panel and we acquired satisfactory
performance by removing low-frequency MAFs and ap-
plying constraints with only biallelic SNPs even with the

tumor samples. To further reduce the impact of somatic
mutations on our AIM panel design, one may choose to
filter SNPs using COSMIC database [45] or other rele-
vant tumor variant collections, such as the International
Cancer Genome Consortium (ICGC) [46]. While the

Fig. 4 Application to 26 HCC tumors with matched adjacent non-tumor using WES data. (a, b) PCA plots from HCC adjacent non-tumor samples
and HCC tumor samples. (c, e) Triangle plots for ancestral division probability of HCCs from African (AFR), East Asian (EAS), and European (EUR).
(d, f) Proportion plots for HCCs, ordered by patient ID
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number of our HCC patients is small, we believe it is
sufficient to demonstrate the utility of WES data to iden-
tify ancestry proportion of individuals. In some clinical
applications in which only tumor samples are available,
our UT-AIM250 is proved to be a cost-effective tool to

confirm the race and ethnicity of patients when WES
data are available.
The AIMs were selected from three continental popu-

lations (African, European, and East Asian). These popu-
lations were the major groups which contributed to the

Fig. 5 Application to 788 TCGA-LIHC samples (376 patients). (a) Summary of TCGA-LIHC samples and patients. Left and right pie charts are the
break-down of sample types and self-reported race and ethnicity of all LIHC patients. (b, c) PCA plots of 788 TCGA-LIHC samples (normal: n = 409;
tumor: n = 379). Normal group includes DNAs derived from blood and/or solid tissue normal, and tumor group includes primary tumor and
recurrent tumor. Purple points were these from patients “Reported as Hispanic”. The confidence interval depicted by three ellipses (determined
from 3 continental population EAS, EUR and AFR of the 1000 Genomes Project) is 0.99. (d, e) Proportion plots for 375 TCGA-LIHC patients with
matched normal (blood derived normal: n = 325; solid tissue normal: n = 50) and primary tumor samples, ordered by sample ID
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ancestral genetic variety of people in the U.S. through
various migration routes [47]. There are variable pheno-
types of Hispanics in the U.S. [48], and it is recognized
that health disparity does exist in different populations,
even within Hispanic populations [49] due to their di-
verse genetic background such as populations shown in
Fig. 3a (AMR subpopulations). We have carefully se-
lected subpopulations specifically for our targeted popu-
lation, such as removing of Iberian (IBS), to further
constrain EUR to be considered as Non-Hispanic White
(NHW).
Future studies may use the Native American as one of

the continental populations. However, as shown in
Fig. 3a, ancestral components of AMR subpopulations of
the 1000 Genomes Project are quite diverse. We will
continue evaluating other genomic resources, prefera-
bly WGS, to include richer genetic information from the
Native American that are commonly accepted as an an-
cestral population. Asian was chosen in this study not
only due to its stable genome variation, but also because
of the convincing evidence that one of the origin ances-
tries of Native American could be Asian who came from
northeast Asia by passing Beringia strait [50, 51]. We be-
lieve our AIM panel is sufficient to identify distinct gen-
etic groups for downstream data analysis, such as risk
factor assessment.
Along with the development of precision medicine,

the population determination plays an important role
[52]. Both in our HCC patients or TCGA-LIHC patients,
we observed the problem about accuracy of patients’
self-reported race/ethnicity status. After ancestral esti-
mation, the results of some patients do not match what
were reported. Due to several potential factors, such as
native language, environment, immigration, etc., patients
sometimes mis-report their real race/ethnicity, especially
in an immigrant society. Thus, UT-AIM250 could cor-
rect this mistake and provide reliable ancestral report if
WES data are availablle.
There are many different types of variants besides

SNPs, such as insertions, deletions, and haplotypes. In
this study, we focused on biallelic SNPs only. Extending
to insertions and deletions may complicate the analysis
due to the precise definition of these variants in each pa-
tient. Recognized that, in the population genetic field,
these potential factors are typically considered and ana-
lyzed on the distribution of population proportions [53],
future studies may extend our work to incorporate more
types of variants into the AIM panel design.

Conclusions
Here we constructed a unique AIM panel, UT-AIM250,
designed within the evolutionarily conserved exonic re-
gions, to determine the admixture proportions of three
continental populations (AFR, EUR, and EAS) for

Hispanic in South Texas. We demonstrated the accuracy
using AMR subpopulations from the 1000 Genomes
Project and compared to the published Phillips-AIM34
and Wei-AIM278 panels. We further applied our panel
to 26 Hispanic HCC patients and 375 TCGA-LIHC pa-
tients with matched tumor and adjacent non-tumor tis-
sues. The estimated ancestral proportions showed no
significant difference between non-tumor and tumor tis-
sues, enabling us to evaluate patients’ tumor specimens
to verify self-reported Hispanic patients and/or their
specific genetic analysis groups. Since WES is one of the
dominant genome-wide variant analysis platforms, the
UT-AIM250 panel offers a cost-effective yet accurate
method for the determination of patients’ ancestral com-
position. R implementation of UT-AIM250 is available
at https://github.com/chenlabgccri/UT-AIM250.
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