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Abstract

Background: Adaptor proteins are carrier proteins that play a crucial role in signal transduction. They commonly
consist of several modular domains, each having its own binding activity and operating by forming complexes with
other intracellular-signaling molecules. Many studies determined that the adaptor proteins had been implicated in a
variety of human diseases. Therefore, creating a precise model to predict the function of adaptor proteins is one of the
vital tasks in bioinformatics and computational biology. Few computational biology studies have been conducted to
predict the protein functions, and in most of those studies, position specific scoring matrix (PSSM) profiles had been
used as the features to be fed into the neural networks. However, the neural networks could not reach the optimal
result because the sequential information in PSSMs has been lost. This study proposes an innovative approach by
incorporating recurrent neural networks (RNNs) and PSSM profiles to resolve this problem.

Results: Compared to other state-of-the-art methods which had been applied successfully in other problems, our
method achieves enhancement in all of the common measurement metrics. The area under the receiver operating
characteristic curve (AUC) metric in prediction of adaptor proteins in the cross-validation and independent datasets
are 0.893 and 0.853, respectively.

Conclusions: This study opens a research path that can promote the use of RNNs and PSSM profiles in bioinformatics
and computational biology. Our approach is reproducible by scientists that aim to improve the performance results of
different protein function prediction problems. Our source code and datasets are available at https://github.com/
ngphubinh/adaptors.
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Background
Protein function prediction is a technique that assigns
biological or biochemical roles to proteins with regards
to their genome sequences. The essential of understand-
ing the protein function has drawn researchers’ attentions
on enhancing the predictive performance of protein func-
tions. Numerous solutions have been proposed in the past
decades for this purpose. Two most effective solutions are
finding strong feature sets and adopting powerful neural
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network models. Previous studies have revealed that using
strong feature sets alone, for example, position specific
scoring matrix (PSSM) [1], biochemical properties (AAin-
dex) [2], and PseAAC [3], can achieve satisfactory predic-
tion results. With the popularity of deep learning, many
researchers in the field of bioinformatics attempted to
apply the technique to protein function prediction. Some
of the recent works like [4, 5] have demonstrated some
successes. Motivated by these two observations, we intend
to take the advantages of strong feature sets and deep
neural network to further improve the performance by
deriving a novel approach for protein function prediction.
In this work, we put special focus to the prediction of
adaptor protein, which is one of the most vital molecule
function in signal transduction.
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Signal transduction, so-called cell signaling, is the trans-
mission from a cell’s outside to inside of molecular signals.
Received signals must be transported viably into cells to
guarantee a proper reaction. This progression is started
by cell-surface receptors. One of the primary objectives
of researchers who conduct their experiments on signal
transduction is to decide the mechanisms that regulate
cross-talk between signaling cascades and to decide the
accomplishment of signaling. A rising class of proteins
that much contributes to the signal transduction process
are adaptor (or adapter) proteins. In adaptor proteins,
there are numerious protein-binding modules linking
protein-binding partners together. In addition, they are
able to facilitate the signaling complexes creation [6]. They
are vital in intermolecular interactions and play a role in
the control of signal transduction started by commitment
of surface receptors on all cell types.

In detail, adaptor proteins have been shown to be asso-
ciated with a lot of human diseases. For instance, Gab
adaptor proteins play an important role as therapeutic tar-
gets for hematologic disease [7]. XB130, a specific adaptor
protein, plays an important role in cancer [8]. Likewise,
Src-like adaptor proteins (SLAP-1 and SLAP-2) are impor-
tant in the pathogenesis of osteoporosis, type I hyper-
sensitivity, and numerous malignant diseases [9]. In [10],
adaptor protein is also noted to be a therapeutic target
in chronic kidney disease. Moreover, a review paper from
[11] showed the association of adapter proteins with the
regulation of heart diseases. Further, the involvement of
adaptor protein complex 4 in hypersensitive cell death
induced by avirulent bacteria has been shown in [12].

Given the significance of adaptor proteins to the func-
tions and structures of signal transduction, elucidating
the molecular mechanisms of adaptor proteins is there-
fore a very important research area which has recently
gained rapid advancement. However, it is costly and time-
consuming with these experimental techniques. There-
fore, it is highly desired to develop automated prediction
methods for quick and accurate identification of adaptor
proteins.

PSSM is one of the most strong feature sets in biol-
ogy to decode the evolutionary information of a protein
sequence. Many computational studies have investigated
the protein function prediction using PSSM profiles such
as protein fold recognition [13], phosphoglycerylation
prediction [14], succinylation prediction [15], and protein
subcellular localization prediction [16]. However, among
the existing approaches, none of them has found a solu-
tion to prevent the loss of amino acid sequence informa-
tion in PSSM profiles. Here, to address this problem, we
present an innovative approach via the use of a Recurrent
Neural Network (RNN) architecture.

Standard neural network typically assumes indepen-
dent relationship between input signals, but this is usually

not the case in real world. Likewise, utilizing the co-
relationship between genome sequences can help in pro-
tein function prediction.

We thus present a novel deep learning framework which
utilizes RNNs and PSSM profiles to classify adaptor pro-
teins. RNNs have been recently demonstrated to extract
sequential information from sequences to predict various
properties of protein sequences in several studies [17–19].
However, how to apply it on PSSM profiles to address
the ordering information of them is still an open research
question. The main contributions of this paper include (1)
introducing a first sequence-based model for distinguish-
ing adaptor proteins from general proteins, (2) proposing
an efficient deep learning architecture constructed from
RNNs and PSSM profiles for protein function prediction,
(3) presenting a benchmark dataset and newly discov-
ered data for adaptor proteins, and (4) providing valuable
information to biologists and researchers for better under-
standing the adaptor protein structures.

Results and discussion
Experiment setup
Given an unknown sequence, the objective is to deter-
mine if the sequence is an adaptor protein and thus this
can be treated as a supervised learning classification. As
a representation, we defined adaptor protein as positive
data with label “Positive”, and otherwise, non-adaptor pro-
tein as negative data with label “Negative”. We applied
5-fold cross-validation method in our training dataset
with hyper-parameter optimization techniques. Finally,
the independent dataset was used to evaluate the correct-
ness as well as overfitting in our model.

Our proposed RNN model was implemented using
PyTorch library with a Titan Xp GPU. We trained the RNN
model from scratch using Adam optimizer for 30 epochs.
The learning rate was fixed to 1 × 10−4 in the entire train-
ing process. Due to the significant imbalance in the sample
numbers of adaptor proteins and non-adaptor proteins
in the dataset, we adopted weighted binary cross-entropy
loss in the training process. The weighting factors were
the inverse class frequency.

Sensitivity, specificity, accuracy, and MCC (Matthew’s
correlation coefficient) were used to measure the pre-
diction performance. TP, FP, TN, FN are true posi-
tives, false positives, true negatives, and false negatives,
respectively.

Sensitivity = TP
TP + FN

(1)

Specificity = TN
TN + FP

(2)

Accuracy = TP + TN
TP + TN + FP + FN

(3)
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MCC= TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(4)

In addition, we also utilized Receiver Operating
Characteristic (ROC) curves to examine the predictive
performance of our model. In the ROC curve, the Area
Under the Curve (AUC) metric is a floating point value
ranging from 0 to 1 in which higher value represents bet-
ter model. ROC curve and AUC are reliable metrics to
compare the performance results among different models.

We first investigated the composition of amino acid
in adaptor proteins and non-adaptor proteins to under-
stand how we could better utilize the dataset for pro-
tein function prediction. We also studied how different
hyper-parameters affected the performance of the RNN
model. Besides, comparison between the proposed model
and existing methods was based on the provided PSSM
profiles.

Comparison between adaptor proteins and non-adaptor
proteins
We computed the amino acid frequency of adaptor and
non-adaptor proteins in the whole dataset to analyze the
differences between the two types. It can be seen from
Fig. 1 that there are differences in amino acid composi-
tion surrounding adaptor and non-adaptor proteins. For
example, the amino acid E, F, G, or V had higher vari-
ations to separate between two classes. The significant
differences show that our model can distinguish adaptor

proteins from general proteins according to some amino
acid distributions.

Study on selection of hyper-parameters
In this section, the selection of hyper-parameters is
studied. Specifically, we have examined our model with
different hyper-parameters, i.e., number of convolution
filters, fully connected layer size, kernel size, and so
on. We performed 5-fold cross-validation and varied the
number of filters of the fully connected layer from 32 to
1,024 to find the optimal number. Our model has been
selected based on the optimal performance results on
validation dataset at a specific random seed value (i.e.,
random_seed = 7 in this study).

In our experiments, among different tested sizes, the
fully connected layer size of 512 reached the maximum
performance when discriminating the adaptor proteins in
different validation settings. When testing our model in
the independent dataset, the performance results were
also consistent with the 5-fold cross-validation. It means
that our model did not suffer from the over-fitting prob-
lem and can be applied in most of unseen data. A reason
to explain this point is that we applied dropout, which is
the regulation technique to prevent over-fitting in deep
learning models.

The next important hyper-parameter that needs to be
examined is the gated recurrent unit (GRU) hidden layer
size. After several steps, we observed that the GRU with
256 hidden layer sizes was superior. Finally, these optimal
parameters were used on our best model.

Fig. 1 Different compositions of amino acid in adaptor proteins and non-adaptor proteins. x-axis represents 20 amino acids, y-axis represents the
frequency (%) of each amino acid
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Comparison between the current method and
state-of-the-art techniques using pSSM profiles
After tuning up the hyper-parameters, we identified 512
filters and GRU size of 256 as the best performing
architecture. We then used our optimized model to com-
pare with the previous state-of-the-art methods. To use
PSSM profiles, most recent techniques summed up all the
same amino acids to produce a 400-dimensional vector
and then fed to neural networks. A number of bioin-
formatics researchers have used this technique in their
applications and obtained promising results [2, 5]. We also
conducted experiments according to widely used machine
learning algorithms including k-NN [20], the Random
Forests (RF) [21] and the Support Vector Machines (SVM)
[22]. Besides, we also compared our proposed method
with a two-dimensional convolutional neural network (2-
D CNN), which is a method treating PSSM profiles as
images and successfully applied in sequence analysis [5].

Overall, the comparison between our proposed method
and the other methods is shown in Table 1. Note that
we used grid search cross-validation to find the optimal
parameters of all algorithms. This ensures that our com-
parison is fair and reliable among these methods. The
optimal results were: k = 10 nearest neighbors in k-NN,
500 trees in RF, c = 8 and g = 0.5 in SVM, and 128 filters
with each filter size of 3×3 in 2-D CNN. We easily observe
that our RNN also exhibited the higher performance than
the other techniques at the same level comparison. This
was also supported by our preliminary work when testing
with other classification algorithms including kernel dic-
tionary learning [23–25] and an enhanced k-NN method
[26]. It can be concluded that the sequential information
of PSSM plays a vital role in predicting the adaptor protein
as well as the other protein functions in general. Using 1D-
CNN in our method helps to prevent the loss of sequential
information compared to other embedding methods (e.g.,
2D-CNN).

Specifically, our sensitivity was significantly higher than
that of the other methods. This is a very important point
because our model aims to predict as much as adaptor
proteins as possible. Via this high sensitivity, a large num-
ber of adaptor proteins could be discovered with a high

accuracy. It provides a lot of information for biologists as
well as researchers to understand and conduct their works
on adaptor proteins.

The results in Table 1 are based on the default deci-
sion threshold value of each algorithm and this is not
sufficiently significant. Hence, we show the ROC Curve
and AUC to evaluate the performance results at different
threshold levels. They are the most important evaluation
metrics for checking the performance of most supervised
learning classification. The ROC curve is plotted from
True Positive Rate and False Positive Rate. As the value
of AUC approaches to unity, the corresponding model is
regarded to have shown optimal performance. As shown
in Fig. 2, our model could predict the adaptor proteins
with AUC of 0.893 and this is a significant level to show
that our model performed well in this kind of dataset. It
also determines that our results did not only perform well
in a specific point but also at different levels. We can use
this model to predict adaptor proteins with high perfor-
mance and superior to the previous techniques (Table 1).

Conclusions
In this study, we proposed an innovative method using
RNN and PSSM profiles for distinguishing the adaptor
proteins using sequence information only. It is also the
first computational model that applies this combination to
adaptor protein prediction. Via this method, we can con-
serve all the PSSM information in training process and
to prevent the missing information as much as possible.
The performance using 5-fold cross validation and inde-
pendent testing dataset (including 245 adaptor proteins
and 2,202 non-adaptor proteins) is evaluated. The pro-
posed method could predict adaptor proteins with a 5-fold
cross validation accuracy and MCC of 80.4% and 44.5%,
respectively. To evaluate the correctness of our model, we
applied an independent dataset testing and its accuracy
and MCC achieved 75.7% and 37.3%, respectively. Our
performance results are superior to the state-of-the-art
methods in term of accuracy, MCC, as well as the other
metrics.

This study discussed a powerful model for discovering
new proteins that belong to adaptor proteins or not. This

Table 1 Performance results of distinguishing adaptor proteins with different methods

Method
Cross Validation Independent Test

Sensitivity Specificity Accuracy AUC MCC Sensitivity Specificity Accuracy AUC MCC

k-NN 0.635 0.750 0.738 0.770 0.254 0.671 0.751 0.743 0.791 0.280

RF 0.185 0.968 0.890 0.837 0.214 0.290 0.923 0.860 0.838 0.216

SVM 0.397 0.934 0.881 0.818 0.332 0.426 0.932 0.881 0.806 0.353

CNN 0.532 0.875 0.841 0.774 0.328 0.548 0.873 0.841 0.783 0.339

RNN 0.812 0.751 0.757 0.853 0.373 0.856 0.798 0.804 0.893 0.446
0(k-NN: k=10; RF: num_stimators=500; SVM: c=8.0, g=0.5; CNN: 128 filters; RNN: 512 filters)



Le et al. BMC Genomics 2019, 20(Suppl 9):966 Page 5 of 9

Fig. 2 The receiver operating characteristic (ROC) curve of one fold in our experiments

study opens a research path that can promote the use of
RNN and PSSM profiles in bioinformatics and computa-
tional biology. Our approach is able to be reproduced by
scientists that aim to improve the performance results of
different protein function prediction problems.

Finally, physicochemical properties had been success-
fully used in a number of bioinformatics applications
with high performance [27–29]. Therefore, it is possible
to combine PSSM profiles and physicochemical proteins
into a set of hybrid features. Subsequently, these hybrid
features could be fed directly into our proposed architec-
ture. We hope that the future studies will consider these
hybrid features to help improving the performance results
of protein function prediction.

Methods
Benchmark dataset
Figure 3 illustrates the flowchart of the study. A detailed
description on the construction of the benchmark dataset
is provided as follows.

Because our study is the first computational study to
classify adaptor proteins, therefore, we manually created
a dataset from well-known protein data sources. We col-
lected data from UniProt [30] and Gene Ontology (GO)
[31], which provide high quality resources for research
on gene products. We collected all the proteins from
UniProt with GO molecular function annotations related
to adaptor proteins. An important selection criteria is that
we had to select the reviewed sequences, which means
they had been published in scientific papers. Thus, the full
query for collecting data was:
“keyword:“adaptor” OR goa:(“adaptor”))

AND reviewed:yes”
After this step, we received 4,049 adaptor proteins in all

species.

We solved the proposed problem as a binary classifica-
tion problem, thus we collected a set of general proteins
as negative samples. Actually, our classifier aimed to clas-
sify between adaptor proteins and non-adaptor proteins.
So we needed a real set of adaptors and non-adaptors
to train the model. However, in practice, if we collect all
non-adaptor proteins as negative data, the number of neg-
ative dataset will reach hundred thousands of data. This
will result in serious data imbalance and affect the model’s
performance. Therefore, in most of the related prob-
lems in bioinformatics, scientists can only select a subset
of negative data and treat them as general proteins. In
this study, we chose membrane protein, which is a gen-
eral protein including a big enough number of sequences
and functions. Briefly, we extracted all of the membrane
proteins in UniProt and excluded the adaptor proteins.
Similar to the previous step, only reviewed proteins were
retained.

Subsequently, BLAST [32] was applied to all the col-
lected data to remove redundant sequences with sequence
identity level of more than 30%. This was an important
step to prevent over-fitting in training model. The remain-
ing sequences were regarded as valid for the benchmark
dataset and were naturally divided into 1,224 adaptor pro-
teins and 11,078 non-adaptor proteins. For fair compari-
son, we held up one-fifths of both the adaptor proteins and
the non-adaptor proteins as the test set to evaluate model
performance. The rest of the valid sequences were used
as a cross-validation (Train-Val) set for model training.
Table 2 lists the statistics of the benchmark dataset.

RNN model
In this study, we propose an RNN model for distinguishing
adaptor proteins from non-adaptor proteins. An overview
of the proposed RNN model is shown in Fig. 4. The RNN
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Fig. 3 Flowchart of the study

model takes PSSM profiles as inputs and extracts their
features by several one dimensional (1-D) convolution lay-
ers and 1-D average pooling layers. The extracted features
are then fed forward to gated recurrent units (GRUs),
where the spatial context within the entire PSSM profile
is explored and utilized for final prediction. The input
sequence has a length of N. After going through two lay-
ers of 1-D CNN and 1-D Max-Pool, the length became
N/9. Subsequently, this N/9 vector was fed into GRU, tak-
ing the output of GRU (256 features) to the input of the
last vector for which the characteristic of the sequence
was formed. Finally, our model took this output through
a Fully Connected (FC) layer (512 nodes), and passed
to a Sigmoid layer to produce a prediction probability
value.

Table 2 Statistics of the benchmark dataset

Original Non-Redundant

Total Train-Val Test

Adaptor 4049 1224 1069 155

Non-Adaptor 23,917 11,078 9695 1383

Preventing information missing by preserving ordering of
pSSM profiles
A PSSM profile for a query protein is an N × 20 matrix
(N is the length of the query sequence), in which a score
Pij is assigned for the jth amino acid in the ith position of
the query sequence with a large value and a small value
indicating a highly conservative position and a weakly
conservative position, respectively.

PSSM was first proposed by [1] and applied to vari-
ous bioinformatics applications with promising improve-
ments. The acquired protein sequences in the bench-
mark dataset are in FASTA format. From these FASTA
sequences, we used PSI-BLAST [32] to generate PSSM
profiles by searching them in the non-redundant (NR)
database with two iterations.

Some studies attempted to predict the protein func-
tions by summing up all of the same amino acids [2]. It
helped to convert PSSM profiles with 20 × N matrix to
20×20 matrix and all of the sequences had the same input
length that can be easily used in supervised classification
learning. However, important information could be lost
since the ordering of PSSM profiles would be discarded.
Therefore, an RNN architecture was presented to not only
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Fig. 4 Architecture of the RNN model

input PSSM profiles but also preserve the ordering. As
the proposed RNN network accepts PSSM sequences with
different lengths, we were thus able to well utilize their
spatial context for better protein function prediction.

Feature extraction via CNN
The proposed RNN model first extracts convolutional fea-
tures maps from PSSM profiles via an 1-D CNN. The
CNN contains two 1-D convolution layers, each followed
by a Rectified Linear Unit (ReLU) as non-linear activation,
and two average pooling layers to reduce the dimension
of the feature maps as well as enlarge the receptive field
of the CNN network. The extracted feature maps are then
fed forward to the RNN module for exploring the spatial
relationship within the entire PSSM profile before final
prediction.

Learning and classification using RNN
RNN is a neural network which had been shown to per-
form very well in various fields such as time series pre-
diction [33], speech recognition [34], and language model
[35]. Since RNN can memorize parts of sequential data,
we used GRU which is an advanced architecture of RNN
in this study.

After using the aforementioned CNN to create feature
maps, we applied a multi-layer GRU to the extracted fea-
tures. The standard RNN has a major drawback called
the gradient vanishing problem, leading to that the net-
work fails in memorizing information which is far away
from the sequence and it makes predictions based on the
most recent information only. Therefore, more powerful
recurrent units, like GRU and Long Short-Term Memory
(LSTM), were explored and introduced.

GRU is an advanced version of the standard RNN,
in which the gradient vanishing problem is resolved by
the introduction of an update gate and a reset gate for

determining what information should be passed or dis-
carded. GRU enables the possibility of long dependencies
between the current input and far away information.

Basically, the structure of GRU is similar to LSTM.
However, the fact that GRU requires less parameters than
LSTM so it is more suitable for small datasets. This eases
the training procedure and motivates us to adopt GRU as
the basic unit in our RNN module. In the RNN module, a
GRU layer consists of two gates:

(1) Update gate decides what information to throw away
and what new information to add. To calculate the update
gate zt , we used the following formula:

zt = σ
(
Wizxt + biz + Whzh(t−1) + bhz

)
, (5)

where t is the time step, σ represents the sigmoid func-
tion, W represents weight, xt represents the input at time
t, h(t−1) represents the hidden state of the previous layer
at time t − 1 or the initial hidden state at time 0, and b
represents bias.

(2) Reset gate is applied in the model to determine how
much past information to forget. The following formula is
used:

rt = σ
(
Wirxt + bir + Whrh(t−1) + bhr

)
. (6)

Moreover, to save the past information from the reset
gate, GRU uses a current memory content. It can be
calculated using the following equation:

nt = tanh
(
Winxt + bin + rt ◦ (

Whnh(t−1) + bhn
))

. (7)

Finally, the last step is final memory, to determine what
to collect from the current memory content and the
previous steps at the last step. To perform this step, GRU
calculates vector ht as follows:

ht = (1 − zt) ◦ nt + zt ◦ h(t−1). (8)
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The final output from the RNN module is then mapped
to the prediction with a fully connected layer and the
sigmoid function. The output from the RNN model is a
scalar in [ 0, 1] representing the probability that the PSSM
profile belongs to the adaptor protein category (close to 1)
or the non-adaptor protein category (close to 0).
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