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Abstract

mastitic milk in terms of milk safety.

Background: MicroRNAs (miRNAs) in milk-derived exosomes may reflect pathophysiological changes caused by
mastitis. This study profiled miRNAs in exosomes from both normal milk and mastitic milk infected by
Staphylococcus aureus (S. aureus). The potential targets for differentially expressed (DE) miRNAs were predicted and
the target genes for bta-miR-378 and bta-miR-185 were also validated.

Results: Total RNA from milk exosomes was collected from healthy cows (n =3, the control group) and S. aureus
infected cows (n =6, the SA group). Two hundred ninety miRNAs (221 known and 69 novel ones) were identified.
Among them, 22 known and 15 novel miRNAs were differentially expressed. Target genes of DE miRNAs were
significantly enriched in intracellular protein transport, endoplasmic reticulum and identical protein binding. The
expression of two miRNAs (bta-miR-378 and bta-miR-185) with high read counts and log, fold changes (> 3.5) was
significantly higher in mastitic milk infected with S. aureus. One target gene (VATIL) of bta-miR-378 and five target
genes (DYRKIB, MLLT3, HP1BP3, NPR2 and PGMT) of bta-miR-185 were validated.

Conclusion: DE miRNAs in exosomes from normal and S. aureus infected milk were identified. The predicted
targets for two DE miRNAs (bta-miR-378 and bta-miR-185) were further validated. The linkage between the
validated target genes and diseases suggested that we should pay particular attention to exosome miRNAs from
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Background

MicroRNAs (miRNAs) are short noncoding (~22
nucleotide in length), regulatory RNAs that modulate
gene expression at the post-transcriptional level, mostly
via binding to perfectly/partially complementary sites at
the 3'-UTR of target mRNAs [1]. Among different body
fluids, milk contains the highest amount of miRNAs [2].
Milk is an essential source of nutrients to all mammalian
offspring. Bovine milk and dairy products have long
traditions in human nutrition. In addition to providing
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nutrition, milk has long been known to protect the in-
fant from infections and to play developmental functions
integral to the infant, in which miRNAs are likely to be
highly involved [3].

The majority of milk’s miRNAs are transported and
protected by the lipid bilayer of extracellular vesicles,
predominantly exosomes of about 100 nm in diameter
secreted by mammary epithelial cells [4]. Exosomes are
cell-derived vesicles that are present in all biological
fluids including blood, saliva, urine, amniotic fluid, bron-
choalveolar lavage fluid and milk [5, 6]. Milk exosomes
have been reported in cows [7], buffalos [8], goats [9],
pigs [10], marsupial tammar wallabies [11] and humans
[12]. Exosomes protect miRNA molecules from effects
of RNase digestion and low pH [13]. Thus, miRNAs in
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milk exosomes may be transferred into the gastrointes-
tinal tract of infants and likely contribute to infant devel-
opment and protection against infections [14].

Cells can take up exosomes through a variety of endocy-
tic pathways, including clathrin-dependent endocytosis,
clathrin-independent pathways such as caveolin-mediated
uptake, macropinocytosis and phagocytosis [15]. Uptake of
milk exosomes including their miRNAs has been demon-
strated in human colon carcinoma Caco-2 cells and rat
intestinal epithelial cell (IEC) IEC-6 cells [16]. Further,
orally administered exosomes escaped re-packaging in the
intestinal mucosa, and accumulated in liver and spleen.
The same group later reported that labelled RNA derived
from the milk exosomes was detected in mouse brain,
kidney and lung [17]. Porcine milk exosomes promoted
IEC proliferation in mice and increased mouse villus
height, crypt depth and ratio of villus length to crypt depth
of intestinal tissues were associated with miRNA-mediated
gene regulatory changes in IECs [18]. In another study, oral
delivery of bovine milk exosomes ameliorated experimen-
tally induced arthritis [19]. Correctively, these data suggest
that miRNA in milk exosomes can get into the body.

Accumulating evidence suggests that exosomal miRNAs
play crucial roles in numerous diseases such as hepatocellu-
lar carcinoma [20], breast cancer [21] and Alzheimer’s
disease [22]. Secretion of milk exosomes is affected by bac-
terial infections in mammary glands. Staphylococcus aureus
(S. aureus) is one of the most important etiologic agents for
chronic bovine mastitis. Our previous in vitro study showed
that 5 miRNAs (miR-2339, miR-21-3p, miR-92a, miR-23a
and miR-365-3p) were up-regulated in bovine mammary
epithelial cells when challenged with S. aureus [23]. In
bovine mammary gland infected with S. aureus, a total of
77 miRNAs showed significant differences compared to the
control group [24]. Previous studies have also investigated
milk exosomal miRNAs following S. aureus induced bovine
mastitis [25, 26]. However, no study has focused on miR-
NAs in exosomes derived from milk naturally infected with
S. aureus. More importantly, previous studies focused on
the profiling of miRNAs in milk exosomes, without experi-
mental confirmation of the predicted target genes by bio-
informatics. In addition, how miRNAs in exosomes affect
milk safety has not been considered.

The objective of this study, therefore, was to
characterize the miRNA expression profiles comprehen-
sively in exosomes from normal and uninfected milk
(the control group) and S. aureus infected milk (the SA
group) and to predict potential targets for DE miRNAs
and explore their possible functions.

Results

Identification of S. aureus in bovine milk

Based on colony counting and PCR results for nuc and
bacterial 16S rRNA genes, 13.95% (42/301) milk samples
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were infected with S. aureus. At the cow level, the infec-
tion rate was 31.58% (24/76) (Additional file 8: Table S1).

Isolation and detection of exosome from bovine milk
Bovine milk exosomes with approximately 100 nm in diam-
eter were observed (Additional file 1: Figure S1a). Exosomes
with a particle diameter in the range of 20 nm to 200 nm
amounted to 84.1% of the total (Additional file 1: Figure S1b).
The expression of CD63 and CD81 on the surface of exo-
somes was at a positive rate of 72.0 and 77.9%, respectively
(Additional file 2: Figure S2).

Characterization of bovine milk exosomal miRNAs
Average RNA contents of the exosomes from 40 mL of
the control or S. aureus infected milk samples were
1301 + 38.7 ng (n = 3) and 1223 + 56.6 ng (n = 6), respect-
ively. Bovine milk exosomal RNA contained little or no
28S and 18S ribosomal RNA (data not shown).

The total raw read count from the sequencing of 9 librar-
ies was 101,392,712 with an average of 11,265,857 reads per
sample. After removing linker reads, reads containing N
and poly A/T structure, length-anomalous reads, low-
quality reads and reads greater than 35nt or less than 17
nt, the resulting high quality clean data accounted for 83 to
96% of the original raw read counts. The majority of
retained reads were 22 nt in length (Fig. 1a).

Approximately 95% (range from 92.22 to 96.97%) of
clean reads were successfully aligned to the bovine Ref-
erence Genome (UMD 3.1) (Additional file 9: Table S2).
miRNAs are the dominant small RNAs (Fig. 1b,
Additional file 10: Table S3).

A total of 221 known and 69 novel miRNAs satisfied
the conditions of having at least 1 transcript per million
clean tags and were present in a minimum of four
libraries. These 290 miRNAs were used for differently
expressed (DE) analysis (Additional file 11: Table S4).

Twenty-five miRNAs having >0.1% of the total read
counts in both control and SA groups were regarded
as abundantly expressed miRNA (Table 1). Seven
most abundantly expressed miRNAs (bta-miR-148a,
bta-miR-30a-5p, bta-let-7f, bta-miR-21-5p, bta-miR-
26a, bta-let-7a-5p and bta-let-7 g) accounted for 93.80
and 90.91% of the total read counts in the control
and SA groups, respectively. Bta-miR-148a had the
highest miRNA read counts in both groups. Bta-miR-
11_2406 was the most highly expressed novel miRNA,
which accounted for 0.139%. of total read counts
(Additional file 11: Table S4b).

A higher number of known miRNAs were located on
Chr X (36 miRNAs), Chr 19 (29 miRNAs), and Chr 21
(27 miRNAs), while the highest number of novel miR-
NAs were located on Chr 5 (15 miRNAs) (Fig. 1c).
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Fig. 1 Sequencing data for small RNAs in milk-derived exosomes. (a) Length (nt) distribution of the read counts. (b) Different categories of small
RNAs in 9 studied samples. (c) Intuitive map of miRNA distribution across bovine chromosomes (the outermost circle, one unit of the scale stands
for one million base-pairs). The middle circle (red lines) represents known miRNAs and the innermost circle (blue lines) represents novel miRNAs.
The height of the column is proportional to the expression level and the position of the column corresponds to the miRNA location
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DE miRNAs in exosomes between the control and S.
aureus infected milk

Thirty seven miRNAs (twenty two known and fifteen
novel) were significantly differentially expressed (p < 0.05)
between the control and the SA groups. Out of these,
twenty-eight miRNAs were significantly (p < 0.05) up-reg-
ulated, whereas nine miRNAs were significantly (p <
0.05) down-regulated (Fig. 2). Notably, four miRNAs (bta-
miR-2_10662, bta-miR-5 20491, bta-miR-184 and bta-

miR-2340) were only expressed in the SA group, while
one miRNA (bta-miR-5_21525) was only expressed in the
control group (Table 2). Furthermore, three known (bta-
miR-185, bta-miR-2904 and bta-miR-378) and eight novel
(bta-miR-12_3801, bta-miR-14 5370, bta-miR-21_12392,
bta-miR-22_13422, bta-miR-3_18200, bta-miR-5_20547,
bta-miR-5_21188 and bta-miR-X_26469) miRNAs were
highly expressed (log2foldchange > 3) in the SA group as
compared to the control group.
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Table 1 Twenty-five most abundantly expressed miRNAs in bovine milk exosomes

miRNA ID Control group (n=3) SA group (n=6) Overall
Mean reads % Mean reads % Mean reads %

bta-miR-148a 5,704,941.00 83444 4,487,889.67 77.659 4,893,57344 79.809
bta-miR-30a-5p 234,243.67 3426 260,044.17 4.500 251,444.00 4.101
bta-let-7f 131,014.00 1.926 126,834.67 2.195 128,227.78 2.091
bta-miR-21-5p 93,483.33 1.367 132,236.83 2.288 119,319.00 1.946
bta-miR-26a 102,636.33 1.501 94,022.50 1.627 96,893.78 1.580
bta-let-7a-5p 78,246.67 1.144 83,32433 1442 81,631.78 1.331
bta-let-7g 68,033.00 0.995 69,446.83 1.202 68975.56 1.125
bta-miR-200a 47,714.67 0.698 59,328.50 1.027 55,457.22 0.904
bta-let-7b 47,204.67 0.690 59,017.83 1.021 55,080.11 0.898
bta-miR-200c 32,256.33 0472 38,897.00 0673 36,683.44 0.598
bta-miR-30d 24,246.67 0.355 28,719.33 0497 2722844 0444
bta-miR-99a-5p 1997233 0292 26,966.17 0467 24,634.89 0.402
bta-miR-26b 24,645.67 0360 21,275.50 0368 22,398.89 0365
bta-let-7i 18,153.00 0.266 22,036.17 0.381 20,741.78 0338
bta-miR-27b 19,007.00 0278 20,082.17 0348 19,723.78 0322
bta-miR-151-3p 15,890.00 0232 18,085.17 0313 1735344 0.283
bta-miR-186 973233 0.142 20,533.17 0.355 16,932.89 0276
bta-miR-200b 11,909.67 0.174 12,660.67 0219 1241033 0.202
bta-let-7¢ 978267 0.143 12613.83 0218 11,670.11 0.190
bta-miR-103 6039.00 0.088 10,320.67 0.179 889344 0.145
bta-miR-375 7205.33 0.105 9041.00 0.156 8429.11 0.137
bta-miR-182 6910.00 0.101 8220.67 0.142 7783.78 0.127
bta-miR-92a 857133 0.125 610233 0.106 692533 0.113
bta-miR-532 588867 0.086 736833 0.128 6875.11 0.112
bta-miR-423-5p 4426.67 0.064 725167 0.125 6310.00 0.103

Predicted target genes of known DE miRNAs and GO and
KEGG pathway annotations

Twenty-two known DE miRNAs were predicted to tar-
get 2678 genes (Additional file 12: Table S5). Bta-miR-
185 had the highest number of target genes (515 genes)
(Additional file 3: Figure S3), while the MTMR3 gene
was the most popular target for DE miRNAs (targeted
by 8 DE miRNAs). Other common target genes for DE
miRNAs were USP12, SYT13, PDHAI, FRMDS, KLHL29,
MCAT, ABAT, CHFT8 and CELF3 (each targeted by 6
DE miRNAs).

Target genes of DE miRNAs were significantly (p < 0.05)
enriched in 121 GO terms (63 biological process GO
terms, 34 cellular component GO terms and 24 molecular
function GO terms) (Additional file 13: Table S6). The
most enriched biological process, cellular component and
molecular function GO terms were intracellular protein
transport (p = 1.29 x 10™°), endoplasmic reticulum (p =
8.79 x 10~ 7) and identical protein binding (» =7.28 x 10"
%), respectively (Fig. 3a). Moreover, 49 KEGG pathways

were significantly enriched for the target genes of DE miR-
NAs (Additional file 14: Table S7). The lysosome pathway
(p=273x10"% was the most significantly enriched
KEGG pathway (Fig. 3b).

Target genes for bta-miR-378 and bta-miR-185 were
validated

Read counts of DE miRNAs showed that bta-miR-378,
bta-miR-185 and bta-miR-146b were 3 top DE miRNAs in
the SA group as compared to the control group. Consider-
ing the potential importance based on read counts and
log2foldchange values, the potential targets for bta-miR-
378 and bta-miR-185 were further validated (Fig. 4).

A total of 441 and 814 target genes were predicted for
bta-miR-378 and bta-miR-185 by TargetScan and
miRanda programs, respectively (Additional file 15:
Table S8). Among them, 8 and 23 genes were predicted
by both programs, and considered as more plausible tar-
gets of bta-miR-378 and bta-miR-185, respectively
(Table 3, Additional file 4: Figure S4).
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The binding sites for bta-miR-378 and bta-miR-185 in
the 3'-UTR of commonly predicted target genes were
analyzed by bioinformatics methods (microrna.org and
TargetScan) (Additional file 16: Table S9). To biochem-
ically confirm the in silico predicted targets, the 3'-
UTRs of predicted candidate mRNAs were cloned into a
dual luciferase vector. The luciferase activity of the
psiCHECK-2 vector with 3'-UTR of VATIL was strongly
inhibited by bta-miR-378 (p <0.05) (Additional file 5:
Figure S5). Similarly, luciferase activities of psiCHECK-2
vectors with 3-UTR of DYRKIB, MLLT3, HPIBP3,
NPR2 or PGMI1 were significantly down-regulated by
bta-miR-185 (p < 0.05) (Additional file 6: Figure S6). To
validate these results, the miRNA target sites in the 3'-
UTRs of VATIL, DYRK1B, MLLT3, HP1BP3, NPR2 and
PGM1 were mutated (Fig. 5a). After the mutation, trans-
fection of the miRNA mimics (bta-miR-378 or bta-miR-
185) did not change the luciferase activities (Fig. 5b).
These results suggested that VATIL was the target of
bta-miR-378, while DYRKIB, MLLT3, HP1BP3, NPR2
and PGM 1 were targets of bta-miR-185.

Discussion
Milk provides important nutrients that are of benefit to
most people throughout life. Due to the direct effects of
the protein, fat, lipid, vitamin, and mineral fractions,
milk has a specific growth promoting effect in children
in both developing and developed countries [27].
Pasteurization is widely used in commercial milk pro-
duction and it destroys all known pathogens and most
of the spoilage bacteria in raw milk. Nowadays, there is
compelling evidence that milk exosomes are retained in
pasteurized commercial milk [17] and reach the sys-
temic circulation and tissues of the human milk con-
sumer [28]. Furthermore, pasteurization did not affect
the profile expression of miRNA in bovine milk [29].
Bovine milk exosomes miRNAs which resist the harsh
conditions in the gastrointestinal tract [30] are taken
up via receptor mediated endocytosis by intestinal epi-
thelial cells [16] and vascular endothelial cells [31].
More importantly, in vivo studies confirmed that milk
exosomes miRNAs could reach distant tissues [19] and
human plasma [32].
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Table 2 DE miRNAs between the control group and the SA group

miRNA 1D Log2fold change® p-value

Novel miRNAs
bta-miR-12_3801 3.002 248% 107
bta-miR-14_5370 3.807 1.14x 1072
bta-miR-19_9865 2663 294% 1072
bta-miR-19_9911 ~1585 383x107°
bta-miR-2_10662 S 515%x107°
bta-miR-21_12392 4644 764x107*
bta-miR-22_13422 4170 122x107°
bta-miR-28_16952 -1.280 315% 1072
bta-miR-3_18200 3.807 122x1072
bta-miR-5_20371 -1.078 287x107°
bta-miR-5_20491 S 120x 1072
bta-miR-5_20547 4,000 227x1073
bta-miR-5_21188 4,000 210% 1072
bta-miR-5_21525 $$ 175%x107°
bta-miR-X_26469 5.170 293%107°

Known miRNAs
bta-miR-1 1.926 240%107°
bta-miR-122 1838 317%107°
bta-miR-1246 2.140 535% 10
bta-miR-142-5p 1864 149%107°
bta-miR-146a 1978 3011072
bta-miR-146b 1482 446x107
bta-miR-154b 2,848 190% 1072
bta-miR-184 $ 231x10°°
bta-miR-185 3.585 374x107?
bta-miR-196b 2.841 492x107?
bta-miR-205 2.883 205% 1072
bta-miR-218 -1078 340% 1072
bta-miR-2320-3p 2322 402x 1077
bta-miR-2340 $ 121x1072
bta-miR-2889 2816 156 %1072
bta-miR-2904 3484 166x 1072
bta-miR-369-3p —1625 101 %1072
bta-miR-378 4044 146x107°
bta-miR-378¢c 2193 965% 1072
bta-miR-451 1.554 185% 107
bta-miR-582 —2.000 750% 1072
bta-miR-6525 ~2.585 237%107°

? Values represent the amount of expression of the miRNA in the SA group
divided by the amount in the control group, followed by a base-2
logarithmic value

$ miRNA only expressed in the SA group

$$ miRNA only expressed in the control group
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In our study, two miRNAs (bta-miR-378 and bta-miR-
185) with high read counts were up-regulated significantly
in exosomes from bovine milk infected by S. aureus.
These two miRNAs have been reported to be associated
with health. MiRNA-378 facilitates the development of
hepatic inflammation and fibrosis [33]. In addition, ex-
pression of the miR-378 was reported to promote tumor
growth [34]. MiR-185-5p may inhibit ameloblast and
osteoblast differentiations and result in cleidocranial dys-
plasia [35], and promotes lung epithelial cell apoptosis
[36]. How these miRNAs affect health parameters is not
clear and it is plausible that their target genes are
involved.

Consistent with two previous studies [25, 26], the ex-
pression level of bta-miR-148a was the highest among
all milk-derived exosomal miRNAs in our study. In these
two previous studies, the miRNAs with the greatest
differences in expression in milk-derived exosomes after
S. aureus infection were bta-miR-142-5p [25] and bta-
miR-223 [26], respectively. While the expression level of
bta-miR-142-5p was also up-regulated significantly in
our study, it was not the most differentially expressed
one. In addition, expression of bta-miR-223 was not
significantly changed in our study. These discrepancies
between our study and the other two studies could be
due to the fact that exosomes were isolated from mas-
titic milk naturally infected with S. aureus in this study,
while the other two studies used milk samples from the
mammary gland challenged with S. aureus.

We have functionally validated VATIL as a target gene
of bat-miR-378. Through a network-based analysis of
three independent schizophrenia genome-wide associ-
ation studies, Chang et al. reported that VATIL may be
one of the genes associated with schizophrenia [37]. In
addition, DYRKIB, HP1BP3, MLLT3, NPR2 and PGMI
were identified as the target genes of bta-miR-185 in our
study. Surprisingly, deficiency of these target genes also
leads to a variety of diseases. DYRK1B belongs to the
Dyrk family of proteins, a group of evolutionarily
conserved protein kinases that are involved in cell differ-
entiation, survival, and proliferation [38]. Mutations in
DYRKIB were associated with a clinical phenotype that
is characterized by central obesity, hypertension, type II
diabetes and early-onset coronary artery disease [38].
HP1BP3 was identified as a novel modulator of cognitive
aging and HP1BP3 protein levels were significantly re-
duced in the hippocampi of cognitively impaired elderly
humans relative to cognitively intact controls [39]. Tar-
geted knockdown of HPIBP3 in the hippocampus in-
duced cognitive deficits [40]. MLLT3 gene is required
for normal embryogenesis in mice, and an MLLT3 null
mutation caused perinatal lethality [41]. A loss-of-
function mutation of the AF9/MLLT3 gene was hypoth-
esized to relate to neuromotor development delay,
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cerebellar ataxia and epilepsy [42]. Homozygous inactivat-
ing mutations of NPR2 caused a severe skeletal dysplasia,
acromesomelic dysplasia and Maroteaux type [43]. PGM1
deficiency has been described in a patient with myopathy
and exercise induced hypoglycemia [44, 45]. PGM1

deficiency causes a non-neurological disorder of glycosyla-
tion as well as a rare muscular glycolytic defect [46].

In addition to bta-miR-378 and bta-miR-185, several
other miRNAs were also differentially expressed, includ-
ing miR-1, miR-122, miR-1246, miR-142-5p, miR-146a,

bta-miR-378
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Table 3 Plausible target genes of bta-miR-378 and bta-miR-185 predicted by both TargetScan and miRanda programs

miRNA Predicted target gene Gene name
bta-miR-378 UBE2W ubiquitin-conjugating enzyme E2W (putative)
TCF12 transcription factor 12
TLK2 tousled-like kinase 2
TBX6 T-box 6
VATIL vesicle amine transport 1-like
AQP3 aquaporin 3 (Gill blood group)
RNF1448 ring finger protein 1448
PDIA4 protein disulfide isomerase family A, member 4
bta-miR-185 PAK7 p21 protein (Cdc42/Rac)-activated kinase 7
CAPZB capping protein (actin filament) muscle Z-line, beta
KDM2A lysine (K)-specific demethylase 2A
PHYHIP phytanoyl-CoA 2-hydroxylase interacting protein
NFATC3 nuclear factor of activated T-cells, cytoplasmic, calcineurin-
dependent 3
E2F6 E2F transcription factor 6
CHMP7 charged multivesicular body protein 7
DGKI diacylglycerol kinase, iota
CYP4V2 cytochrome P450, family 4, subfamily V, polypeptide 2
SF1 splicing factor 1
FOSL2 FOS-like antigen 2
CABP4 calcium binding protein 4
NR1D1 nuclear receptor subfamily 1, group D, member 1
HP1BP3 heterochromatin protein 1, binding protein 3
DYRK1B dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1B
MLLT3 myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog,
Drosophila); translocated to, 3
STX4 syntaxin 4
SGMS1 sphingomyelin synthase 1
NPR2 natriuretic peptide receptor B
SPATA2 spermatogenesis associated 2
AGFG1 ArfGAP with FG repeats 1
PGM1 phosphoglucomutase 1
SDHC succinate dehydrogenase complex

miR-154, miR-184, miR-196 and miR-205. They were
also associated with a variety of human diseases. For ex-
ample, circulating miR-122 is strongly associated with
the risk of developing metabolic syndrome and type II
diabetes [47]. MiR-196 was overexpressed in the inflam-
matory intestinal epithelia of individuals with Crohn’s
disease [48]. While it is beyond the scope of this study
to confirm the linkage between discussed miRNAs and
health parameters, the above discussion about increased
expression of certain miRNAs in exosomes from S. aur-
eus infected milk argues strongly to be vigilant about the
safety of mastitis milk, even after pasteurization.

Conclusions

In conclusion, we characterized the miRNA profiles
in exosomes derived from control and S. aureus in-
fected bovine milk, and 37 miRNAs (22 known and
15 novel) were significantly differentially expressed
between the control group and SA group. This is the
first report of functional validation of VATIL, and
DYRKIB, MLLT3, HPIBP3, NPR2 and PGMI as tar-
get genes for bta-miR-378 and bta-miR-185, respect-
ively. Finally, the potential safety hazards of mastitic
milk were discussed, in the context of miRNAs within
milk exosomes.
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Methods

Milk sample collection and bacteria identification

Milk samples from seventy-six 3- to 4-year-old Holstein
cows in the middle stage of lactation from 4 dairy farms
(the Shaanxi Academy of Agricultural Sciences Farm,
the farm of Delikang Dairy Co., Ltd., the Duzhai dairy
farm and the Cuidonggou dairy farm) in Shaanxi
Province were collected for this study with the approval
of the Animal Use and Care Committee of Northwest
A&F University (NWAFAC3751). Milk samples from all
four quarters of each cow were aseptically collected and
stored at — 80 °C.

To select the samples for the control and the SA
groups, 100 uL of each milk sample were plated on the
Plate Count Agar (BD Diagnostics, Sparks, MD, USA)
and incubated at 32 °C for 48 h. The control group sam-
ples (n=3) were randomly selected from the samples
among which the colony count was zero. The milk sam-
ples with colony counts more than 1000 were marked as
samples with bacterial infection for further detection. To
rule out the interference caused by Escherichia coli (E.
coli) infection for subsequent experiments, samples were
cultured on the BactiCard™ E. coli (Thermo Oxoid
Remel, Lenexa, USA). The milk samples without E. coli
infection were selected for the identification of S. aureus
by the Baird-Parker agar (Oxoid, Basingstoke, Hampshire,
UK) as described previously [49]. Briefly, aliquots of indi-
vidual milk samples were added to an equal volume of a
double-strength enrichment broth (a trypticase soy broth
supplemented with 10% NaCl and 1% sodium pyruvate)
(Oxoid, Basingstoke, Hampshire, UK). After 24 h incuba-
tion at 35 °C, the enrichment broth was streaked onto the
Baird-Parker (Oxoid) agar containing 30% egg yolk with
1% tellurite (Oxoid) and onto the phenol red mannitol salt
agar plates. Following 48 h incubation at 35°C, the col-
onies on the plates were counted, and one to three

presumptive staphylococcal colonies from each plate were
transferred to trypticase soy agar plates. Yellow colored
colonies from the phenol red mannitol salt agar plates
were assumed to be S. aureus. Further identification of
these presumptive staphylococcal colonies was first based
on conventional methods including Gram stain staining,
colony morphology, a catalase test and a coagulase test
with rabbit plasma. The culture result was further con-
firmed by using a polymerase chain reaction (PCR) assay
targeting S. aureus-specific region of the thermonuclease
gene (nuc) [49] and bacterial 16S rRNA genes. The sam-
ples with nuc positive S. aureus, which was also confirmed
by sequencing the PCR products of 16S rRNA genes, were
selected for the SA group (n = 6).

Preparation and purification of milk exosomes

Milk exosomes from the SA group (n =6) and the con-
trol group (n =3) were isolated by differential centrifu-
gation as described previously [50]. Briefly, milk samples
were centrifuged at 5000xg for 60 min at 4 °C to remove
milk fat and milk somatic cell. For the removal of casein
and other cell debris, skimmed milk samples were sub-
jected to three successive centrifugations at 4°C for 1h
each at 12,000xg, 35,000xg and 70,000xg (Beckman
Coulter, USA). The whey was collected and centrifuged
at 135,000xg at 4 °C for 90 min (Beckman Coulter) to re-
move large particles and micro-vesicles. The supernatant
was carefully collected and filtered through a 0.22 um
syringe-driven filter unit (Merck KGaA, Darmstadt,
Germany). The percolate was collected and centrifuged
at 150,000xg for 90 min at 4 °C (Beckman Coulter). The
exosome pellet was re-suspended in 1mL sterile PBS
and filtered through a 0.22 um syringe-driven filter unit
(Merck KGaA). Finally, exosomes were stored in aliquots
of 200 uL at — 80 °C until being used.
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Identification of bovine milk exosomes

Dynamic light scattering analysis was used for analyzing
nanoparticle sizes. Aliquot of 200 L stored exosomes was
diluted to 1 mL volume with sterile PBS stored on ice. The
exosome solution was slowly injected into the sample cell
of the Malvern Zetasizer Nano ZS90 (Malvern Panalytical
Ltd,, United Kingdom) system and measurements were
taken according to manufacturer’s instructions.

For transmission electron microscopy (TEM), milk
exosomes were fixed in 3% (w/v) glutaraldehyde and 2%
paraformaldehyde in a cacodylate buffer, pH7.3. The
fixed exosomes were then applied to a continuous
carbon grid and negatively stained with 2% uranyl acet-
ate. The samples were examined with a HT7700 trans-
mission electron microscope (HITACH]I, Japan).

Exosome marker proteins (CD63 and CD81) were de-
tected via flow cytometry (Accuri™ C6, BD Biosciences,
USA) using anti-CD63 (BD Biosciences, USA) and anti-
CD81 (BD Biosciences, USA) antibodies, according to
manufacturer’s protocols.

Extraction of total RNA from bovine milk exosomes

Total RNA was extracted from bovine milk exosomes
using the Trizol reagent (TAKARA, Japan) according to
manufacturer’s protocol and dissolved in RNase free
water. Quality and quantity of RNA was examined using
a NanoDrop 2000/2000C (Thermo Fisher Scientific,
Waltham, MA, USA) and integrity was detected using
agarose gel electrophoresis.

MiRNA library preparation and sequencing

Deep sequencing was performed on all 9 individual sam-
ples. For each library, 1 pg of high-quality RNA per sam-
ple was used as the input material for a small RNA
library construction using the NEXTflex™ Small RNA
Sequencing Kit V3 (Illumina, San Diego, CA) according
to the manufacturer’s instruction. Small RNA libraries
were gel purified and pooled together in equimolar
concentrations and subjected to 50bp single read se-
quencing on an Illumina HiSeq 2500 system (Illumina,
San Diego, CA). Read quality (adaptor removal and size
selection) was assessed using FastQC v0.11.5 (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/)
and the cutadapt [51].

Known miRNAs identification and novel miRNAs
discovery

Identification of known miRNAs was performed with
miRBase v21 (http://www.mirbase.org/) [52], while novel
miRNA discovery was achieved with miRDeep2 v2.0.0.8
(https://github.com/rajewsky-lab/mirdeep2) [53]. The core
and quantifier modules of miRDeep2 were applied to dis-
cover novel miRNAs in the pooled dataset of all the librar-
ies while the quantifier module was used to profile the
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detected miRNAs in each library. The amount of miRNA
expression was calculated by the transcript per million
(TPM) metric, which is calculated as number of reads per
miRNA alignment/number of reads of the total sample
alignmentx 10°. MiRDeep2 score >1 was used as a cuff
point for identification of novel miRNAs. Subsequently, a
threshold of =1 TPM of total reads and present in 24
libraries was applied to remove lowly expressed miRNAs.
MiRNAs meeting these criteria were further used in
downstream analyses including differential expression
analyses.

Differential miRNA expression and predicted target genes
DE miRNAs were detected with DeSeq2 (v1.14.1)
(https://bioconductor.org/packages/release/bioc/html/
DESeq2.html) [54]. Following normalization, miRNAs
read counts in the SA group were compared with corre-
sponding values in the control group. Significant DE
miRNAs between the control and the SA groups were
defined as having a Benjamini and Hochberg [55] cor-
rected p-value< 0.05.

In order to investigate the potential functions of DE
miRNAs, their target genes were predicted using the mi-
Randa algorithm [56]. Predicted target genes with tot
scores above 150 and tot energy below — 15 were further
used for pathway analyses. The Database for Annotation,
Visualization and Integrated Discovery (DAVID) was
used to perform Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
annotations of their target genes [57].

Bta-miR-378 and bta-miR-185 target genes validation and
function analysis

Among all DE miRNAs, two miRNAs (bta-miR-378 and
bta-miR-185) with high expression levels and the highest
log2fold change values between the two groups were fur-
ther investigated. Target genes of bta-miR-378 and bta-
miR-185 were predicted by Target Scan 7.0 (http://www.
targetscan.org), miRDB (http://www.mirdb.org/miRDB)
and miRanda (http://www.microrna.org/microrna/home.
do). Then, 3'-UTRs of target gene transcripts for bta-
miR-378 and bta-miR-185 were amplified with specific
primers (Additional file 17: Table S10). Furthermore, the
seed regions in the 3'-UTRs of the genes were mutated
with mutagenic primers by using overlapping extensions
(Additional file 17: Table S10). The wild-type and
mutated 3'-UTRs were sub-cloned into the restriction
endonuclease NotI and Xhol site of the psiCHECK-2
vector (Promega, Madison, W1, USA).

The HEK293-T cell line (ATCC, Manassas, VA, USA) was
used for transfection. The bta-miR-378 mimic (5ACUGGA-
CUUGGAGUCAGAAGGC3)), bta-miR-185 mimic (5UGGA-
GAGAAAGGCAGUUCCUGA3) and a miRNA mimic
negative control (N.C, 5UUGUACUACACAAAAGUACUG3)
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were synthesized by GenePharma (Shanghai, China). Transfec-
tion of the miRNA mimic and psiCHECK-2 was achieved using
the Lipofectamine® 3000 reagent (Invitrogen, USA) according to
the manufacturer’s instructions (Additional file 7: Figure S7).
Twenty-four hours after transfection, the medium was
changed and cells were grown for an additional 24 h
before the luciferase assay.

Firefly and Renilla luminescent signals arising from
transfected cells were quantified according to the
manufacturer’s instructions using a Dual Luciferase
assay system (Promega) with a Multilabel Counter
luminometer (Varioskan Flash, Thermo Fisher Scien-
tific). Renilla luciferase activities to firefly luciferase
activities in cells transfected with an empty psiCHECK-2
vector without a 3'-UTR fragment was set to 100%. The
experiment was repeated 3 times.

Statistical analysis

Data were analyzed with the SPSS 17.0 software (SPSS
Inc,, Chicago, IL, USA). The statistical significance be-
tween experimental groups was analyzed using One-Way
ANOVA. p <0.05 and p < 0.01 were defined to be statisti-
cally significant and extremely significant, respectively.
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