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Abstract

Background: The clinical success of immune checkpoint inhibitors demonstrates that reactivation of the human
immune system delivers durable responses for some patients and represents an exciting approach for cancer
treatment. An important class of preclinical in vivo models for immuno-oncology is immunocompetent mice
bearing mouse syngeneic tumors. To facilitate translation of preclinical studies into human, we characterized the
genomic, transcriptomic, and protein expression of a panel of ten commonly used mouse tumor cell lines grown
in vitro culture as well as in vivo tumors.

Results: Our studies identified a number of genetic and cellular phenotypic differences that distinguish commonly
used mouse syngeneic models in our study from human cancers. Only a fraction of the somatic single nucleotide
variants (SNVs) in these common mouse cell lines directly match SNVs in human actionable cancer genes. Some
models derived from epithelial tumors have a more mesenchymal phenotype with relatively low T-lymphocyte
infiltration compared to the corresponding human cancers. CT26, a colon tumor model, had the highest
immunogenicity and was the model most responsive to CTLA4 inhibitor treatment, by contrast to the relatively low
immunogenicity and response rate to checkpoint inhibitor therapies in human colon cancers.

Conclusions: The relative immunogenicity of these ten syngeneic tumors does not resemble typical human tumors
derived from the same tissue of origin. By characterizing the mouse syngeneic models and comparing with their
human tumor counterparts, this study contributes to a framework that may help investigators select the model
most relevant to study a particular immune-oncology mechanism, and may rationalize some of the challenges
associated with translating preclinical findings to clinical studies.
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Background
Preclinical mouse models support cancer therapeutic devel-
opment by contributing to target validation, elucidation of
drug mechanism of action, and generation of biomarker hy-
potheses to test in clinical settings. Two major categories of
preclinical mouse models are immune compromised and

immune competent [1]. Patient-derived xenografts (PDXs)
and cell-line derived xenografts (CDXs) arise by transplant-
ing either human tumor explants or established human
tumor cell lines into immune deficient mouse hosts, and
have been widely applied in developing cancer therapies
that modulate tumor cell autonomous functions. The rich
genetic information about cancer cell lines [2] and PDXs
[3, 4] from extensive genomic characterization supports
model selection to investigate specific target biology or per-
form drug sensitivity screens. CDXs and PDXs have limited
use in cancer immunotherapy studies because an immune
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compromised host is required for xenotransplantation. By
contrast, immune competent mouse model systems such as
syngeneic mouse models, derived by transplanting estab-
lished mouse cell lines or tumor tissues to strain-matched
mouse hosts, and genetically engineered mouse models
(GEMMs), created by introducing genetic modifications
that result in spontaneous tumor development, retain intact
mouse immune systems and are better suited to study the
interplay between immune and tumor cells.
The recent approval of immune checkpoint inhibitors

and their success in generating durable response in some
patients has reinvigorated interest in developing novel
immune therapies and evaluating combination regimens
[5]. While syngeneic mouse models and GEMMs both
possess intact immune systems [6], GEMMs typically
have relatively few mutations and lower immunogenicity.
Syngeneic mouse models have a broader spectrum of
mutations and have served as workhorses for investigat-
ing immune therapies and studying the intricate immune
surveillance of cancer development [6, 7]. Anti-tumor
activity via checkpoint blockade, such as with a CTLA4
blocking antibody, was initially observed in syngeneic
models [8], suggesting that syngeneic model findings
may translate to the clinic. The anti-CTLA4 antibody
has variable response among different syngeneic models
with marked response in CT26, GL261, and EMT6,
while it was shown to be ineffective in B16F10, a melan-
oma model [8]. This response pattern was postulated to
be due to the diverse immunogenicity of the models, al-
though the underlying molecular mechanisms remain
elusive due in part to a lack of understanding of the im-
munogenic state that favors response. Compared to
patient-derived xenograft models, there have been far
fewer syngeneic models established and characterized,
although recently several studies have been published
that begin to profile the molecular and cellular charac-
teristics of immune competent mouse models [9–13].
We compared genomic, proteomic and immunohisto-

chemistry (IHC) features of a panel of ten commonly used
mouse syngeneic models [6, 10, 13] with the correspond-
ing features of human tumors in The Cancer Genome
Atlas (http://cancergenome.nih.gov/). We characterized
the mutational landscape and predicted the neoantigen
burden of these models through whole exome sequencing,
and compared the variants identified in syngeneic models
to common driver mutations in human tumors. We evalu-
ated syngeneic model tumor phenotypes through immu-
nohistochemistry and compared the architecture to
human cancers, performed RNA-Seq of tumors grown in
syngeneic mice as well as the same cells grown in culture,
and predicted immune infiltration through computational
deconvolution of gene expression data into immune com-
ponents. Compared to previous studies [9–13], our study
includes expression analysis for syngeneic models from

both cells grown in vitro culture as well as in vivo tumor
samples, enabling an assessment of tumor cell intrinsic
properties. We also characterized these mouse syngeneic
models by proteomics which enabled us to verify gene ex-
pression findings identified from transcription profiling, as
well as to identify potential mouse virus proteins that may
contribute to immunogenicity.

Results
Commonly used mouse syngeneic models in this study
do not fully recapitulate common driver mutations in
human tumors
We performed whole exome sequencing (WES) of ten syn-
geneic models commonly used in immune oncology preclin-
ical studies (Table 1, Additional file 1: Table S1) and
characterized the missense mutations (Additional file 2: Fig-
ure S1). To assess the accuracy of our variant calls, we tested
115 variants mapped to the TARGET (tumor alterations
relevant for genomics-driven therapy) database (http://arch-
ive.broadinstitute.org/cancer/cga/target) by Sanger sequen-
cing. All 115 of the predicted variants were validated
(Additional file 3: Table S2), supporting a high level of preci-
sion for our variant calls. The transition/transversion (Ts/
Tv) ratio varied across a wide span ranging from 0.27 to
3.65 (Additional file 2: Figure S2A), similar to the Ts/Tv
range in somatic variants from human cancers (Additional
file 2: Figure S2A) [14]. For example, MC38 has many more
transversions than transitions, while more than 50% of the
SNVs for the CT26 model are C >T;G >A transitions (Add-
itional file 2: Figure S2B). The broad Ts/Tv range in syngen-
eic models may reflect the variety of mutagens used to
derive these models. MC38 was induced by the DNA
methylating agent DMH and enriched with C >A;G >T
transversions while the CT26 model was generated by the
carcinogen NMU, known to induce C >T;G >A mutations
[15]. Previously, both transversion and transition mutations
were reported to be induced by DMH in mouse Trp53
genes [16].
Mutational load has been correlated with tumor im-

mune infiltrates [17] and clinical response of checkpoint
blockades in some human tumors [18, 19]. We classified
mutations into four categories using snpEff [20] based
on their predicted impact on protein functions: high
(“The variant is assumed to have disruptive impact in
the protein, probably causing protein truncation, loss of
function or triggering nonsense mediated decay”),
moderate (“A non-disruptive variant that might change
protein effectiveness”), low (“Assumed to be mostly
harmless or unlikely to change protein behavior”), or
modifier (“Usually non-coding variants or variants affect-
ing non-coding genes, where predictions are difficult or
there is no evidence of impact”). Next, we calculated
mutational load for the “high” and “moderate” mutations
(Fig. 1a), and compared with the nonsynonymous
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mutational load of the corresponding human tumors. In
general, the mutational load for “high” and “moderate”
mutations in syngeneic models was higher than the me-
dian nonsynonymous mutational load in human tumors,
although the values are within the range in human tu-
mors (Table 1). MC38 has the highest mutational load,
followed by LLCsr and CT26, while EMT6, F9 and 4T1

have the lowest mutational load. As expected, the
carcinogen-induced models tend to have the highest
mutational burden, followed by spontaneously generated
tumors, with viral induced models bearing the lowest
mutational load (Fig. 1a).
We focused on genes that lead to carcinogenesis when

altered in human tumors and compared 43 point

Table 1 Mutational load of the 10 syngeneic mouse models and the corresponding human cancer (LUAD: Lung adenocarcinoma,
LUSC: Lung squamous cell carcinoma)

Model Tumor Type Parent Strain Origin Mutational Load (per Mb) Median Human Mutational Load (per Mb)

4T1 breast BALB/c virus 5 1

A20 B-cell lymphoma BALB/c spontaneous 20 NR

CT26 colorectal BALB/c carcinogen 56 5

RENCA renal BALB/c spontaneous 46 1.6

EMT6 breast BALB/c virus 13 1

EL4 T-cell lymphoma C57BL/6 carcinogen 51 NR

MC38 colorectal C57BL/6 carcinogen 75 5

LLCsr lung C57BL/6 spontaneous 72 5.3 (LUAD)
7.5 (LUSC)

B16F10 melanoma C57BL/6 spontaneous 35 9.6

F9 teratocarcinoma 129S6/SvEv embryoimplantation 11 NR

NR: not reported because there is no direct human equivalent data

Fig. 1 a Variants predicted to alter protein functions (variant effect defined as MODERATE, “A non-disruptive variant that might change protein
effectiveness”, or HIGH, “The variant is assumed to have disruptive impact in the protein, probably causing protein truncation, loss of function or
triggering nonsense mediated decay”, by SnpEff). b Protein sequence altering variants of known cancer genes; GOF: gain of function; LOF: loss of
function; matched_GOF: mouse variants matching human GOF variants (exact variants); matched_LOF: mouse variants matching human LOF
variants (truncating mutation or missense mutation at the same amino acid); unmatched: mouse variants not reported as known actionable
variants in human tumors
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mutations across 27 genes whose human orthologs are
reported in the TARGET database and annotated as ac-
tionable in OncoKB (http://oncokb.org/), as well as 8
variants of the tumor suppressor Trp53. Only four point
mutations in two oncogenes (Kras G12C:LLCsr, G12D:
CT26, G13D:EL4, and Nras Q61H:LLCsr) and four point
mutations in two tumor suppressor genes (Pten T131P:
B16F10, R130W:EL4, G209*:EMT6, and Trp53 E32*:
LLCsr) in the mouse syngeneic models had correspond-
ing mutations (the exact variant in Kras and Nras, a
truncating mutation or missense mutations at the same
amino acid in Pten and Trp53) in human tumors regard-
less of the tissue of origin (Fig. 1b). Next, we investigated
whether genes frequently mutated in human tumors are
also mutated in syngeneic models of the same tissue of
origin. While KRAS, APC and TP53 are frequently mu-
tated in human colon tumors, CT26 had homozygous
Kras mutations (G12D, V8M) and did not have

mutations in Apc or Trp53; MC38 had Trp53 heterozy-
gous mutations (G242 V, S258I) and a Smad4 heterozy-
gous mutation (G351R), mutated in approximately 12%
of human colon cancer, with no mutations in Kras or
Apc (Table 2). Neither colon syngeneic model has an
APC mutation, which is mutated in the majority of
human colorectal cancer and neither the breast-
derived tumor model EMT6 nor 4T1 have activating
mutations in PIK3CA. EMT6 and 4T1 contain fewer
protein altering mutations than other syngeneic
models, although 4T1 has an insertion in Trp53 that
results in a frameshift mutation (E32fs). The LLCsr
model also contains mutations in Trp53 (E32*,
R334P) as well as Kras (G12C). Unlike CT26, the
Kras (G12C) mutation in LLCsr is a heterozygous
mutation. By contrast, the V600 BRAF mutation, a
mutation common in human melanoma, was not
identified in the melanoma B16F10 model. Similarly,

Table 2 Frequently mutated human cancer genes and their mutations in syngeneic models of the same cancer type

Human Cancer Human Gene (a) Human Mutation Frequency Model Model Mutation Model Model Mutation

BRCA PIK3CA 32.48 4T1 NA EMT6 NA

BRCA TP53 30.65 4T1 p.Glu32fs EMT6 NA

BRCA CDH1 11.41 4T1 NA EMT6 NA

COAD APC 71.62 CT26 NA MC38 NA

COAD TP53 53.6 CT26 NA MC38 p.Gly242Val
p.Ser258Ile

COAD KRAS 43.24 CT26 p.Gly12Asp
p.Val8Met

MC38 NA

COAD FBXW7 17.12 CT26 NA MC38 NA

COAD PIK3CA 14.86 CT26 NA MC38 NA

COAD SMAD4 11.71 CT26 NA MC38 p.Gly351Arg

COAD ATM 11.26 CT26 NA MC38 NA

SKCM BRAF 51.23 B16F10 NA

SKCM NRAS 26.7 B16F10 NA

SKCM ROS1 17.98 B16F10 NA

SKCM ERBB4 16.35 B16F10 NA

SKCM TP53 15.26 B16F10 p.Asn128Asp

SKCM KDR 13.35 B16F10 NA

SKCM NF1 12.81 B16F10 NA

SKCM CDKN2A 12.26 B16F10 NA

LUSC TP53 81.46 LLCsr p.Glu32*
p.Arg334Pro

LUSC PIK3CA 15.17 LLCsr NA

LUSC CDKN2A 14.04 LLCsr NA

LUSC NF1 11.8 LLCsr NA

LUSC ROS1 10.67 LLCsr NA

KIRC VHL 49.89 RENCA NA
aGenes from TARGET database with at least 10% mutation frequency in TCGA samples
BRCA Breast invasive carcinoma, COAD Colon adenocarcinoma, SKCM Skin cutaneous Melanoma, LUSC Lung squamous cell carcinoma, KIRC Kidney renal clear
cell carcinoma
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genes frequently mutated in human kidney cancer such as
VHL were not identified in the RENCA model.

Some syngeneic tumors display a mesenchymal-like
phenotype
In addition to genetic features, we compared the tumor
histology of these mouse syngeneic models with human
tumors. The in vivo tumors were stained with E-
cadherin antibodies, an epithelial cell marker, and
vimentin, a marker for cells undergoing epithelial to
mesenchymal transition. Many models had high vimen-
tin expression suggesting a more mesenchymal-like
phenotype (Fig. 2a, Additional file 2: Figure S3). In
addition, the ratio of E-cadherin to vimentin is much
lower than the corresponding human tumors in TCGA
with the exception of RENCA (Fig. 2b), suggesting that
syngeneic models typically have a more mesenchymal-
like tumor cellular phenotype than human tumors.

These syngeneic models have relatively low T-lymphocyte
infiltration
The baseline immune infiltration of a panel of syngeneic
models (Table 1) was evaluated by transcription profiling
and chromogenic IHC. We performed RNA-Seq for syn-
geneic tumors grown in vitro culture and in vivo (Add-
itional file 4: Table S3), and implemented an in silico
immune cell deconvolution using a nu-support vector
regression (nuSVR) developed for mouse samples that is
similar to approaches recently developed for human
samples [21]. As expected, a large percentage of T cells

and B cells were predicted for EL4 and A20, T cell and
B cell lymphoma models, respectively. A relatively high
percentage of myeloid infiltration along with a relatively
low percentage of T cells was predicted by in silico im-
mune cell deconvolution (Fig. 3a). The T-cell fraction
was lower in most syngeneic models compared to the
corresponding human tumors [22] (Fig. 3b). Further-
more, there were high levels of myeloid and macrophage
infiltration by IHC in these models (anti-CD11b or anti-
F4/80 staining, Fig. 3c).

Predicted neoantigen load in these syngeneic mouse
models does not correlate with cytolytic activity
Neoantigen load has been reported to correlate with
tumor immune infiltrates [17] and clinical response of
checkpoint blockades in some human tumors [18, 19].
We developed a neoantigen prediction pipeline based on
MHC class I binding for the syngeneic models (details in
method section); the number of predicted neoantigens
correlates with mutational load (Additional file 2: Figure
S4A) as in human tumors. Next, we evaluated the rela-
tionship between the predicted neoantigen load and
tumor immunity using the cytolytic activity (CYT) as an
indicator of the tumor immunity. We defined the cyto-
lytic activity to be the log average (geometric mean) of
two key cytolytic effectors, granzyme A (GZMA) and
perforin (PRF1) [17]. Unlike what has been reported for
human tumors, we did not observe a significant correl-
ation between the neoantigen load and cytolytic activity
(Additional file 2: Figure S4B).

Fig. 2 Mesenchymal-like phenotype of some syngeneic tumors. a E-cadherin and vimentin stain in 4T1 and CT26 model. b Comparison of ratio
of E-cadherin vs vimentin between solid tumor syngeneic models (open circle) with tissue matched human tumors from TCGA (boxplot; lung:
lung adenocarcinoma and lung squamous cell carcinoma). Ratio was calculated with the expression value (TPM) of E-cadherin and vimentin
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Relative immunogenicity of syngeneic tumors in our
study differs from their tissue of origin in human tumors
We investigated the relative immunogenicity among syn-
geneic tumors using RNA-Seq and proteomics. Gene ex-
pression of many markers of immune cells, immune
activation and suppression were dramatically up-
regulated in tumors in vivo compared to the correspond-
ing cells in vitro, consistent with immune infiltration
(Fig. 4a). Unsupervised hierarchical clustering of these
immune-related genes displayed differential immune in-
filtration among models (Fig. 4b) where CT26, a colon
cancer model, and 4T1, a breast cancer model, had the
highest immune infiltration compared to other models
while B16F10, a melanoma model and F9, a testicular
teratoma, had lower immune infiltration. Total leukocyte
infiltration in syngeneic models by CD45 (PTPRC) ex-
pression from RNA-Seq had a similar trend as did cyto-
lytic activity, another indicator of cancer immunity,
which was also highest in CT26 and 4T1 and lowest in
B16F10 and RENCA among the solid tumor models
(Fig. 4c). CT26 was highly responsive to CTLA4

checkpoint inhibitors, but not to PD-1 inhibitors, while
other models including the B16F10 melanoma model
did not respond significantly to either of the checkpoint
inhibitors (Additional file 2: Figure S5). The high im-
munogenicity of the CT26 model and low immunogen-
icity of B16F10 and RENCA models in our study differs
from what has been reported in human tumors from the
corresponding tissue of origin, where kidney cancer has
the highest median cytolytic activity. Although human
colon tumors and melanoma have similar median cyto-
lytic activity, melanoma has a much more skewed distri-
bution where a significant fraction of tumors have high
cytolytic activity (Fig. 4c). CT26 had dramatically higher
expression of Gzma (Additional file 2: Figure S6A), and
also the highest cytolytic activity as well as Gzma expres-
sion based on our proteomic analysis (Additional file 2:
Fig. S6B, C). The CT26 model was predicted to have sig-
nificant NK cell infiltration based on in silico immune
cell deconvolution of RNA-Seq (Fig. 4a) which is con-
sistent with high Gzma expression and corresponding
high cytolytic activity, as Gzma has been previously

Fig. 3 Immune subsets in syngeneic models. a In silico immune cell deconvolution of syngeneic tumor samples. Syngeneic models exhibited
various immune cell type infiltrations with major NK cell infiltration predicted in CT26 models. b Comparison of estimated total T-cell fraction of
leukocyte in selected mouse syngeneic models and their corresponding human tumors. Human data were downloaded from Gentles et al. [22].
Total T-cell fraction plotted here is the sum of all predicted T-cell subsets including CD4+, CD8+, Treg, and gamma-delta T-cells. c CD3 staining
for T-cells, CD11b staining for myeloid cells, and F4/80 staining for macrophage
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shown to be expressed prominently in NK cells in
mouse (http://www.immgen.org/).
To further investigate the unique biology of the CT26

model, we analyzed pathways enriched in genes up-
regulated in CT26 tumor samples in vivo compared to the
same CT26 cells grown in vitro culture and other syngen-
eic in vivo tumors utilizing RNA-Seq. We identified NK-
related pathways including “Crosstalk between Dendritic
Cells and Natural Killer Cells” and “Natural Killer Cell
Signaling” to be significantly enriched (Fig. 5). Further
analysis identified the “Crosstalk between dendritic cells
and Natural Killer Cells”, “Interferon signaling”, and “Den-
dritic cell maturation” pathways as enriched both from
RNA-Seq and proteomics. Our integrated pathway ana-
lysis is consistent with increased natural killer cell signal-
ing in the CT26 model (Fig. 5). Contrary to the large NK
cell infiltration in the CT26 colon model, NK cell infiltra-
tion has been reported to be much lower (approximately
1–3%) in human colon tumors [22].

Proteomics characterization of virus antigen
Since viral antigens may also contribute to immuno-
genicity, we evaluated mouse viral proteins using
custom proteomics. With the exception of LLCsr
where a gag protein of mouse mammary tumor virus
(ENA|AF228551_1507..3282) was detected in the
tumor in vivo but not in vitro (Fig. 6), 18 mouse
virus proteins were detected in cell lines with similar
expression patterns when grown either in vitro or
in vivo. Sixteen virus proteins were recurrent in more
than one model while two (AY818896_993..6206,
KU324802_632..5836) were expressed in only a single
model. One of the viral proteins that is broadly
expressed in 9 out of 10 models, murine leukemia
virus envelope gp70 (ENA|V01164_55..2118), has been
previously reported to be broadly expressed in mouse
cancer cells (Scrimieri et al. 2013). F9, a testicular
teratoma, had very little virus protein expression
compared to other models.

Fig. 4 Immune infiltration in syngeneic models. a Gene expression of immune cell type, immune cell activation and immune suppression
markers in cells grown in vitro and tumor tissues from the transplantation. Gene expression shown as log2 of transcript per million (TPM) and
standardized across samples. b Unsupervised clustering analysis of immune marker expression in tumor tissues from the transplantation separates
syngeneic models into high and low infiltration models. c Comparison of cytolytic activity of solid tumor syngeneic models with tissue matched
human tumors from TCGA (human data were downloaded from Rooney et al. [17]).Cytolytic activity (CYT) is defined as the log-average
(geometric mean) of Gzma and Prf1 expression in transcripts per million (TPM) as describe by Rooney et al.
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Discussion
Syngeneic models are widely employed for evaluating ef-
ficacy, exploring mechanism of action, and generating
predictive biomarker hypotheses to inform clinical devel-
opment. We investigated the molecular and cellular
properties of ten commonly used syngeneic models in
immune oncology preclinical studies. While these
models possess molecular features similar to human
cancers as assessed by next generation sequencing, pro-
teomics and immunohistochemistry, they also have a
number of distinct properties: 1) only a small fraction of
the somatic SNVs from the commonly used mouse syn-
geneic models that we studied have the specific actionable
mutation found in human tumors, 2) syngeneic models
from our studies have lower T-lymphocyte infiltration
compared to their corresponding human cancers, and 3)
these syngeneic models have a more mesenchymal-like
phenotype than human tumors. Commonly used mouse
syngeneic models derived from a particular tissue typically
do not reflect the characteristics of major human tumor
populations in the corresponding tissue. For example, the
mouse colon tumor model CT26 has the highest immuno-
genicity and is the most responsive model to CTLA4
treatment among the models tested while the melanoma

model B16F10 had the lowest immunogenicity and no re-
sponse to the checkpoint inhibitors tested in our study, in
contrast to the relatively high level of immunogenicity and
response to checkpoint inhibitors for human melanomas.
These differences suggest that these commonly used
mouse syngeneic models derived from a particular tissue
of origin do not fully recapitulate features of human
tumor populations from the same tissue, and translation
from mouse to human based on preclinical studies may be
more subtle than simply selecting a model from the same
tissue of origin.
Many common mutations in human tumors are not

represented in the ten mouse syngeneic models that we
studied (Table 2). Although some known human cancer
genes are mutated in these mouse syngeneic models,
they rarely contain the same actionable variant observed
in human tumors (Fig. 1b). For example, of the three fre-
quently mutated genes in human colon tumors, KRAS,
APC and TP53, the CT26 colon tumor model only had
activating Kras mutations (G12D, V8M), and the MC38
colon tumor model only had Trp53 mutations (G242 V,
S258I). While more than 70% of human colon tumors
have mutations in APC, a common early event in the
evolution of human colon cancer [23], neither of the two

Fig. 5 Top 10 significantly enriched pathways of genes up-regulated in CT26 in vivo tumor samples compared to in vivo tumor samples of other
syngeneic models and CT26 in vitro samples from either RNA-Seq or proteomics data analysis (Fisher Exact p-value <= 0.05)

Zhong et al. BMC Genomics            (2020) 21:2 Page 8 of 17



colon syngeneic mouse models that we studied contain
APC mutations (Table 2). The V600E BRAF mutation, a
common oncogenic mutation in human melanoma, was
not detected in the B16F10 melanoma model. These
findings suggest that some of these common syngeneic
models may not fully recapitulate the genetic origin of
major population of human cancers, and these limita-
tions may present challenges for modeling combination
therapies of immune-oncology and targeted agents. The
lack of genetic representation of major human popula-
tions in these models could be due to the limited num-
ber of models studied, the highly heterogenous human
tumor population, as well as the mechanism by which
these models were derived. For example, B16F10 is de-
rived from spontaneous melanocytic tumors, while hu-
man melanoma frequently arises from UV-exposure.
Although the B16F10 model lacks mutations in BRAF,
NRAS, and NF1, it may be useful to study TP53 mutant
or triple wild type human melanoma [24]. The high mu-
tational load of CT26 and MC38 models may represent

specific hypermutated human colon tumors. Overall,
these models could represent human tumor subpopula-
tions and be used to study them preclinically.
We analyzed the mutational and neoantigen load of these

ten common syngeneic models by whole exome sequen-
cing. While syngeneic models tend to bear a higher muta-
tional load than the median mutational load in human
tumors in TCGA, they are still within the observed range
(Table 1). Our analysis shows that mutational load is highly
correlated with neoantigen load, suggesting that mutational
load can be a surrogate for neoantigen load. However, un-
like what has been reported in human, we did not observe
a significant correlation of neoantigen load with immuno-
genicity or response to checkpoint blockade. This difference
could be due to the difference in the activity of mouse sur-
rogate antibodies relative to antibodies used in human stud-
ies, the limited number of models tested, or the diverse
origin and tumor types represented in this study.
We also observed cellular phenotypic differences between

syngeneic mouse models and human tumors. These models

Fig. 6 Viral peptides in syngeneic in vitro and in vivo samples from proteomic analysis (s: virus protein detected in soluble fraction; m: virus
protein detected in membrane fraction, _t: in vivo tumor sample, _c: in vitro sample. Non-tumor samples are from the tails of the parent strain).
Hierarchical clustering using euclidean distance and complete linkage clustering method of log2 transformed and scaled LFQ values
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had a more mesenchymal than epithelial phenotype com-
pared to human tumors, and in silico deconvolution
showed various immune infiltration patterns among these
10 models. The diversity of immune infiltration makes it
possible to test the effect of therapies targeting different
immune cells on the tumor growth, although these models
differ from human tumors with relatively low T-
lymphocyte infiltration and high myeloid infiltration in sev-
eral of the syngeneic models analyzed in this study, along
with a lower T-cell fraction than the corresponding human
tumors. One potential explanation of the lower T cell infil-
tration observed in syngeneic models could be the implant-
ation method used in our study. With the exception of 4T1
and EMT6, which were implanted via mammary fat pad,
the remainder were implanted subcutaneously. While sub-
cutaneous implantation is widely used in preclinical
immune-oncology studies, orthotopic implantation may
create a tumor microenvironment more comparable to hu-
man cancers. Since these syngeneic mouse models have
relatively low T-lymphocyte infiltration, they may represent
T-cell excluded human tumors.
In addition to neoantigens from somatic mutations,

neoantigens from endogenous viral proteins can also act
as tumor associated antigens and elicit CD8 T cell im-
munity. We identified viral proteins from two different
types of oncogenic viruses that are uniquely expressed in
tumor models but not in skin epithelia from the tails of
normal mice: murine leukemia virus and murine mam-
mary tumor virus (Fig. 6). Two of the viral proteins were
selectively expressed in specific models, suggesting dif-
ferences in pathogen exposure for each model when it
was originally derived. While these mouse specific viral
antigens may play a role in cancer immunity in these
models, the specific immunity of these viral antigens re-
mains to be investigated.
Our study suggested that the relative immunogenicity

of various tumor types among syngeneic models we
studied differs from human tumors: the colon model
CT26 is the most immunogenic while the melanoma
model B16F10 is the least immunogenic. Recent studies
[25, 26] implicated activation of the β-catenin oncogenic
pathway as inducing resistance to anti-tumor immunity
in melanoma. Consistent with this mechanism, the
B16F10 model had high β-catenin expression while
highly immunogenic models such as CT26 had lower ex-
pression (Additional file 2: Figure S7). Epigenetic silen-
cing has also been reported to limit T cell immunity in
ovarian and colon cancer [25, 27, 28]. Ezh2, a member
of the polycomb repressive complex 2 (PRC2) and
Dnmt1, a DNA methylation enzyme were most highly
expressed in the B16F10 model (Additional file 2: Figure
S7), implicating both β-catenin pathway activation and
epigenetic silencing as potential tumor intrinsic mecha-
nisms leading to resistance to checkpoint inhibitors in

this model. The B16F10 model may represent melanoma
patients who do not respond to checkpoint blockade,
and may serve as a model for evaluating combination
therapies of checkpoint inhibitors with agents that target
these reported tumor intrinsic resistance mechanisms.
Unlike most human colon tumors, the CT26 colon

tumor model had the highest immunogenicity among
the models evaluated in our study. CT26 has high ex-
pression of immune markers and elevated cytolytic activ-
ity compared to other syngeneic models, consistent with
previous reports of CT26 as a highly immunogenic
model [13]. The high cytolytic activity in CT26 is largely
attributed to high Gzma expression. In contrast to hu-
man, where Gzma can be expressed in both NK cells
and CD8+ T cells, Gzma is predominantly expressed on
NK cells in mouse (http://www.immgen.org/). Concor-
dantly, our in silico immune cell type deconvolution
identified significant NK cell infiltration in the CT26
model. Moreover, our integrated pathway analysis of
both mRNA and protein expression identified several
pathways related to NK cell function as highly enriched
in CT26 tumors compared to either CT26 cells in vitro
or other syngeneic tumors, providing further evidence of
NK cell infiltration in the CT26 model that may contrib-
ute to its cytolytic activity. Antigen presentation and
dendritic cell function are more active in CT26 com-
pared to other models (Fig. 5), and CD80 was expressed
on CT26 cancer cells (Fig. 4a). Besides its well-known
function as a costimulatory molecule for T cell activa-
tion, CD80 has been reported to play a role in NK cell
activation in both human and mouse cell lines express-
ing CD80 [29, 30]. In addition, CD28 and CTLA4 ex-
pression has been reported in activated mouse NK cells,
the interaction between CTLA4 and CD80 has a direct
effect on IFN-γ release by NK cells, and CTLA4 expres-
sion has been reported in mouse tumor infiltrating NK
cells [31]. Furthermore, we observed significant CTLA4
expression in CT26 in vivo tumor samples (Additional
file 2: Figure S8) and on some tumor infiltrating NK
cells based on single-cell RNA-Seq (data not shown).
The role of NK cells in the remarkable response of
CT26 to CTLA4 blockade (Additional file 2: Figure S5)
as well as the potential mechanism of NK activation
through CD80 expressed on CT26 cancer cells remains
to be elucidated by future experiments.

Conclusions
We profiled the gene expression, proteomic, cellular
phenotype, and pharmacology of several checkpoint in-
hibitors in ten commonly used syngeneic models. We
found both similarities as well as important differences
between commonly used syngeneic models and the cor-
responding human tumor from the same tissue of origin.
While these syngeneic models do not fully recapitulate
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the biology of human tumors, they may mimic specific
human cancer segments. The differences between these
syngeneic models commonly used in immune oncology
preclinical studies and human cancer may require inter-
pretation to translate preclinical findings from these
models to the clinic beyond simply matching the tumors
from the same tissue of origin.
The limitations of common syngeneic models present

opportunities for further development to establish add-
itional immune competent mouse models that harbor
oncogenic driver mutations and encompass mutational
loads more representative of human tumors. While
GEMM models are typically generated through genetic-
ally engineering of driver gene mutations, they often do
not recapitulate the mutational burdens of human can-
cers and in most cases are less immunogenic. One ap-
proach to increase the mutational burden of the GEMM
models is through CRISPR knockout of genes in the
DNA mismatch repair pathway. Investigators have re-
ported enhanced T cell infiltration of Msh2KO tumors at
early time points in Msh2 knockout GEMM models that
also have Kras and Trp53 mutations (KP) [32]. Alterna-
tively, a melanoma model YUMMER1.7 has been derived
through irradiation of the genetically engineered mouse
melanoma YUMM1.7 cell line, which harbors three driver
mutations: BrafV600E, Pten−/− and Cdkn2a−/−, and has been
reported to have increased T cell infiltration and response
to immune check point inhibition [33] . While syngeneic
models provide an opportunity to evaluate fundamental
immunological pathways in the context of malignancy and
have an important role in the study of novel therapeutics,
they should be applied carefully with consideration of
their differences from human tumors when informing
clinical strategies.

Methods
Animals
Female inbred BALB/cAnNCrl 6–10 weeks of age were
purchased from Charles River Laboratories (strain code
028). Female inbred C57BL/6 J mice 6–10 weeks of age
were purchased from Jackson Labs (strain 664). Female
inbred 129S6/SvEvTac mice 6–10 weeks of age were
purchased from Taconic Laboratories. All mouse strains
were housed under specific pathogen-free conditions in
Tecniplast IVC Green Line IVC cages in the vivarium of
a Pfizer location in Pearl River, New York. Mice were
housed on a 12:12 light:dark cycle, with ad libitum UV-
sterilized water and low isoflavone 5 V02 IF 50 irradiated
Purina Chow (Purina). Animals were monitored twice
daily for health status. No adverse events were observed.
At the start of the experiments mice weighed 18 – 25
grams. All animal studies were approved by the Pfizer
Institutional Animal Care and Use Committee (IACUC)

in accordance with the guidelines described in “Guide
for the Care and Use of Laboratory Animals” (NRC,
2011).

Syngeneic mouse models
4T1, A20, CT26, RENCA, EMT6, B16F10, and F9 cells
were obtained from the American Type Culture Collec-
tion, Manassas, Virginia. MC38 cells were obtained from
the laboratory of Antoni Ribas’ laboratory at UCLA, Los
Angeles, California. LLCsr (Lewis lung carcinoma) cells
were obtained from the laboratory of Shahin Rafii, De-
partment of Genetic Medicine, Ansary Stem Cell Insti-
tute, Weill Cornell Medical College, New York, NY. For
all models except the breast cancer model 4T1 and the
colorectal model CT26, cells were injected in a 200 μl
cell suspension in PBS in the right flank of 7–10 week
old female mice. To establish the colorectal syngeneic
model MC38, 1 × 106 cells were implanted into C57BL/
6 J mice. To establish the lung cancer model LLCsr, the
melanoma model B16F10, or the T cell lymphoma
model EL4, 0.5 × 106 cells were implanted into C57BL/6
J mice. To establish the colorectal model CT26, 2 × 106

cells in 50% Matrigel (Corning) were implanted into the
right flank of 7–10 week old female BALB/cAnNCrl
mice. To establish the B cell lymphoma model A20, or
the renal cancer model RENCA, 1 × 106 cells were im-
planted into BALB/cAnNCrl mice. To establish the
breast cancer model EMT6 and 4T1, 1 × 106 or 0.5 × 106

cells respectively were implanted subcutaneously into
the right mammary fat pad of 7–10 week old female
BALB/cAnNCrl mice. To establish the teratocarcinoma
model F9, 2.0 × 106 cells were implanted into 129S6/
SvEvTac mice.

Tumor collection for RNA-Seq and whole exome
sequencing
When the calculated tumor volume was 400–500mm3,
mice were euthanized using slow fill CO2 euthanasia ac-
cording to Pfizer approved methods. The tumors were
collected using aseptic technique and the tumors were
transferred to RNAse and DNAse free tubes (Thermo
Scientific Catalog 374,320). Tumors were stored under
liquid nitrogen until they were processed for RNA-Seq
and WES.

Whole exome sequencing
WES was conducted by Q2 solutions, USA using paired-
end sequencing with read length of 2 × 100 bps. Raw
reads were aligned to the UCSC mm10 reference gen-
ome using BWA (v 0.7.5) [34]. Picard and GATK tools
were used for duplicates removal, reads realignment and
recalibration. Variants were called using both Varscan 2
(v2.3.6) [35] and SomaticSniper (v1.0.4) [36]. Varscan 2
was performed using the somatic command with default
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parameters except --min-coverage was set to 20. The
identified variants by varscan somatic were further fil-
tered with somaticFilter and processSomatic commands
using default parameters to obtain high confidence vari-
ant calls. Variant calls were made with SomaticSniper
using default parameters and the results were further
processed using scripts provided by the SomaticSniper
package according to the suggestions from the manual
to obtain high confidence variant calls. Variants from
both Varscan 2 and SomaticSniper were annotated and
filtered to obtain exonic variants using snpEFF (v4.1d)
[20]. Further, variants potentially leading to altered pro-
tein functions were defined as those annotated with
MODERATE or HIGH IMPACT by snpEFF. The inter-
section of variant calls from VarScan 2 and SomaticSni-
per predictions was used as the final variant call list.
One hundred fifteen variants mapped to genes from
TARGET database was further subjected to validation by
Sanger sequencing at GeneWiz.
Mutational load in exomes was calculated based on

the identified HIGH and MODERATE impact mutations
in protein-coding genes (assuming 32Mb [12] of
protein-coding sequence). Median of Ts/Tv for each hu-
man tumor types was calculated based on data from
Alexandrov et al. [14]. Median mutational load in
exomes of human breast, lung squamous, lung adeno,
colon, renal cell carcinomas and melanoma was calcu-
lated based on the identified nonsynonymous mutations
in protein-coding genes (assuming 30Mb [14] of
protein-coding sequence) using data downloaded from
cBioPortal (http://www.cbioportal.org/). To evaluate the
mutation of human known cancer genes in syngeneic
models, genes from the TARGET database were down-
loaded. Variants of cancer actionable genes were queried
from OncoKB (http://oncokb.org/). Human mutation
frequency data of TCGA samples for breast, lung squa-
mous, colon, renal cell carcinomas and melanoma was
downloaded from cBioPortal (http://www.cbioportal.org/
). Subsequently, the mutation status of genes from TAR-
GET database with at least 10% mutation frequency in
TCGA samples was evaluated in syngeneic models that
are of the same tissue origin.

Neoantigen prediction
To predict neoantigens for each model, protein se-
quences for genes with predicted missense mutation
were obtained from the Ensembl ftp site (ftp://ftp.
ensembl.org/pub/release-84/fasta/mus_musculus/pep/).
Two FASTA sequences were generated per variant site,
wild type and mutant, with 10 amino acid sequences
flanking each side of the variant site using pVAC-Seq
[37]. The mouse haplotype (http://www.ebioscience.
com/media/pdf/Mouse_Haplotype_Table.pdf) and candi-
date mutant epitopes for each variant were input to the

IEDB MHC-I binding prediction tool. The IC50 for mu-
tated epitopes with lengths of 8 to 11 amino acids was
predicted using NetMHCpan (Vita et al. 2015), and pep-
tides predicted to have IC50 values less than or equal to
500 nM and more favorable than the wild type peptide
were identified. We evaluated the expression of the cor-
responding gene for each predicted epitope and required
that the gene expression to be above 2 TPM. Compari-
son of mutational load and predicted neoantigens was
performed using the spearman method in R.

Transcription profiling (RNA-Seq)
RNA-Seq profiling was conducted by Q2 solutions, USA.
RNA from 30 cell cultures and 21 tumor tissue samples
corresponding to 10 syngeneic mouse models were pair-
end sequenced with read length of 2 × 100 bps. Three rep-
licates of cell culture and two replicates of tumor tissue
were performed for each model. Raw reads were mapped
to the UCSC mm10 reference genome using Bowtie 2
(v2.2.5) [38]. Expected counts and normalized expression
levels of genes in transcripts per million (TPM) were gen-
erated by RSEM (v1.2.20) [39]. Genes specifically up-
regulated in CT26 in vivo tumor samples compared to
CT26 grown in in vitro cell culture and in vivo tumor
samples from other models were obtained as follows. First,
genes significantly up-regulated in CT26 in vivo tumor
samples compared to CT26 in vitro samples were identi-
fied using the DESeq2 package with criteria of adjusted p-
value <= 0.01 and fold change > = 2. Secondly, genes up-
regulated in CT26 in vivo tumors compared to in vivo
tumors from other models were obtained using the
DESeq2 package with criteria of adjusted p-value <= 0.01
and fold change > = 2. The final gene list was obtained
from intersecting the above two gene lists and then was
subjected to pathway analysis. All pathway enrichment
analysis was performed using Ingenuity Pathway Analysis
(IPA, Ingenuity® Pathway Analysis (IPA®)). To compare
gene expression of markers of immune cell type, immune
cell activation and immune suppression between cells
grown in vitro and tumor tissues from the transplantation,
standardized log2 (TPM) values were plotted in a heat
map (Partek® Genomics Suite®). Unsupervised hierarchical
clustering analysis of gene expression of in vivo tumor
samples was performed using the Partek® Genomics Suite®
(Euclidean distance, average linkage clustering method).
Cytolytic activity (CYT) was defined as the log-average
(geometric mean) of Gzma and Prf1 expression value
(TPM) as described by Rooney et al. [17]. Human cytolytic
activity data were downloaded from Rooney et al. [17]. To
compare ratio of the E-cadherin and vimentin gene ex-
pression between syngeneic models and human tumors,
RNA-Seq data from TCGA were used. The ratio was cal-
culated with the expression value (TPM) of E-cadherin
and vimentin.
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In silico immune cell deconvolution
In silico immune cell deconvolution of in vivo tumor
samples, either in vitro or in vivo, was performed on
RNA-Seq profiling data using a nuSVR approach for
mouse samples that is similar to approaches recently de-
veloped for human samples [21]. To establish a mouse
immune cell-specific gene signature matrix, we down-
loaded RNA-Seq profiling data from 11 purified mouse
immune cell subsets generated by the Immunological
Genome Project (https://www.immgen.org/). These 11
immune cell subsets span all major hematopoietic line-
ages, and were double-sorted by flow cytometry from
the spleen or peritoneal cavity of a 5-week old male
C57BL/6 J mouse (Jackson Laboratory). A list of the 11 im-
mune cell subsets and the sorting markers are in Add-
itional file 5: Table S4. More details about the RNA-Seq
dataset can be found in the Sequence Read Archive (https://
www.ncbi.nlm.nih.gov/sra) under accession PRJNA281360.
Raw RNA-Seq reads were aligned to the mouse refer-

ence transcriptome/genome (mm10) using Bowtie 2 [38]
and summarized into gene-level transcripts per million
(TPM) measures by RSEM [39]. TPM values were fur-
ther quantile normalized before subsequent analysis. We
extended a procedure for the selection and optimization
of an immune cell specific gene signature matrix to
mouse samples that is similar to approaches recently de-
veloped for human samples [21]. Since there are no bio-
logical replicates per immune cell type, we used a Z-
statistic to test whether any gene is significantly over-
expressed in one immune cell subset versus all others.
We kept all candidate genes for each cell type that have
a q-value from the Z-test less than 0.01 and are
expressed at least two-fold above the 3rd quartile ex-
pression values of all genes in a cell type. An equal num-
ber of candidate genes from each cell type (sorted by
expression fold change from the cell type of interest and
the mean from all other cell types) were combined to
form a gene signature matrix, where the optimal number
of candidate genes was determined using a conditional
number minimization procedure [21]. This process se-
lected a 577-gene signature matrix for the 11 mouse im-
mune cell subsets.
With this immune cell-specific gene signature matrix,

we performed deconvolution of bulk tumor profiles
using a nuSVR algorithm [40]. Related methods for de-
convolution of immune subset have been established for
human samples [21]. Our approach incorporates unique
fingerprints derived for mice immune components. A
deconvolution p-value was calculated for each sample
which indicates whether there is significant presence of
any immune cells (among the 11 immune cell subsets
included in the gene signature matrix). A p-value cutoff
of 0.1 was used to indicate significant deconvolution. In
vitro tumor samples were used as negative controls for

deconvolution as they should not have any immune
cells, except for the EL4 and A20 hematological tumor
models. Output from a significant deconvolution is rela-
tive fractions of the 11 immune cell subsets in the bulk
tumor samples. The fraction of each immune cell sub-
sets is relative to the total leukocyte content (e.g. CD45+
cells) in the sample and should sum up to 100%. Stacked
bar charts were used to display these immune cell subset
fractions as the average of biological replicates of a
tumor model.
Total T-cell fraction is calculated as the sum of all pre-

dicted T-cell subsets (mouse: CD4+, CD8+, Treg, and
gamma-delta T-cells; human: CD8+, CD4+ naïve, CD4+
memory RO unactivated, CD4+ memory RO activated,
T cells follicular helper, T cells gamma delta, Tregs).
Human leukocyte infiltration data are downloaded from
Gentles et al. [22].

Histology and immunohistochemistry
Five micron sections were cut onto charged slides, dried,
deparaffinized in xylene and rehydrated with graded al-
cohols to distilled H2O. For Hematoxylin and Eosin
staining, sections were submerged in Tacha’s Auto
Hematoxylin (Biocare Medical, Concord, CA, USA) for
1 min then rinsed in distilled H2O until clear. Slides
were then submerged in tap water with agitation for 1
min followed by 1 min in 80% Reagent Alcohol (Thermo
Fisher, Histoprep). Sections were then submerged in
Eosin Y (Thermo Fisher) for 1.5 min followed by three 5
s washes in 95% Reagent Alcohol (Thermo Fisher, Histo-
prep), two 5 s washes in 100% Reagent Alcohol (Thermo
Fisher, Histoprep), and finally in Xylene (Thermo Fisher,
Histoprep) before being coverslipped with Permount
mounting medium (Fisher Scientific Co. L.L.C., Pitts-
burgh, PA, USA). Immunohistochemistry heat-induced
epitope retrieval was performed in the Retriever 2000
pressure cooker (Electron Microscopy Sciences, Hatfield,
PA, USA) in Citrate Buffer pH 6.0 (Invitrogen, Carlsbad,
CA, USA) or Borg buffer pH 9.5 (Biocare Medical, Con-
cord, CA, USA) and cooled to room temperature for 20
min. Endogenous peroxidase activity was inactivated
with Peroxidazed 1 (Biocare Medical, Concord, CA,
USA) for 10 min. Non-specific protein interactions were
blocked for 10 min with Background Punisher (Biocare
Medical, Concord, CA, USA). Sections were incubated
with primary antibodies, CD11b (AbCam, EPR1334, Cit-
rate, 0.088 μg/ml), F4/80 (Spring Bioscience, M4152, Cit-
rate 2.5 μg/ml), RA3-6B2, Borg, 2.5 μg/ml), CD3 (Spring
Bioscience, SP162, Borg, 1.33 μg/ml), vimentin (Cell
Marque, SP20, Citrate, 3 μg/ml), E-cadherin (AbCam,
EP700Y, Citrate, 0.18 μg/ml), for 1 h, washed in TBS and
incubated with SignalStain Boost IHC Detection Reagent
(Cell Signaling Technologies, Beverly, MA, USA) for 30
min. Following washes in TBS, immunoreactivity was
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visualized by development with 3,3′-diaminobenzidine
(DAB+, Dako, Carpinteria, CA, USA) for 5 min. Immu-
nostained sections were briefly counterstained with CAT
Hematoxylin, washed in tap water, dehydrated in graded
alcohols, cleared in xylene, and coverslipped with Per-
mount mounting medium (Fisher Scientific Co. L.L.C.,
Pittsburgh, PA, USA).

Proteomics acquisition and data analysis
All tissues were dissociated in 100 mM sodium carbon-
ate using TissueLyzer II (QIAGEN) for 0.5 min at a rate
of 0.30 repetitions three times and stored on ice for 30 s
between the dissociation cycles. The cells grown in vitro
were detached with CellStripper (Mediatech), washed
with cold PBS twice and cell pellets were collected. 100
mM sodium carbonate containing 1mM DTT, pH 11.5
was used to lyse cells by incubating the cell suspension
on ice for 60 min. For all tissue and cell protein lysates
the pH was adjusted to pH 8 by the addition of Tris-HCl
buffer at pH 7.0 and a final concentration of 2 mM
MgCl2. Universal Nuclease (ThermoFisher) was used to
dechromatinize nuclear DNA for 30min on ice. The
membrane fraction was isolated by centrifugation at 20,
000 g for 60 min at 4 °C and the supernatant was trans-
ferred to a fresh tube as the soluble fraction. The precip-
itated fraction following this centrifugation is
membrane-protein enriched and is referred to as the
“membrane” fraction, whereas supernatant is referred to
as the “soluble” proteome fractions. The resulting mem-
brane fraction (pellet) was solubilized using RIPA buffer
(25 mM TrisHCl, pH 7.6, 150 mM NaCl, 1% SDS, 1% so-
dium deoxycholate, 1% NP-40 and 1X protease inhibi-
tor) to solubilize membrane proteins, whereas the
soluble fraction was used directly for subsequent pro-
cessing following determination of protein concentration
by BCA assay. Each fraction was processed separately
using filter-assisted sample proteolysis (FASP). Briefly,
50 μg of protein was loaded on to a PES 100 KDa filter,
washed 4 times with 8M Urea in 100 mM Tris-HCl buf-
fer, pH 8.5. Proteins were reduced with 5 mM DTT
(freshly prepared) and alkylated with 10 mM idoaceta-
mide in the dark. Samples were then washed three times
with freshly prepared 25 mM ammonium bicarbonate
buffer and digested with trypsin/LysC with protein:
enzyme at a 25:1 weight ratio overnight. Following
digestion, the peptides were captured by centrifugation
at 15,000 g for 20 min, followed by adjusting the solution
pH to acidic by adding 10% formic acid to the final con-
centration of 0.25% formic acid.
Each sample was acquired on a Thermo Scientific™ Q

Exactive™ Hybrid Quadrupole-Orbitrap Mass Spectrom-
eter fitted with a Dionex nano liquid chromatography
and EASY-Spray™ Ion source. The tryptic digest was

loaded onto a reversed-phase pre-column (C18 trap col-
umn, Acclaim PepMap 100, 100 μm× 2 cm, Thermo
Fisher Scientific, Inc.). Peptide separation was conducted
via nano-LC using a 75 μm× 150mm PepMap C18
EASY-Spray column (3 μm, 100 Å particles, Thermo Sci-
entific, Inc.). The gradient was comprised of an increase
from 2 to 35% mobile phase B (0.1% formic acid in
acetonitrile) over 160 min, followed by 35 to 80% B over
10 min and a hold at 80% B for the last 10 min, all at a
fixed flow rate of 300 nl/min in an UltiMat 3000
RSLCnano system (Thermo Fisher Scientific, Inc.). Q
Exactive runs were operated with data dependent top 10
method and the parameters were as follows: resolution
70,000 at m/z 200 for MS1 with a scan range of 300–
1650 m/z, a predictive AGC target of 3 × 106 and a max-
imum injection time of 100ms; 17,500 at m/z 200 for
dd-MS2 with a predictive AGC target of 2 × 105, max-
imum injection time 120 ms, NCE of 25, 20s dynamic
exclusion and underfill ratio 3%.
For soluble and membrane fractions, peptides were

identified and quantified for label-free protein quantifi-
cation from raw mass spectrometric files using Max-
Quant software (version: 1.6.1.0) [41], respectively.
Database searching was performed in MaxQuant using
the Andromeda search engine [42] against the mouse
Uniprot database (57,208 entries, May 2017 version)
supplemented with our internal non-redundant virus
protein sequences containing 903 ENA and 260 Gen-
Bank entries. Andromeda search parameters for protein
identification were set as follows: maximum mass toler-
ance of 20 ppm for the first search, 4.5 ppm for the pre-
cursor ions after non-linear recalibration and 20 ppm for
fragment ions; digestion was set to specific “Trypsin/P”
allowing max missed cleavage events of two. Oxidation
of methionine and protein N-terminal acetylation were
set as variable modifications. Carboxyamidomethylation
of cysteines was specified as a fixed modification. A total
of three modifications were allowed per peptide. Min-
imal required peptide length was seven amino acids.
MaxQuant LFQ “match between run” option was enabled
with a match time window of 0.7 min after retention time
alignment. “Requires MS/MS for label-free quantification
(LFQ) comparisons” was not enabled to allow maximum
MS peak features. Confidently identified proteins were re-
quired to have a minimum of two matched peptides with
one peptide being uniquely matched at a false discovery
rate (FDR) of less than 1%. Proteins were quantified by de-
layed normalization computed in MaxQuant’s label-free
quantification option [43].
LFQ intensity data by protein group was further ana-

lyzed in Perseus (version: 1.6.0.7) [44]. All proteins
“identified by site”, “reverse” and contaminants were re-
moved. LFQ intensity value was log2 transformed and
the resulting data matrix was further filtered requiring
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minimal valid values of 100% in at least one model
(Additional file 6: Table S5).
Proteins that are significantly over-expressed in CT26

in vivo tumor samples were obtained by pairwise com-
parison of the log2 transformed LFQ value of CT26
in vivo tumor samples from membrane fraction or sol-
uble fraction to one of the other tumor models by apply-
ing a filter requiring a valid value of > = 75% in at least
one pair and using student t-test within Persues. Pro-
teins with FDR (Benjamini-Hochberg) < = 0.05 and fold
change > = 2 in all comparisons as well as CT26 in vivo
vs. CT26 in vitro samples were selected for further path-
way and function enrichment analysis. If proteins were
detected in both membrane and soluble fractions, the
identification from the fraction with the higher LFQ
values of the proteins will be kept. Pathway, function en-
richment and network analysis were performed using In-
genuity Pathway Analysis (IPA, Ingenuity® Pathway
Analysis (IPA®).
Hierarchical clustering of virus protein was performed

within R using the Euclidean distance and the complete
linkage clustering method. LFQ values of identified virus
proteins were first log2 transformed and then scaled sep-
arately within in vitro samples and in vivo samples
(which included both tumors and normal tails) before
clustering analysis.

Antibodies to mouse immune checkpoint proteins
Rat IgG2a to mouse PD-1/CD279 (clone RMP 1–14)
was purchased from BioXcell and was dosed in vivo at
10 mpk i.v. q3dx3. Hamster IgG to mouse CTLA4/
CD152 (clone 9H10) was purchased from BioXcell and
was dosed in vivo at 10 mpk i.v. q3dx3.

In vivo evaluation of antibodies to mouse immune
checkpoint proteins
When the average tumor volume reached approximately
70 to 160 mm3, mice were randomized into treatment
groups, with 10 mice in each treatment group. Anti-
bodies or vehicle (PBS) were administered intravenously
on study day 0 and then the animals were dosed once
every 3 days for 3 doses. Tumors were measured 1–3
times per week and tumor volume was calculated as vol-
ume (mm3) = (width x width x length)/2.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-019-6344-3.

Additional file 1: Table S1. Variant calls by WES.

Additional file 2: Figure S1. Mutation landscape of syngeneic models
and types of somatic variants for each model. Figure S2. A. Ratio of Ts
(Transition) to Tv (Transversion) substitution mutation in each syngeneic
model; dashed lines represent maximum, median and minimum of
median Ts/Tv from each human tumor types (data from (Alexandrov

et al. 2013)) respectively. B. Single nucleotide mutation changes in each
syngeneic model. Figure S3. E-cadherin and vimentin stain in syngeneic
models. Figure S4. A. Correlation of neoantigen with mutational load in
syngeneic models. B. Correlation of neoantigen with cytolytic activity in
syngeneic models. The correlation was calculated using spearman
method in R. numMutation: number of missense mutation. Figure S5. Re-
sponse of syngeneic tumor models to anti-CTLA4, or anti PD-1. All mice were
dosed intravenously. Individual tumor volumes are shown for 10 mice treated
with PBS (black) or 10mg/kg anti-CTLA4 (9H10) (red trace), or 10mg/kg anti-
PD-1 (RMP 1–14) (blue trace). All 10 mice bearing CT26 tumors dosed with anti-
CTLA4 had no measurable tumor from study day 25 until measurements ended
on study day 238. Comparison of mean tumor volumes was analyzed using
log-transformed ANOVA. P-values are shown if there was a statistical difference
between vehicle and antibody-treated groups. n.s. not significant. Figure S6. A.
Expression of Gzma and Prf1 in syngeneic model grown in vitro (Cell) and
in vivo (Tissue) across models based on protein expression. B. Cytolytic activity
of syngeneic models. Cytolytic activity (CYT) is defined as the log-average (geo-
metric mean) of Gzma and Prf1 protein expression. C. Protein expression of
Gzma in soluble fraction. LFQ: label free quantitation. Figure S7. Gene expres-
sion of β-catenin, β-catenin target genes (gene list from (Spranger et al. 2015))
and epigenetic modulators (Ezh2, Dnmt1) across syngeneic models. Figure S8.
CTLA4 expression in syngeneic in vivo tumor samples.

Additional file 3: Table S2. Validation of 115 variant calls by Sanger
sequencing.

Additional file 4: Table S3. Gene expression data by RNA-Seq.

Additional file 5: Table S4. A list of the 11 immune cell subsets and
sorting markers.

Additional file 6: Table S5. Protein expression data by proteomics.
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