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Abstract

Background: Salmonid fishes are characterised by a very high level of variation in trophic, ecological, physiological,
and life history adaptations. Some salmonid taxa show exceptional potential for fast, within-lake diversification into
morphologically and ecologically distinct variants, often in parallel; these are the lake-resident charr and whitefish
(several species in the genera Salvelinus and Coregonus). To identify selection on genes and gene categories associated
with such predictable diversifications, we analysed 2702 orthogroups (4.82 Mbp total; average 4.77 genes/orthogroup;
average 1783 bp/orthogroup). We did so in two charr and two whitefish species and compared to five other salmonid
lineages, which do not evolve in such ecologically predictable ways, and one non-salmonid outgroup.

Results: All selection analyses are based on Coregonus and Salvelinus compared to non-diversifying taxa. We found
more orthogroups were affected by relaxed selection than intensified selection. Of those, 122 were under significant
relaxed selection, with trends of an overrepresentation of serine family amino acid metabolism and transcriptional
regulation, and significant enrichment of behaviour-associated gene functions. Seventy-eight orthogroups were under
significant intensified selection and were enriched for signalling process and transcriptional regulation gene ontology
terms and actin filament and lipid metabolism gene sets. Ninety-two orthogroups were under diversifying/positive
selection. These were enriched for signal transduction, transmembrane transport, and pyruvate metabolism gene
ontology terms and often contained genes involved in transcriptional regulation and development. Several
orthogroups showed signs of multiple types of selection. For example, orthogroups under relaxed and diversifying
selection contained genes such as ap1m2, involved in immunity and development, and slc6a8, playing an important
role in muscle and brain creatine uptake. Orthogroups under intensified and diversifying selection were also found,
such as genes syn3, with a role in neural processes, and ctsk, involved in bone remodelling.

Conclusions: Our approach pinpointed relevant genomic targets by distinguishing among different kinds of selection.
We found that relaxed, intensified, and diversifying selection affect orthogroups and gene functions of ecological
relevance in salmonids. Because they were found consistently and robustly across charr and whitefish and not other
salmonid lineages, we propose these genes have a potential role in the replicated ecological diversifications.

Keywords: Molecular evolution, Adaptation, Freshwater fishes, Diversification, Relaxed selection, Selective pressure,
Purifying selection, Positive selection, Transcriptomics, Gene ontology

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: Kathryn.Elmer@glasgow.ac.uk
1Institute of Biodiversity, Animal Health & Comparative Medicine, College of
Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ,
UK
Full list of author information is available at the end of the article

Schneider et al. BMC Genomics         (2019) 20:1010 
https://doi.org/10.1186/s12864-019-6361-2

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-019-6361-2&domain=pdf
http://orcid.org/0000-0002-9219-7001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:Kathryn.Elmer@glasgow.ac.uk


Background
Identifying the molecular mechanisms underlying adap-
tive phenotypic divergence is a central challenge for evo-
lutionary biology; a key first step is to detect genes
under selection rather than reflecting background neu-
tral evolutionary processes. Parallel or convergent evolu-
tion at the molecular level may, or may not, be
associated with phenotypic parallelisms across species,
but the idea remains compelling [1–3] and has been an
important analytical framework to advance research in
non-model systems [4–6]. Molecular parallelism or con-
vergence can be inferred either from nucleotide site-
specific changes [5, 7–9] or at a higher level, in the sense
of similar genes being targeted by similar selective forces
[10–13].
Fishes have proven a powerful ecological and evolu-

tionary group for comparisons of genes under selection
and that are associated with ecological and evolutionary
novelty. Sticklebacks, for example, have become a model
group of repeated ecological adaptation of Holarctic
marine and freshwater distribution [14–16]. In cichlid
fishes, adaptive potential and highly malleable pheno-
types are spread throughout the family. In some cases, it
has been shown that relaxed selection [17–20] or posi-
tive selection [21, 22] correlate with phenotypic diversifi-
cation. However, ecological opportunity differs
dramatically among cichlid lineages [23–27], which
makes it difficult to pinpoint taxa in which adaptive po-
tential is elevated due to a shared genetic toolset [3, 6].
In contrast, freshwater lake-resident salmonids of differ-
ent species and genera have similar ecological opportun-
ity and commonly sympatric distributions across the
northern hemisphere [28–30]. Furthermore, the fresh-
water habitats of northern fishes were all colonised on a
similar postglacial timescale [30, 31], unlike the dramat-
ically different and complex colonisation histories of
cichlids [4, 32–34].
Salmonid fishes are increasingly used as model organ-

isms in evolutionary research, because of their ecological
diversity, economic value, and replicated evolution of
distinct ecomorphs and traits in some taxa, such as
depth specialisation and alternative migratory tactics
[35–42]. Two salmonid genera in particular, the white-
fishes (Coregonus) and the charrs (Salvelinus), are not
sister taxa but exhibit parallel (or convergent) adaptive
tendencies in freshwaters across the northern hemi-
sphere. They have repeatedly diverged into various
within-lake ecomorphs along the depth axis over short
evolutionary time spans that are unmatched in any other
salmonid species [2, 43–47]. The evolutionary and mo-
lecular basis for why Coregonus and Salvelinus show
such a high degree of ecomorphological adaptability
while other salmonid species do not is, however, un-
known [39, 46, 47].

Determining how single and combined effects of selec-
tion act at the molecular level is facilitated by new ana-
lytical tools [48–50]. These selective processes are
associated with adaptive evolution in different ways and
are most powerful when linked with known lineage-
specific phenotype changes or phenotypic diversification
[51, 52]. Two selective processes – relaxed and intensi-
fied selection – are on opposite ends of the spectrum.
Relaxed selection decreases the selective constraints of a
gene and can lead to the accumulation of nonsynon-
ymous substitutions and consequently changes in the
amino acid sequence of a protein. By releasing a gene of
selective constraints, relaxed selection can potentially
foster phenotypic novelty, plasticity, and evolutionary
innovation [4, 19, 49, 53]. In contrast, intensified selec-
tion increases selective constraints but can also manifest
as positive intensified selection leading to more differ-
ences at some sites of a gene [54, 55]. Intensified selec-
tion implies changes to a gene have strong fitness
consequences [49]. Additionally, lineage-specific episodic
diversifying selection, or positive selection, will leave
other signatures at the sequence level, such as more
nonsynonymous changes than expected under neutrality
at a subset of positions in a gene on some branches in
the phylogenetic tree (i.e., branch-site model) [50, 56].
While relaxed and intensified selection are antithetical,
in either case diversifying (positive) selection can simul-
taneously act at a proportion of sites in a gene [57, 58].
It has long been proposed that the propensity for eco-

logical speciation in some salmonid lineages is associated
with shared patterns of relaxed or diversifying selection
on ecologically relevant genes and gene function terms
[2, 3, 19, 39, 59, 60]. We focus on the well-characterised
and richly diversifying genera Coregonus and Salvelinus,
which show repeated within-lake divergences into distinct
ecomorphs across the northern hemisphere [46, 47]. The
Coregonus species assessed are lake resident at least since
postglacial times and have high rates of within-lake adap-
tive divergence [45, 46, 61]. Salvelinus species are mostly
freshwater residents and have undergone frequent adap-
tive divergence into ecomorphs along the depth axis, pre-
dominantly within lakes [38, 47, 62, 63]. Representatives
of all other major salmonid lineages, Oncorhynchus,
Salmo, and Thymallus, were also included in the dataset;
these are generally riverine or anadromous genera that
do not extensively diversify within lakes [64, 65]. By
assessing consistency across two non-sister lineages,
Coregonus and Salvelinus, our approach mitigates
against false positives. The focus on orthogroups within
and across species, rather than single genes, alleviates
the problem of differing relaxation of selective con-
straint in duplicated compared to non-duplicated or
rediploidised genes [66], which is particularly important
in salmonids due to the whole-genome duplication
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(WGD) that their common ancestor experienced 80–
103 Mya [67–69].
Here, we use a genome-wide comparative approach to

test for shared evidence of selection at particular cat-
egories of genes, gene functions, and gene ontology
terms in the two highly diversifying lineages, Coregonus
and Salvelinus, relative to all other major salmonid line-
ages. We test a comprehensive suite of 2702 orthologous
protein-coding gene sets (orthogroups) for signals of
parallel relaxed, intensified, and diversifying/positive se-
lection in Coregonus and Salvelinus (average of 4.77
genes per orthogroup; 4.82 Mbp in total; average of
1783 aligned bp per orthogroup). By distinguishing
among different kinds of selection in replicate across
two independent lineages, our approach can pinpoint
the action of selective pressure more accurately. We find
that different types of selection target different gene sets
and functions in salmonids, with novel and established
ecological relevance for repeated, parallel diversification
potential.

Results
Selection parameter distribution and number of
orthogroups under selection
Shared molecular response to selection in two whitefish
and two charr species was inferred relative to six back-
ground species (five salmonids and one pike, Fig. 1). The
selection parameter k in whitefish and charr, ranging
from 0 (very relaxed) to 50 (very intensified), had a

median value of 0.992 across orthogroups and was sig-
nificantly different from the neutral expectation of 1
(Wilcoxon signed-rank test: V = 1,995,900, p = 8.859E-
06). Visually, there was an excess of orthogroups with k
close to 0, indicating a high number of orthogroups under
pronounced relaxed selection (Fig. 2). The number of
orthogroups with k < 1 (1387; relaxed selection prevailing)
was slightly higher than the number of orthogroups with
k > 1 (1308; intensified selection prevailing), but not sig-
nificantly so (Fisher’s Exact Test, p = 0.288).
On 2702 orthogroups in the final dataset we con-

ducted analyses of relaxed and intensified selection (in
RELAX) and diversifying/positive selection (in aBSREL
with branch-site model). We inferred 138 orthogroups
to be under relaxed selection (k < 1, false discovery rate
(FDR) < 0.10) in either Coregonus or Salvelinus, of which
122 were found in both Coregonus and Salvelinus. On
the other hand, 105 orthogroups showed signals of in-
tensified selection (k > 1, FDR < 0.10), of which 78 in-
cluded both Coregonus and Salvelinus. The number of
relaxed orthogroups in Coregonus and Salvelinus was
significantly higher compared to the number of intensi-
fied orthogroups (one-sided Fisher’s Exact Test, p =
0.035). Of the 2702 orthogroups, branch-site selection
analyses inferred 111 orthogroups as being under signifi-
cant diversifying/positive selection (FDR < 0.10), of
which 92 included both Coregonus and Salvelinus. Thus,
these orthogroups harbour a proportion of sites with sig-
nificantly elevated dN/dS (= ω) values in at least one of

Fig. 1 Maximum-likelihood phylogenetic tree of nine salmonid species (foreground taxa Coregonus and Salvelinus in red) and outgroup northern
pike (Esox lucius; in blue). Node support values are bootstrap values from 1000 bootstrap replications. Branch lengths correspond to the number
of substitutions per site. All pictures used here are under public domain. Coregonus and Salvelinus are two genera with exceptional ability for
repeated, rapid diversification into ecomorphs within lakes that is unmatched in other salmonid taxa [2, 43–47]
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the foreground branches leading to Coregonus or Salveli-
nus taxa.
After averaging selection parameter values for each gene

ontology (GO) term, 13 of 1478 GO terms showed signifi-
cant deviations from the null expectation of k = 1 (Wil-
coxon signed-rank tests: p < 0.05; Fig. 3). Eight of these
had significantly elevated k values, indicating intensified
selection. The other five had significantly lowered k values,
which is evidence for relaxed selection. The GO term en-
richment results agreed with the general shift of selection
(distribution of k) in all orthogroups. The GO terms
‘carbohydrate metabolic process’ and ‘obsolete acyl-
carrier-protein biosynthetic process’, for example, were
also present in the orthogroups under intensified selec-
tion. The ‘ATPase activity’ and ‘proton transmembrane
transport’ GO terms were also found among orthogroups
under relaxed selection. Other deviating GO terms were
‘DNA repair’ and ‘protein deubiquitination’, with evidence

for intensified selection, and ‘exocytosis’ and ‘protein de-
phosphorylation’, with evidence for relaxed selection
(Fig. 3).

Gene functions under relaxed selection
Blast2GO annotation and UniProt/Swiss-Prot literature
research on the orthogroups under relaxed selection iden-
tified gene functions with potential relevance for the diver-
sification process in charr and whitefish. Such functions
included visual perception (e.g., ‘peripherin-2-like’), gene
and gene product regulation (e.g., ‘E3 ubiquitin-protein
ligase RNF128-like’), lipid metabolism (e.g., ‘calcium-inde-
pendent phospholipase A2-gamma-like’), muscle and
heart growth (e.g., ‘dual specificity protein phosphatase 6’),
locomotion (e.g., ‘serine/threonine-protein phosphatase
PP1-beta catalytic subunit’), and immunity (e.g., ‘adaptor-
related protein complex 1’, ‘natterin-3-like’), but also
genes with a role for various nervous system processes

Fig. 2 Histogram of the distribution of selection parameter k values (exponent of dN/dS ratio, i.e., k in ωk) from RELAX analysis in the 2702
orthogroups. The values shown are for Coregonus and Salvelinus compared to the other five salmonid species and the outgroup (pike). The
neutral expectation of k = 1 is shown as a vertical line. k values above 2 are omitted for visibility purposes in the above plot (416 orthogroups
have k values above 2; the maximum possible k value is 50; see Additional file 1 for total set of k values)
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(e.g., ‘POU domain, class 4, transcription factor 3-like’; re-
sults of relaxed and intensified selection analyses:
Additional file 1).
We observed compelling trends of GO term enrich-

ment (one-tailed Fisher’s Exact Tests, uncorrected p <
0.05 but FDR > 0.10) in the orthogroups under relaxed,
intensified, and diversifying selection that largely agree
with the research literature on the genes contained in
those orthogroups (Fig. 4, Table 1). We found the 122
orthogroups under significant relaxed selection in Core-
gonus and Salvelinus were enriched for a total of 11 GO
terms associated with transcriptional regulation, serine
family amino acid metabolism, lipid metabolism, and ox-
idoreductase activity, amongst others (Table 1). The
REVIGO redundancy analysis results showed transcrip-
tional regulation, serine family amino acid metabolism,
lipid metabolism, and acrosome reaction to be among
the few non-redundant GO terms (frequency and signifi-
cance plot of non-redundant GO terms: Fig. 4a, includes
clustering by semantic similarity). Transcriptional regu-
lation and serine family amino acid metabolism were the
most frequent non-redundant GO terms. In total, six of
11 GO terms were found to be non-redundant.
Among the top ten enriched functions in relaxed

orthogroups in both Coregonus and Salvelinus, behav-
iour and many neural function GO terms and KEGG
pathways were found in gene set enrichment analyses
(Fig. 5). This is in agreement with the neural process
orthogroups and serine family amino acid metabolism
GO terms obtained in the GO term enrichment analysis
above. The behaviour gene set was the only gene set that

was significantly enriched after FDR correction (Fig. 5).
Other overrepresented functions included, for example,
negative regulation of signalling, urogenital system de-
velopment, the peroxisome pathway, vascular smooth
muscle contraction, and the AGE-RAGE signalling path-
way, which plays a major role in inflammation and
infection.

Gene functions under intensified selection
The gene functions of the 78 orthogroups under intensi-
fied selection in both Coregonus and Salvelinus (results of
relaxed and intensified selection analyses: Additional file 1)
were found from literature search to be frequently in-
volved in functions relevant for lipid and carbohydrate
metabolism (e.g., ‘acetyl-CoA carboxylase beta’ and ‘endo-
plasmic reticulum mannosyl-oligosaccharide 1,2-alpha-
mannosidase-like’, respectively) as well as neurological
and bone development (e.g., neurological development:
‘synapsin-3’, bone development: ‘cathepsin K precursor’
and ‘paired like homeodomain 1’).
The orthogroups under intensified selection in Corego-

nus and Salvelinus were enriched for transcriptional
regulation GO terms, but also for those associated with
ubiquitine-related processes and steroid hormone recep-
tor activity, amongst others. A total of 18 GO terms
were overrepresented (Table 1). Transcriptional regula-
tion and several signalling processes were the only high-
frequency GO terms among the few non-redundant GO
terms in the REVIGO analysis (frequency and signifi-
cance plot of non-redundant GO terms: Fig. 4b, includes
clustering by semantic similarity). In total, nine of 18

Fig. 3 Selection parameter k distributions for the gene ontology (GO) terms that deviated from the null expectation in the total set of 2702
orthogroups. k values are selection parameter values (exponent of dN/dS ratio, i.e., k in ωk) in Coregonus and Salvelinus compared to the five
other salmonid species and the outgroup (pike). The red horizontal bars indicate the medians of k
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Fig. 4 (See legend on next page.)
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GO terms remained after the REVIGO redundancy
analysis.
In the gene set enrichment analysis of all intensified

selection orthogroups present in Coregonus and Salveli-
nus, the ‘actin filament-based process’ GO term, the
‘spliceosome’ and several signalling KEGG pathways
were among the top enriched functions (Fig. 5). Other
functions included ‘cellular protein-containing complex
assembly’, ‘fatty acid elongation’, ‘progesterone-mediated
oocyte maturation’, and ‘steroid biosynthesis’. Overall,
the gene enrichment results (Fig. 5) mostly agree with
the GO term overrepresentations (Fig. 4b).

Gene functions under diversifying selection
A large number of the 92 orthogroups under diversifying
selection in Coregonus and Salvelinus were found in litera-
ture search to contain genes involved in regulation of gene
expression, signal transduction and transmembrane trans-
porter genes, but also immunity-related genes and a gene
of the FOX set of genes, ‘FOX I1-ema’, a tissue-specific spli-
cing factor important in otic placode formation and jaw de-
velopment in zebrafish [71] (orthogroups under diversifying
selection: Additional file 2, includes associated GO terms).
Orthogroups under diversifying selection were enriched

for GO terms associated with transmembrane transport,
phospholipid metabolic processes, acetyl-CoA carboxylase
activity, various lipid metabolic processes, regulation of
Wnt signalling pathway, and RNA splicing, amongst
others (Fig. 4c, Table 1). A total of 47 GO terms were
overrepresented, of which 23 remained after the REVIGO
redundancy analysis. Pyruvate metabolism, several signal
transduction processes, lipid metabolism, and transmem-
brane transport processes were shown to be amongst the
non-redundant GO terms in the REVIGO analysis (fre-
quency and significance plot of non-redundant GO terms:
Fig. 4c, includes clustering by semantic similarity). Com-
pared to the orthogroups under relaxed or intensified se-
lection (Fig. 4a,b), the orthogroups under diversifying
selection included a higher number of rather dissimilar
low-frequency GO terms, apart from a cluster of similar
metabolic GO terms (Fig. 4c). Only one GO term, ‘DNA
binding’, was underrepresented (p < 0.05); with zero oc-
currences in the orthogroups under diversifying selection

in Coregonus and Salvelinus but 77 occurrences in all
other orthogroups.

Overlap between selection types
We identified nine orthogroups that showed both signals
of relaxed selection (RELAX) and diversifying selection
(aBSREL) and 12 orthogroups that showed both signals
of intensified selection (RELAX) and diversifying selec-
tion (aBSREL) (Fig. 6a, Table 2). The overlap between
orthogroups under relaxed and diversifying selection was
higher than expected by chance, but not significantly so
(hypergeometric expectation: 3.6 vs observed 9; one-
tailed Fisher’s Exact Test: p = 0.126). The overlap be-
tween orthogroups under intensified and diversifying se-
lection was significantly higher than expected by chance
(hypergeometric expectation: 2.1 vs observed 12; one-
tailed Fisher’s Exact Test: p = 0.004).
Based on UniProt/Swiss-Prot gene information, the

orthogroups with both signals of relaxed and diversifying
selection are associated with functions such as immunity
(5 of 9 orthogroups, e.g., ‘adaptor-related protein complex
1, mu 2 subunit (ap1m2)’), the nervous system (4 of 9
orthogroups, e.g., ‘protein kinase C epsilon type-like
(prkce)’), muscle function (2 of 9 orthogroups, e.g., ‘solute
carrier family 6 (neurotransmitter transporter), member 8
(slc6a8)’), blood pressure (1 of 9 orthogroups, ‘endoplas-
mic reticulum aminopeptidase 1-like (LOC106570844)’),
and transcriptional regulation (1 of 9 orthogroups, ‘prob-
able histone deacetylase 1-B (hdac1-b)’) (Table 2). This is
in agreement with the more general GO term functions
inferred using Blast2GO and associated tools (Fig. 6b –
biological process GO terms, Table 2), such as neurotrans-
mitter transport, calcium-mediated signalling, antigen
presentation, regulation of blood pressure, and serine fam-
ily amino acid metabolism.
Based on UniProt/Swiss-Prot gene information, orthogroups

with both signals of intensified and diversifying selec-
tion are associated with transcriptional regulation (4 of
12 orthogroups, e.g., ‘paired amphipathic helix protein
Sin3a-like (sin3a)’), lipid metabolism (3 of 12
orthogroups, e.g., ‘acetyl-CoA carboxylase beta (acacb)’),
nervous system function (3 of 12 orthogroups, e.g.,
‘synapsin-3 (syn3)’), carbohydrate metabolism (2 of 12
orthogroups, e.g., ‘alpha-2,8-sialyltransferase 8F-like

(See figure on previous page.)
Fig. 4 Gene Ontology (GO) terms with trends of overrepresentation (p < 0.05) in a the orthogroups under relaxed selection (FDR < 0.10), b the
orthogroups under intensified selection (FDR < 0.10), and c the orthogroups under diversifying selection (FDR < 0.10). The orthogroups used are
present in both Coregonus and Salvelinus. Bubble colour in the indicated colour spectrum corresponds to the log10 p-value of overrepresentation
(blue = higher significance, red = lower significance). Bubble size corresponds to the frequency of a GO term in the orthogroups under selection.
Highly similar GO terms are linked by edges in the graph, where the line width indicates the degree of similarity. The bubble placement corresponds
to the position along two semantic space axes based on SimRel clustering as described in Material & methods [70]. Asterisks indicate overlap with
enriched GO terms in orthogroups under other types of selection

Schneider et al. BMC Genomics         (2019) 20:1010 Page 7 of 23



Table 1 Over- and underrepresented terms from a GO enrichment analysis. Cor = Coregonus, Salv = Salvelinus, OGs = orthogroups

GO category p-value p-value
(Cor + Salv)

# in OGs under
selection

# in reference
OGs

# in OGs
under selection
(Cor + Salv)

# in reference
OGs (Cor + Salv)

Overrepresented GO terms – relaxed selection

PTW/PP1 phosphatase complex 2.55E-03 3.03E-03 2 0 2 0

acrosome reaction 2.55E-03 3.03E-03 2 0 2 0

integral component of membrane 3.96E-03 1.77E-02 21 205 17 163

transcription factor complex 4.59E-03 5.52E-02 11 78 8 68

regulation of transcription, DNA-templated 6.29E-03 3.12E-02 10 70 8 60

DNA-binding transcription factor activity 1.22E-02 5.98E-02 9 66 7 57

regulation of transcription by RNA polymerase II 1.35E-02 2.20E-01 4 15 2 14

lipid metabolic process 1.43E-02 8.76E-03 2 2 2 1

protein serine/threonine kinase activity 2.00E-02 1.48E-02 3 9 3 7

protein tyrosine phosphatase activity 2.30E-02 2.71E-02 2 3 2 3

phospholipid catabolic process 2.30E-02 2.71E-02 2 3 2 3

tyrosine metabolic process 3.34E-02 3.92E-02 2 4 2 4

oxidoreductase activity, acting on paired donors,
with incorporation or reduction of molecular
oxygen

3.34E-02 2.71E-02 2 4 2 3

serine family amino acid metabolic process 3.70E-02 1.96E-02 3 12 3 8

nucleus 4.42E-02 6.75E-02 10 98 9 84

Overrepresented GO terms – intensified selection

protein deubiquitination 1.73E-03 1.33E-01 3 4 1 3

regulation of transcription, DNA-templated 2.17E-03 5.18E-03 10 81 8 70

thiol-dependent ubiquitinyl hydrolase activity 8.36E-03 1.02E-01 2 2 1 2

DNA binding 2.48E-02 1.68E-02 8 85 7 70

steroid hormone receptor activity 2.71E-02 2.29E-02 2 5 2 5

acetyl-CoA carboxylase activity 3.85E-02 3.52E-02 1 0 1 0

acetyl-CoA carboxylase complex 3.85E-02 3.52E-02 1 0 1 0

Lys48-specific deubiquitinase activity 3.85E-02 1.00E+ 00 1 0 0 0

Sin3 complex 3.85E-02 3.52E-02 1 0 1 0

histone H3-K4 demethylation 3.85E-02 3.52E-02 1 0 1 0

retinoic acid biosynthetic process 3.85E-02 3.52E-02 1 0 1 0

NADP-retinol dehydrogenase activity 3.85E-02 3.52E-02 1 0 1 0

catalase activity 3.85E-02 1.00E+ 00 1 0 0 0

obsolete peroxidase reaction 3.85E-02 1.00E+ 00 1 0 0 0

response to oxidative stress 3.85E-02 1.00E+ 00 1 0 0 0

methane metabolic process 3.85E-02 1.00E+ 00 1 0 0 0

hydrogen peroxide catabolic process 3.85E-02 1.00E+ 00 1 0 0 0

palmitoyltransferase activity 3.85E-02 3.52E-02 1 0 1 0

beta1-adrenergic receptor activity 3.85E-02 1.00E+ 00 1 0 0 0

adenylate cyclase-activating G protein-coupled
receptor signaling pathway

3.85E-02 1.00E+ 00 1 0 0 0

positive regulation of heart contraction 3.85E-02 1.00E+ 00 1 0 0 0

adrenergic receptor signaling pathway 3.85E-02 1.00E+ 00 1 0 0 0

adrenal gland development 3.85E-02 3.52E-02 1 0 1 0

corticotropin-releasing hormone binding 3.85E-02 1.00E+ 00 1 0 0 0
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Table 1 Over- and underrepresented terms from a GO enrichment analysis. Cor = Coregonus, Salv = Salvelinus, OGs = orthogroups
(Continued)

GO category p-value p-value
(Cor + Salv)

# in OGs under
selection

# in reference
OGs

# in OGs
under selection
(Cor + Salv)

# in reference
OGs (Cor + Salv)

apoptotic signaling pathway 3.85E-02 3.52E-02 1 0 1 0

regulation of NIK/NF-kappaB signaling 3.85E-02 3.52E-02 1 0 1 0

iron-sulfur cluster binding 3.85E-02 3.52E-02 1 0 1 0

actin filament severing 3.85E-02 3.52E-02 1 0 1 0

dystrophin-associated glycoprotein complex 3.85E-02 3.52E-02 1 0 1 0

hexosaminidase activity 3.85E-02 1.00E+ 00 1 0 0 0

hyaluronic acid binding 3.85E-02 3.52E-02 1 0 1 0

ribosomal large subunit biogenesis 3.85E-02 3.52E-02 1 0 1 0

Overrepresented GO terms – diversifying selection

transmembrane transporter activity 2.28E-02 1.19E-02 4 23 4 18

transmembrane transport 2.17E-02 1.25E-02 6 48 6 41

phospholipid metabolic process 4.11E-02 4.20E-02 1 0 1 0

regulation of Wnt signaling pathway 4.11E-02 4.20E-02 1 0 1 0

lipid phosphatase activity 4.11E-02 4.20E-02 1 0 1 0

proteolysis 3.20E-02 2.18E-02 6 53 6 47

acetyl-CoA carboxylase activity 4.11E-02 4.20E-02 1 0 1 0

pyruvate metabolic process 1.67E-03 1.75E-03 2 0 2 0

acetyl-CoA carboxylase complex 4.11E-02 4.20E-02 1 0 1 0

NAD-dependent histone deacetylase activity
(H3-K14 specific)

4.11E-02 4.20E-02 1 0 1 0

histone H3 deacetylation 4.11E-02 4.20E-02 1 0 1 0

intracellular signal transduction 1.51E-02 4.27E-02 4 20 3 16

transforming growth factor beta receptor
signaling pathway

4.11E-02 4.20E-02 1 0 1 0

serine-type endopeptidase activity 5.27E-03 4.56E-03 4 14 4 13

cytoskeleton 4.98E-02 4.14E-02 2 7 2 6

septin complex 4.11E-02 4.20E-02 1 0 1 0

complement activation 4.11E-02 4.20E-02 1 0 1 0

nociceptin receptor activity 4.11E-02 1.00E+ 00 1 0 0 0

calcium-mediated signaling 4.11E-02 4.20E-02 1 0 1 0

glycerolipid metabolic process 3.98E-02 4.14E-02 2 6 2 6

kinesin complex 4.11E-02 4.20E-02 1 0 1 0

kinesin binding 4.11E-02 4.20E-02 1 0 1 0

lipid catabolic process 4.88E-03 5.10E-03 2 1 2 1

oxidoreductase activity, acting on paired
donors, with incorporation or reduction of
molecular oxygen

2.25E-02 1.93E-01 2 4 1 4

L-ascorbic acid binding 1.54E-02 1.58E-01 2 3 1 3

lipoprotein lipase activity 1.67E-03 1.75E-03 2 0 2 0

Lys48-specific deubiquitinase activity 4.11E-02 1.00E+ 00 1 0 0 0

synapse 4.11E-02 4.20E-02 1 0 1 0

Sin3 complex 4.11E-02 4.20E-02 1 0 1 0

sulfate assimilation 4.11E-02 4.20E-02 1 0 1 0
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(st8sia6)’), organelle function (2 of 12 orthogroups,
e.g., ‘sterile alpha motif domain-containing protein 9-
like (samd9l)’), bone growth (1 of 12 orthogroups,
‘cathepsin K precursor (ctsk)’), and immunity (1 of 12
orthogroups, ‘furin-1-like (fur1)’), amongst others
(Table 2). Again, this agrees with the more general
GO term functions inferred using Blast2GO and asso-
ciated tools (Fig. 6c – biological process GO terms,
Table 2), such as neurotransmitter secretion, negative
regulation of transcription, serine family amino acid

metabolism, fatty acid biosynthesis, and carbohydrate
metabolism.

Discussion
Our analyses of shared selection in the highly diversify-
ing taxa Coregonus and Salvelinus identified genes and
gene functions with deviating signatures of selection
compared to five relatively less diversifying salmonid
taxa and one non-salmonid species used as background.
We identified more orthogroups under relaxed selection

Table 1 Over- and underrepresented terms from a GO enrichment analysis. Cor = Coregonus, Salv = Salvelinus, OGs = orthogroups
(Continued)

GO category p-value p-value
(Cor + Salv)

# in OGs under
selection

# in reference
OGs

# in OGs
under selection
(Cor + Salv)

# in reference
OGs (Cor + Salv)

adenylylsulfate kinase activity 4.11E-02 4.20E-02 1 0 1 0

sulfate adenylyltransferase (ATP) activity 4.11E-02 4.20E-02 1 0 1 0

glycogen metabolic process 4.11E-02 4.20E-02 1 0 1 0

antigen processing and presentation of
endogenous peptide antigen via MHC class I

4.11E-02 4.20E-02 1 0 1 0

melatonin receptor activity 4.11E-02 1.00E+ 00 1 0 0 0

3-hydroxyisobutyrate dehydrogenase activity 4.11E-02 4.20E-02 1 0 1 0

NAD binding 1.54E-02 1.61E-02 2 3 2 3

urea transmembrane transporter activity 4.11E-02 4.20E-02 1 0 1 0

urea transmembrane transport 4.11E-02 4.20E-02 1 0 1 0

5-methylcytosine catabolic process 4.11E-02 4.20E-02 1 0 1 0

methylcytosine dioxygenase activity 4.11E-02 4.20E-02 1 0 1 0

DNA demethylation 4.11E-02 4.20E-02 1 0 1 0

pyrroline-5-carboxylate reductase activity 4.11E-02 4.20E-02 1 0 1 0

proline biosynthetic process 4.11E-02 4.20E-02 1 0 1 0

malate dehydrogenase (decarboxylating)
(NAD+) activity

4.11E-02 4.20E-02 1 0 1 0

malate metabolic process 4.11E-02 4.20E-02 1 0 1 0

proteasome regulatory particle assembly 4.11E-02 4.20E-02 1 0 1 0

beta1-adrenergic receptor activity 4.11E-02 1.00E+ 00 1 0 0 0

adenylate cyclase-activating G protein-coupled
receptor signaling pathway

4.11E-02 1.00E+ 00 1 0 0 0

positive regulation of heart contraction 4.11E-02 1.00E+ 00 1 0 0 0

adrenergic receptor signaling pathway 4.11E-02 1.00E+ 00 1 0 0 0

small ribosomal subunit 4.11E-02 4.20E-02 1 0 1 0

10-formyltetrahydrofolate catabolic process 4.11E-02 4.20E-02 1 0 1 0

formyltetrahydrofolate dehydrogenase activity 4.11E-02 4.20E-02 1 0 1 0

hydroxymethyl-, formyl- and related transferase
activity

4.11E-02 4.20E-02 1 0 1 0

regulation of neuroinflammatory response 4.11E-02 1.00E+ 00 1 0 0 0

hexosaminidase activity 4.11E-02 1.00E+ 00 1 0 0 0

junctional membrane complex 4.11E-02 4.20E-02 1 0 1 0

Underrepresented GO terms – diversifying selection

DNA binding 1.89E-02 3.46E-02 0 93 0 77
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(k value < 1) than under intensified selection (k value >
1) (Figs. 2 and 6, Additional file 1). Further, we identified
a set of 92 orthogroups that reflect signals of diversifying
selection, nine and 12 of which additionally experienced
either relaxed or intensified selection, respectively (Fig. 6,

Table 2). We explored the underlying biological rele-
vance and associated gene functions of these
orthogroups under selection and observed trends of
overrepresented GO terms in all three sets of
orthogroups under selection (Fig. 4, Table 1). What is

Fig. 5 Top ten enriched a biological process GO terms and b KEGG pathways based on a gene set enrichment analysis (GSEA) of all orthogroups
in Coregonus and Salvelinus relative to non-diversifying taxa. Terms with negative scores (yellow) were inferred to be under relaxed selection and
with positive scores (blue) under intensified selection. The normalised enrichment score is calculated from transformed k values of each gene in a
gene set. ** indicates significant gene set enrichment after multiple correction (FDR < 0.2); * indicates significant gene set enrichment without
multiple correction ( 0.05)
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more, we identified 13 GO terms with k distributions de-
viating from the null expectation (Fig. 3).
In our functional analyses of the above selected

orthogroups, genes in orthogroups under relaxed selection
were found to be involved in processes such as transcrip-
tional regulation, nervous system function, muscle and
heart growth, lipid metabolism, and immunity, while
orthogroups under intensified selection were found to be
more often involved in signalling processes, actin filament-
based processes, RNA splicing, carbohydrate metabolism,
transcriptional regulation as well as nervous system and
bone development (Additional file 1). Orthogroups under
relaxed selection were enriched for ‘serine family amino
acid metabolism’ while those under intensified selection
tended to be enriched more strongly for various signalling
pathways (Fig. 4, Table 1). ‘Regulation of transcription’ was
overrepresented in orthogroups under both relaxed and in-
tensified selection. Orthogroups with signals of diversifying
selection showed a clear trend towards enrichment for sig-
nal transduction, transmembrane transport, proteolysis,
lipid metabolism, and pyruvate metabolism GO terms
(Fig. 4, Table 1) and often contained genes involved in tran-
scriptional regulation, development, lipid metabolism, and
immunity (orthogroups under diversifying selection,

Additional file 2, including associated GO terms). There-
fore, our results imply different intensities of selection on
different gene functions and processes.

Selection parameter distribution – shift to relaxation?
Our results agree with the repeated finding of a relax-
ation of selective constraint in rapidly diverging taxa
[18, 19, 72, 73]. One possible cause behind this obser-
vation could be an increase of ecological opportunity
due to the emergence of new habitat and a decrease in in-
terspecies competition, for example in caves [72] or within
postglacial lakes [74–79]. The adaptation to life in lakes,
before or in the course of (repeated) postglacial colonisa-
tions, such as in charr and whitefish, could be such an
ecological opportunity, entailing a release of selective pres-
sures on a substantial number of genes.
From the above results we can also conclude that re-

laxation of selective constraints does not affect the whole
set of protein-coding genes to the same degree. Purifying
selection and selective constraint still affect a large num-
ber of genes with functions that ensure an organism’s in-
tegrity, survival, and reproduction (see orthogroups
under intensified selection) [80]. However, in charr and
whitefish we observed a larger number of orthogroups

Fig. 6 Overlapping orthogroups under selection and biological process GO terms. a Overlap between orthogroups under relaxed and diversifying
or intensified and diversifying selection in both Coregonus and Salvelinus. b Biological process GO terms of orthogroups under both relaxed and
diversifying selection. c Biological process GO terms of orthogroups under both intensified and diversifying selection. In b and c, rectangles are
clustered into larger, coloured rectangles based on relationships among GO terms [70]
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Table 2 Orthogroups (OGs) with signals of relaxed and diversifying selection or intensified and diversifying selection. k values are
selection parameter values (exponent of dN/dS ratio, i.e., k in ωk). FDR values are from Benjamini-Hochberg FDR correction. Orthogroups
shown are present in both Coregonus and Salvelinus. For aBSREL, p-values after correction for multiple testing (FDR < 0.10) are shown

OG ID Gene description GO terms (obtained with
Blast2GO)

Additional information (manually
derived from UniProt/Swiss-Prot)

FDR
(RELAX)

p (aBSREL) k

Relaxed & diversifying selection

OG0001544 adaptor-related protein
complex 1, mu 2 subunit
(ap1m2)

intracellular protein transport;
vesicle-mediated transport;
clathrin adaptor complex

antigen processing and
presentation of exogenous
peptide antigen via MHC class II,
regulation of defence response
to virus by virus

0.000 1.019E-05 0.04471

OG0002461 protein kinase C epsilon
type-like (LOC106589411)

protein serine/threonine kinase
activity; ATP binding; protein
phosphorylation; serine family
amino acid metabolic process;
intracellular signal transduction

cell adhesion, motility, and
cell cycle, neuron growth, ion
channel regulation, immune
response, signal transduction

6.825E-08 6.478E-06 0.07476

OG0003986 solute carrier family 6
(neurotransmitter
transporter), member 8
(slc6a8)

neurotransmitter:sodium
symporter activity; cation
transport; neurotransmitter
transport; integral component
of membrane

muscle contraction, required for
the uptake of creatine in muscles
and brain

7.970E-05 3.046E-12 0.05603

OG0000840 probable histone
deacetylase 1-B (hda1b)

nucleus; NAD-dependent histone
deacetylase activity (H3-K14
specific); metal ion binding;
histone H3 deacetylation

transcriptional regulation, cell
cycle progression, developmental
events

0.0002432 1.952E-06 2.398E-12

OG0005675 E3 ubiquitin-protein
ligase RNF128-like
(LOC110537269),
transcript variant X1

– interleukin regulation, T-cell
control, functions in the
patterning of the dorsal
ectoderm, sensitises ectoderm
to respond to neural-inducing
signals

0.0002432 1.282E-08 0.5357

OG0004474 endoplasmic reticulum
aminopeptidase 1-like
(LOC106570844)

endoplasmic reticulum
membrane; proteolysis;
regulation of blood pressure;
zinc ion binding; antigen
processing and presentation
of endogenous peptide
antigen via MHC class I;
metalloaminopeptidase
activity

regulation of innate immune
response, response to bacterium,
angiogenesis, regulation of blood
pressure, fat cell differentiation

0.01917 2.008E-05 0.1651

OG0000651 tyrosine-protein
phosphatase non-
receptor type 6-like
(LOC106576571),
transcript variant X3

protein tyrosine
phosphatase activity;
protein dephosphorylation;
tyrosine metabolic process

haematopoiesis, various
immune functions

0.03186 1.547E-06 0.3844

OG0002139 calcipressin-2-like
(LOC109900784),
transcript variant X1

nucleic acid binding;
calcium-mediated signaling

regulation of calcineurin-NFAT
signalling cascade, calcium-
mediated signalling, potential
role in central nervous
development

0.06629 2.753E-11 0.6235

OG0014882 junctophilin-2
(LOC111976619)

junctional membrane complex calcium ion homeostasis,
regulation of cardiac muscle
tissue development

0.08725 3.460E-09 0.6595

Intensified & diversifying selection

OG0000798 acetyl-CoA carboxylase
beta (acacb), transcript
variant X3

acetyl-CoA carboxylase activity;
ATP binding; pyruvate metabolic
process; fatty acid biosynthetic
process; acetyl-CoA carboxylase
complex; metal ion binding

regulation of cholesterol
biosynthetic process, acetyl-CoA
metabolic process

0.000 0.000 4.683

OG0011982 synapsin-3
(LOC111950806)

ATP binding; neurotransmitter
secretion; synaptic vesicle

neurotransmitter secretion,
regulation of synaptic
transmission, GABAergic

0.0001606 0.000 8.330

OG0004141 clone Contig3164 proteolysis; cysteine-type osteoclastic bone resorption, 0.0002432 3.664E-14 7.769
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under relaxed selection that therefore escaped the effects
of purifying selection.
The observation of largely different GO terms in

orthogroups under relaxed selection or intensified selec-
tion agrees with a large number of studies that demon-
strated different selective pressures on different gene
functions [81, 82]. Various functional and structural con-
straints govern the substitution patterns within genes. For
example, amino acid alterations in some groups of proteins

can easily make them dysfunctional [81], while other kinds
of proteins are under less constraint to vary [83] or are even
beneficial to fitness when being different from the majority
of the population (i.e., negative frequency-dependent or bal-
anced selection) [84–86]. The observation of intensified
selection on DNA repair in our dataset and the overrepre-
sented GO terms related to oxidative stress and apoptotic
signalling, for example, could highlight the importance of
an effective response to environmental stress in rapidly

Table 2 Orthogroups (OGs) with signals of relaxed and diversifying selection or intensified and diversifying selection. k values are
selection parameter values (exponent of dN/dS ratio, i.e., k in ωk). FDR values are from Benjamini-Hochberg FDR correction. Orthogroups
shown are present in both Coregonus and Salvelinus. For aBSREL, p-values after correction for multiple testing (FDR < 0.10) are shown
(Continued)

OG ID Gene description GO terms (obtained with
Blast2GO)

Additional information (manually
derived from UniProt/Swiss-Prot)

FDR
(RELAX)

p (aBSREL) k

cathepsin K precursor peptidase activity bone remodelling, collagen
metabolic process

OG0013215 lysine-specific
demethylase 4B-like
(LOC106574093),
transcript variant X3

histone H3-K36 demethylation;
histone H3-K9 demethylation
(manually derived from UniProt/
Swiss-Prot)

histone H3-K36 demethylation,
histone H3-K9 demethylation,
negative regulation of
transcription

0.003614 3.970E-12 10.28

OG0003822 sterile alpha motif
domain-containing
protein 9-like
(LOC109881303),
transcript variant X2

protein binding endosomal vesicle fusion 0.006278 9.533E-06 1.603

OG0007378 alpha-2,8-sialyltransferase
8F-like (LOC106588277),
transcript variant X2

protein glycosylation;
sialyltransferase activity

carbohydrate biosynthetic
process, glycolipid metabolic
process, ganglioside biosynthetic
process, (modulation of cell
signal transduction, maybe
involved in function of nervous
system)

0.008768 2.090E-11
9.549E-08

1.9625

OG0003820 paired amphipathic
helix protein Sin3a-like
(LOC106587652),
transcript variant X3

transcription corepressor
activity; transcription factor
complex; negative regulation
of transcription

negative regulation of
transcription, regulation of
lipid metabolic process,
regulation of circadian
rhythms

0.01812 5.292E-09 1.450

OG0004629 furin-1-like
(LOC106587394),
transcript variant X2

serine-type endopeptidase
activity; proteolysis

involved in microbial infection,
regulation of endopeptidase
activity, TGF-beta-1 activation

0.01896 0.000 19.99

OG0010786 serine/threonine-protein
kinase 6 (stk6)

protein serine/threonine kinase
activity; ATP binding; protein
phosphorylation; serine family
amino acid metabolic process

activation of protein kinase
activity, regulation of
transcription

0.01972 0.000 6.183

OG0012826 beta-1,4-
galactosyltransferase
6-like (LOC106560385),
transcript variant X1

carbohydrate metabolic process;
transferase activity

neuronal maturation, axonal
and myelin formation,
lactosylceramide biosynthetic
process, carbohydrate metabolic
process

0.03015 1.221E-12 6.768

OG0010420 torsin-1A-interacting
protein 2 (LOC111975742)

endoplasmic reticulum
organization; positive
regulation of ATPase
activity; protein localization
to nuclear envelope (manually
derived from UniProt/Swiss-Prot)

endoplasmic reticulum integrity,
positive regulation of ATPase
activity

0.03800 0.000 1.870

OG0011057 receptor-interacting
serine/threonine-
protein kinase 4-like
(LOC106567956)

protein kinase activity; protein
binding; ATP binding; protein
phosphorylation

positive regulation of NF-kappaB
transcription factor activity

0.08386 5.012E-06 3.356
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diversifying taxa. Also, carbohydrate and ribosome-related
processes seem to be under strong selective constraint. On
the other hand, relaxation of selective constraint on ATPase
activity and proton transmembrane transport as well as
various lipid metabolism genes, amongst others, could have
led to the physiological variety observed in extant highly di-
versifying salmonids.

Gene functions under relaxed selection in Coregonus and
Salvelinus
Many of the orthogroups under parallel relaxed selection,
i.e. those that experienced a release of selective constraint
in Coregonus and Salvelinus, have been linked to the di-
vergence of these species along the benthic-limnetic axis
within lakes found in earlier research [74, 87–91]. Exam-
ples include the ‘peripherin-2-like’ gene, which has been
implicated in visual adaptation in S. namaycush in Lake
Superior [92] and the ‘natterin-3-like’ gene, which plays a
putative role as an immunopeptide and experienced pro-
nounced expression divergence in Icelandic S. alpinus
ecomorphs [93, 94]. Based on our analyses, we propose
these are linked to the evolution of novel phenotypes and
the variation in feeding and swimming behaviour, energy
storage, and the release of competition in postglacial lakes
(behaviour, muscle and heart growth, locomotion, lipid
metabolism, nervous system function) as well as a release
or change of parasite and pathogen burden (immunity
genes) in postglacial lakes [95]. This implies changes in se-
lective pressure on these gene functions as a consequence
of shifts in the ecology of highly diversifying salmonids.

Gene functions under intensified selection in Coregonus
and Salvelinus
Genes under intensified selection are expected to have a
strong role for survival and reproduction (i.e., fitness) of
organisms [49]. We found the orthogroups under intensi-
fied selection showed a high number of processes associ-
ated with key metabolic pathways (mainly of
carbohydrates and lipids), signal transduction, and regula-
tion of gene expression and the immune system, indicat-
ing strong selective pressures on these processes and
functions in Coregonus and Salvelinus. The occurrence of
immunity genes under intensified selection in our results
would rather imply changing parasite and pathogen re-
gimes rather than a complete release of pathogen burden
[96]. Interestingly, our results also indicated strong select-
ive pressures on actin filament-based processes and RNA
splicing as well as protein modification, which are func-
tions with a crucial role in development [96–99]. Among
these genes, some were found to be directly linked to dif-
ferences in bone development [e.g., ‘paired like homeodo-
main 1’ and ‘cathepsin K precursor’) [100–102]. We
speculate that these developmental process genes may be
relevant in the extreme morphological diversity that can

be found among closely related Coregonus species and
particularly Salvelinus species [90, 100–104].

Gene functions under diversifying selection in Coregonus
and Salvelinus
Diversifying (i.e., positive) selection on genes, which in
this context means that selective pressure favours amino
acid polymorphism in a particular gene, affected 92
orthogroups in Coregonus and Salvelinus relative to the
non-diversifying taxa. The enrichment of lipid, glyceroli-
pid, and pyruvate metabolism genes is a strong indica-
tion that these metabolic processes experienced
diversification/positive selection in Coregonus and Salveli-
nus, which could imply a role in ecological diversification
and habitat shifts across the depth axis in lakes. Lipid me-
tabolism has been commonly found to be under diversify-
ing selection in freshwater fishes, such as sticklebacks
[105] and salmonids [89, 106]. Also, diversifying/positive
selection on transmembrane transport, for example, has
been shown repeatedly in teleost fish adapting to the
freshwater environment, such as sculpin and alewife, puta-
tively because of its role in osmoregulation [107, 108].

Overlap between selection types
A combination of approaches, such as aBSREL and
RELAX as we apply here, has been shown to reliably
infer genes under selection and is also able to appropri-
ately distinguish between positive selection and relaxed
selection, which are hard to disentangle using single
conventional methods [109–111]. This is particularly im-
portant since it has been known for some time that the
number of false positives in tests for positive or diversi-
fying selection can be substantial [112–115]. Overlap-
ping sets of orthogroups under selection inferred with
different analytical approaches, as we resolve here, can
therefore implicate consistent, strong, and specific sig-
nals of selection. For example, orthogroups with signals
of relaxed and diversifying selection likely experienced a
release of purifying selection, with the potential for evo-
lutionary diversification [19, 49, 116].
One of the orthogroups with the most extreme signal of

relaxed and diversifying selection was ‘adaptor-related
protein complex 1, mu 2 subunit (ap1m2)’ (Table 2).
Apart from a role in endothelial and intestinal immunity
[117], ap1m2 plays a central role in the development of
endoderm-derived organs (e.g., stomach and intestine) in
zebrafish [118]. Given the differing parasite pressure [119,
120] and the diversity of trophic niches in lake systems
[121, 122], genes under reduced selective constraint could
play a crucial role in phenotypic diversity in the often
lake-dwelling Salvelinus and Coregonus. Another gene
showing a strong signal of relaxed and diversifying selec-
tion was ‘solute carrier family 6 (neurotransmitter trans-
porter), member 8 (slc6a8)’, which regulates creatine
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uptake in tissues with high energy demands such as
muscle and brain tissue [122–124]. Recent research on C.
mykiss and C. maraena found two copies of this gene,
which were either mainly expressed in muscle or kidney
tissue, with the strongest expression overall in muscle
[125]. Changes of selection regimes on these functions are
expected, given that Salvelinus and Coregonus experienced
a diversification in trophic and swimming behaviour, ecol-
ogy, and life history (e.g., Salvelinus and Coregonus can be
free swimming, lake bottom dwelling, or restricted to the
littoral zone of lakes). Our analyses independently corrob-
orate an important functional role of this gene in highly
diversifying salmonids.
Orthogroups showing both intensified and diversifying

selection likely constitute targets of “true” positive selec-
tion rather than relaxed selection misinterpreted as posi-
tive selection. Genes in these orthogroups are thus
under stronger selective pressure and are potentially of
higher importance to survival and overall fitness [49] in
our analyses of Coregonus and Salvelinus. Two of the
most strongly significant orthogroups under intensified
and diversifying selection involved the genes ‘synapsin-3
(syn3)’ and ‘cathepsin K precursor (ctsk)’. syn3 is in-
volved in neurotransmitter secretion [126] and plays a
crucial role in early neuronal differentiation and in neur-
onal progenitor cell development in fish [127] as well as
in mammals [128]. ctsk, encoding a collagenase, has an
important function in bone modelling and remodelling
as well as bone homeostasis in vertebrates [129, 130]
and is differentially expressed in S. alpinus [102]. Both
syn3 and ctsk are among the genes experiencing the
highest selective pressure in Coregonus and Salvelinus as
compared to other salmonid taxa, which is an indication
of their importance for survival in these two genera and
warrants further research.
Not only specific genes but also the gene functions as-

sociated with orthogroups under selection were found to
have biological relevance. Changes in heart and muscle
function, immunity genes, lipid metabolism, and tran-
scriptional regulation have previously been implicated in
diversification in salmonids [81, 131–136], cichlids [33],
ants [83], and tonguefishes [84]. Therefore, our findings
from molecular evolution agree with evidence from eco-
morphological divergence of Coregonus and Salvelinus
of immune response, feeding, metabolism, and locomo-
tion [46, 137, 138].

Whole-genome duplication and potential effects on
relaxed selection
Multiple lines of evidence suggest that whole-genome
duplication (WGD) events give rise to vast amounts of
genetic material that can subsequently experience ele-
vated substitution rates and relaxation of selective con-
straints [139–141]. The lineage ancestral to salmonids

experienced a WGD around 80–103 Mya [67–69]. It has
been speculated that this may have contributed to new
phenotypic innovations and to the ecological success of
salmonids [67, 142–145], although a contribution to di-
versification rates is contentious [67, 146]. While con-
ventional approaches for the detection of positive and
relaxed selection based on orthologues in salmonids
would potentially be biased in the case of duplicated and
non-rediploidised genes, approaches based on
orthogroups, as we applied here, alleviate this issue by
explicitly comparing selection shared in Coregonus and
Salvelinus relative to all other salmonid lineages [58].
This approach circumvents the difficulty of inferring
orthologues in taxa that experienced multiple duplica-
tions and unequal rediploidisation.
While genes duplicated during the salmonid WGD

might be more susceptible to relaxed selection [49, 147],
charr and whitefish are in different subfamilies and not
sister genera (Fig. 1) [41, 148]. Therefore, based on evo-
lutionary relationships, they should have rediploidisation
patterns more similar to their sister genera than to each
other and there is no reason to suspect unequal rediploi-
disation among genera to be the cause of the relaxed se-
lection signals we identified in Coregonus and Salvelinus.
It is more likely that these two genera experienced simi-
lar selective pressures due to common diversification
patterns, environmental conditions, or other common
ecological or life history traits. Our results from molecu-
lar evolution analyses reflect these shared ecological and
evolutionary patterns. However, recent results on gene
expression in duplicated genes of salmonids have shown
that relaxed selection often occurs in downregulated
gene duplicates [149], which might be associated with
dosage balance effects [150, 151]. Therefore, future re-
search should ideally analyse selection in concert with
gene expression and duplication.

Conclusions
Our findings suggest that there is some evidence for a
parallel relaxation of selective constraint in the repeat-
edly diversifying salmonid lineages Coregonus and Salve-
linus compared to all other salmonid lineages, which are
known to be less diversifying. Genes in orthogroups
under relaxed selection are involved in functions with a
potential role in the rapid diversification and ecological
adaptation that can be observed in wild populations of
Coregonus and Salvelinus and experienced a release of
selective pressure, including genes involved in behaviour,
muscle function, and infection. On the other hand,
orthogroups under intensified selection, such as various
signal transduction and regulatory genes, are under
stronger selective pressure and are consequently ex-
pected to have higher fitness effects in charr and white-
fish compared to other salmonids. An independent
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analysis of orthogroups under diversifying selection
showed an enrichment for signal transduction genes and
GO terms of various metabolic processes, while genes in-
volved in DNA binding were underrepresented.
Orthogroups with both signals of relaxed and diversifying
or intensified and diversifying selection can give further
hints as to what selective processes govern the evolution
of these genes and are also important candidates for gene
sets under particularly weak (relaxed) selective pressure
(while still experiencing molecular diversification), or
strong (intensified) selective pressure. The discovered
orthogroups under selection are a valuable resource for
further investigations into the importance of certain genes
for rapid diversification in salmonids and beyond.

Material & methods
Taxonomic dataset
All analyses were performed on RNAseq transcriptome
datasets drawn from a search in NCBI and a literature
search in Google Scholar (keywords: each salmonid genus
and species, in combination with “transcriptome” and/or
“RNAseq” or “RNA-seq”) to identify all available studies.
The final dataset represents one transcriptome per species
of transcriptomes of all available taxa as of October 2016,
with additional in-house data for Salmo salar, Salmo trutta,
Salvelinus alpinus, and Coregonus lavaretus that was pub-
lished at a later point [88]. We aimed to retain transcrip-
tomes with a maximal number of overlapping transcripts
across salmonids, which consisted of nine species repre-
senting all five major genera (Coregonus, Oncorhynchus,
Salmo, Salvelinus, and Thymallus), and the closest relative
as outgroup (Esox lucius) (Fig. 1, Table 3). The selected
transcriptome assemblies were all derived from several tis-
sues so as to obtain almost complete sets of transcripts (see
references in Table 3). The topology for foreground branch
definitions is based on the phylogenetic tree shown in Fig. 1,
which was obtained using maximum-likelihood tree estima-
tion based on a preliminary set of 1564 orthologues (de-
rived from the same set of transcriptomes; orthologue
alignments available upon request) and in agreement with
the current understanding of salmonid phylogenetic rela-
tionships [41, 148]. From the full dataset, ranging from 59.0
to 209.2 Mbp per transcriptome (Table 3), we obtained
2702 sequences of orthogroups (mean number of ortholo-
gues per orthogroup: 4.77; mean length 1783 bp; range
607–14,743 bp; total 4.82 Mbp). Using a Blast2GO [156]
analysis (for details see below), we confirmed that the data-
set was not enriched for any particular GO categories (Fish-
er’s Exact Test: all p > 0.10) and therefore not a biased
representation of transcripts.

Orthogroup and OG tree inference
The longest open reading frames (ORFs) in the tran-
scriptome sequences of the ten species (excluding

mitochondrial genes due to different genetic codes that
could bias the selection analyses) and, additionally,
protein-coding genes of the salmon genome (NCBI
RefSeq assembly accession: GCF_000233375.1) [68] were
determined using TransDecoder v2.1 (https://github.
com/TransDecoder/TransDecoder). Next, the standard
mode of OrthoFinder v2.2.3 [157], which uses a five-step
algorithm that mitigates gene length bias and other
biases introduced by other methods, was used to infer
orthogroups from the TransDecoder ORFs. Based on the
OrthoFinder orthogroup assignments, gene sequences
were then extracted from the whole transcriptomes with
custom Python scripts (Python v3.6.5) if they were also
present in the protein-coding sequences of the Atlantic
salmon genome v2 (NCBI RefSeq assembly accession:
GCF_000233375.1) [68] to exclude spurious transcripts.
To further minimise the number of spurious transcripts
retained, only orthogroups with a higher or equal num-
ber (but not larger than four) of orthologous genes in
the focal species compared to the salmon genome were
included to avoid inclusion of collapsed orthologues (i.e.,
multiple genes that were merged into one during assem-
bly, which seems to be a common issue in the salmonid
transcriptomes published so far according to in-house
results and A. Yurchenko and M. Carruthers, personal
communication). Orthologues were then combined into
orthogroups using custom Python scripts if they matched
the same gene sets in the salmon reference genome. Du-
plicated orthogroups, inferred as multiple occurrences of
the same orthologue sets, orthogroups with a number of
sequences exceeding 80, which could include an inflated
number of duplicates, or lower than seven, to avoid
orthogroups unrepresentative of the whole dataset, and
those with fewer than seven taxa were removed with cus-
tom Python scripts. The longest ORFs with a minimum
length of 200 bp were then extracted from this orthogroup
set with get_orfs_or_cdss.py (https://github.com/peterjc/
pico_galaxy/blob/master/tools/get_orfs_or_cdss/get_orfs_
or_cdss.py). A codon-based alignment was then produced
using PRANK v.140603 [158]. The aligned orthogroups
were then trimmed and filtered with trimAl (−resoverlap
1.0, −seqoverlap 0.38 -noallgaps) [159], optimising both
alignment quality and the number of retained alignments.
Using the final set of orthogroups as input for FastME
[160], we then constructed phylogenies of each
orthogroup separately for use in the selection analyses
below. The number of retained genes per orthogroup was
calculated using custom BASH (BASH v3.2) and Python
scripts.

Selection analyses
Foreground branches for subsequent selection analyses
were labelled using a custom R script (R v3.5.1) and the
R package ape [161–163]. All selection analyses were
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then performed in HYPHY v2.3.13.20180521beta(MP)
[48]. Orthogroup alignment FASTA file headers were
shortened using custom Python scripts and FASTA and
tree files were combined with custom BASH scripts.
Using the above foreground definitions, RELAX [49], in-
cluded in the HYPHY package, was run to infer
orthogroups with significant signals of relaxed or inten-
sified selection in the foreground branches relative to
the background branches and to infer the selection
strength parameter k (as defined in [49]). The software
aBSREL (adaptive Branch-Site Random-Effects Likeli-
hood inference) [50], also contained in the HYPHY pack-
age, was then used to obtain orthogroups with a
proportion of sites under significant diversifying or posi-
tive selection in the foreground branches relative to the
background branches. Relevant information from both
the RELAX and aBSREL output was extracted with cus-
tom BASH scripts. Multiple testing was accounted for
with false-discovery rate (FDR) correction [164] or Bon-
ferroni correction [165, 166] in R. We report on the
FDR level of significance throughout the manuscript but
also report the orthogroups under selection after Bonfer-
roni correction in Additional file 1. Significant differ-
ences in the number of orthogroups under relaxed or
intensified selection were quantified using Fisher’s Exact
Tests in R. A two-sided one-sample Wilcoxon signed-
rank test in R was used to infer whether the overall

selection parameter (k) distribution differed significantly
from the null expectation of 1. Selection parameter dis-
tributions were visualised using the R package ggplot2
[167]. Hypergeometric expectations of orthogroups
under multiple types of selection were calculated in R.

Gene ontology analyses
GO terms were inferred using a complementary set of
methods in Blast2GO v5.2.5 [156]. We used BLASTn
(megablast) [168, 169] using QBlast (NCBI Blast Server)
and standard web blast against non-redundant nucleotide
sequences and in a second step against protein sequences.
A BLAST expectation value (e-value) threshold of 1.0E-3
was used. Only the top blast hit was retained per
orthogroup BLAST search. BLAST descriptors were ex-
tracted for later annotations. BLASTn was run with a word
size of 28, a low complexity filter, a high-scoring segment
pair (HSP) length cutoff of 33, and an HSP-hit coverage of
0. GO mapping was performed with the Goa version
2018.12 database [170]. Orthogroups were remapped with
InterProScan [171–173] using EMBL-EBI InterPro to im-
prove mapping success. Annotations were then created
using an annotation cut-off of 55, GO weight of 5, an e-value
filter of 1.0E-6, an HSP-hit coverage cut-off of 0, and a hit fil-
ter of 500. Further annotations were obtained using merging
of InterProScan GOs with existing annotations. Annotations
were then augmented by ANNEX [174]. Remaining

Table 3 Sources of transcriptome assemblies used in this study

Transcriptomes

Species Source/Accession no. Size [Mbp] Transcript count Reference

Coregonus clupeaformis
(lake whitefish)

PhyloFish (phylofish.sigenae.org, last access: 05.10.2016) 158.5 66,996 [152]

Esox lucius (northern pike) GATF00000000.1 (NCBI GenBank) 188.7 55,424 [153]

Oncorhynchus mykiss
(rainbow trout)

Salmon Transcriptome website (salmon.cgrb.oregonstate.edu,
last access: 05.10.2016)

209.2 130,599 [154]

Oncorhynchus tshawytscha
(Chinook salmon)

GSE59756 (NCBI Gene Expression Omnibus) 159.8 183,740 [155]

Salvelinus fontinalis
(brook trout)

PhyloFish (phylofish.sigenae.org, last access: 05.10.2016) 166.0 69,441 [152]

Thymallus thymallus
(European grayling)

PhyloFish (phylofish.sigenae.org, last access: 05.10.2016) 160.9 67,157 [152]

Coregonus lavaretus
(European whitefish)

earlier version of GGAO00000000.1 (NCBI GenBank; made
accessible upon request)

59.0 44,348 [88]

Salvelinus alpinus
(Arctic charr)

earlier version of GGAP00000000.1 (NCBI GenBank; made
accessible upon request)

59.5 44,354 [88]

Salmo salar
(Atlantic salmon)

earlier version of GGAQ00000000.1 (NCBI GenBank; made
accessible upon request)

63.0 44,554 [88]

Salmo trutta
(brown trout)

earlier version of GGAR00000000.1 (NCBI GenBank; made
accessible upon request)

62.0 46,308 [88]

Genome

Species Source/Accession no. Size [Mbp] Gene count Reference

Salmo salar (Atlantic salmon) GCF_000233375.1 (NCBI RefSeq assembly) 77.5 48,589 [68]
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unannotated sequences were annotated using blast descrip-
tions, applying a minimum similarity of 85 and validation of
annotations. Gene functions were inferred based on Blas-
t2GO and Uniprot/Swiss-Prot gene information for fish,
mice, and humans (last accessed on 27/01/2019).
GO term enrichment analyses were performed using

Fisher’s Exact Tests in Blast2GO on the whole dataset
and all sets of orthogroups under selection (from RELAX
and aBSREL with Bonferroni multiple correction, FDR
correction, or no correction) with FDR multiple correc-
tion (FDR threshold of 0.10). GO terms were extracted
from the Blast2GO output using custom R scripts. Over-
lap of sets of orthogroups under selection was deter-
mined with custom R scripts. Additionally, GO term
enrichment was tested using custom R scripts to see
trends in over- and underrepresentation (Blast2GO only
outputs significantly over- and underrepresented GO
terms after FDR correction). Violin plots of selection
parameter k distributions, compared across GO terms,
were plotted with the ggplot2 R package. The signifi-
cance of deviations from the null expectation of k = 1
was tested for each GO term using two-sided one-
sample Wilcoxon signed-rank tests in R.
To summarise and visualise the obtained GO terms in

the different sets of orthogroups under selection, we
used the REVIGO online analysis tool with an allowed
similarity score of GO terms of 0.9, the zebrafish refer-
ence GO term database available in REVIGO, and Sim-
Rel as semantic similarity measure (last access:
01.10.2019) [70], which makes use of a semantic cluster-
ing algorithm and the p-values from the GO term en-
richment analysis in R above. In this context, semantic
similarity refers to the degree of relatedness between
two entities/GO terms by the similarity in meaning of
their annotations [175]. REVIGO clusters GO terms of
sets of genes based on this algorithm in a two-
dimensional semantic similarity space. Additionally,
REVIGO ranks the GO terms of genes according to their
redundancy.

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) was performed on
gene symbols of zebrafish homologues of human genes
derived from Blast2GO. Zebrafish homologues were ob-
tained from http://www.informatics.jax.org/downloads/
reports/HOM_AllOrganism.rpt using a custom R script.
The selection parameter (k) values from the above RELAX
analysis were transformed into -1 to 1 scores in R, with
negative values representing relaxed selection orthogroups
and positive values representing intensified selection
orthogroups. We then used WebGestalt [176–179] on the
zebrafish gene symbols and associated transformed k
scores to derive a) the top ten enriched biological process
GO terms and b) the top ten enriched KEGG pathways in

both the relaxed and intensified orthogroups. We per-
formed 10,000 permutations for each GSEA run. All other
parameters were kept at default settings (last use:
02.10.2019).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-019-6361-2.

Additional file 1. Total set of orthogroups with associated GO terms
and results of relaxed and intensified selection analyses.

Additional file 2. Orthogroups under diversifying selection (FDR < 0.10)
in both Coregonus and Salvelinus.
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