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Abstract

Background: In forest trees, genetic markers have been used to understand the genetic architecture of natural
populations, identify quantitative trait loci, infer gene function, and enhance tree breeding. Recently, new, efficient
technologies for genotyping thousands to millions of single nucleotide polymorphisms (SNPs) have finally made
large-scale use of genetic markers widely available. These methods will be exceedingly valuable for improving tree
breeding and understanding the ecological genetics of Douglas-fir, one of the most economically and ecologically
important trees in the world.

Results: We designed SNP assays for 55,766 potential SNPs that were discovered from previous transcriptome
sequencing projects. We tested the array on ~ 2300 related and unrelated coastal Douglas-fir trees (Pseudotsuga
menziesii var. menziesii) from Oregon and Washington, and 13 trees of interior Douglas-fir (P. menziesii var. glauca).
As many as ~ 28 K SNPs were reliably genotyped and polymorphic, depending on the selected SNP call rate. To
increase the number of SNPs and improve genome coverage, we developed protocols to ‘rescue’ SNPs that did not
pass the default Affymetrix quality control criteria (e.g., 97% SNP call rate). Lowering the SNP call rate threshold
from 97 to 60% increased the number of successful SNPs from 20,669 to 28,094. We used a subset of 395 unrelated
trees to calculate SNP population genetic statistics for coastal Douglas-fir. Over a range of call rate thresholds (97 to
60%), the median call rate for SNPs in Hardy-Weinberg equilibrium ranged from 99.2 to 99.7%, and the median
minor allele frequency ranged from 0.198 to 0.233. The successful SNPs also worked well on interior Douglas-fir.

Conclusions: Based on the original transcriptome assemblies and comparisons to version 1.0 of the Douglas-fir
reference genome, we conclude that these SNPs can be used to genotype about 10 K to 15 K loci. The Axiom
genotyping array will serve as an excellent foundation for studying the population genomics of Douglas-fir and for
implementing genomic selection. We are currently using the array to construct a linkage map and test genomic
selection in a three-generation breeding program for coastal Douglas-fir.

Background
For most applications, single nucleotide polymorphisms
(SNPs) have become the marker of choice for genetic
studies in a wide array of organisms. In forest trees, they
are being used to understand the genetic architecture of
natural populations, identify quantitative trait loci in pedi-
grees or natural populations, infer gene function, and assist
tree breeding via parental analysis or genomic selection [1–
5]. SNPs are desirable because they are found at a high fre-
quency throughout the genome, codominant, usually

biallelic, biochemically simple, and amenable to high-
throughput genotyping. However, they also have lower in-
formation content than other genetic markers such as sim-
ple sequence repeats (SSRs).
High-throughput SNP genotyping is typically accom-

plished using fixed-arrays (i.e., genotyping arrays or SNP
‘chips’), PCR-based methods, or genotyping-by-sequencing
(GBS) [6, 7]. Although the PCR-based methods can be used
to genotype hundreds to a few thousand SNPs, fixed arrays
and GBS are more cost effective for thousands to millions
of SNPs. GBS is particularly desirable for some applications
because it has low ‘set-up’ costs, SNP discovery and geno-
typing may occur simultaneously, per-sample costs are low,
and there is little or no ascertainment bias in the SNP data.
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The main disadvantages of GBS are the higher proportions
of missing data (i.e., compared to fixed arrays) and the so-
phisticated bioinformatics needed to analyze the data. GBS
has been used to genotype SNPs in a number of conifer
and angiosperm tree species [1, 2, 8–10]. Compared to
GBS, the fixed-array platforms are more expensive and
time-consuming to develop, but the data are easier to
analyze, particularly using platform-specific open-
source or commercial software (e.g., [11, 12]). Finally,
genotyping arrays are better for repeatedly genotyping a
common set of SNPs over time, across experiments, or
in different populations.
Conifer genomes pose challenges for some aspects of

SNP genotyping. First, conifers are genetically diverse;
often with at least one SNP every 50 bp [13, 14]. Although
this provides ample opportunities for SNP discovery, non-
target SNPs and indels may interfere with probe or primer
binding, reducing SNP call rates. Second, nuclear genomes
of conifers are large and repetitive. In Douglas-fir, for
example, less than 50% of the 16 Gbp genome seems to
consist of single-copy sequences (i.e., based on a query se-
quence length of 32) [15]. Large genomes offer many more
opportunities for spurious probe or primer binding, which
may lead to uninterpretable results. Finally, because conifer
genomes are difficult to assemble, inter-locus variants may
be misinterpreted as allelic SNPs during SNP discovery.
Nonetheless, the design and evaluation of our Axiom array
was facilitated by the release of a draft reference genome
(v0.5) in 2015, and a newer assembly (v1.0) in 2017 [15, 16].
The main goal of this project was to develop a large-

scale SNP genotyping array for Douglas-fir; primarily for
use in breeding programs. Key objectives were to de-
velop a platform that would allow forest geneticists and
tree breeders to (1) process samples commercially (i.e.,
outsource SNP genotyping), (2) genotype thousands to
tens of thousands of SNPs, and (3) use readily available
software for SNP data analysis.
Two widely used genotyping platforms that meet these

objectives are the Illumina Infinium® and Affymetrix/
Thermo Fisher Axiom® genotyping arrays. The Infinium
array can be used to genotype up to 700 K custom SNPs
(Infinium iSelect HTS) and comes with software for data
analysis (Genome Studio® Genotyping Module). Its main
disadvantages are cost and non-overlap in some SNPs
across different manufacturing runs. We previously used
transcriptome sequencing to identify 278,979 probable
SNPs in ~ 20,000 Douglas-fir genes [17]. We then tested
a subset of these SNPs (N = 8067) using an Illumina Infi-
nium genotyping array, resulting in 5847 successful
SNPs (i.e., polymorphic SNPs that can be reliably
assayed) [17]. The Infinium array is highly robust, but
costs continue to be high on a per-sample basis [6]. The
Infinium array has been used in many other plants and
animals, including other tree species such as loblolly

pine, black cottonwood, white spruce, Norway spruce,
and eucalyptus [3, 18–21].
Here, we report the development of an Axiom array

capable of genotyping about 28 K SNPs in Douglas-fir. We
chose to develop this new, larger Axiom array to
characterize geographic variation and practice genomic
selection in Douglas-fir. Within the past few years, Axiom
arrays have been developed for many agricultural and horti-
cultural crops, including corn, strawberry, rose, rice, apple,
soybean, wheat, peanut, and chickpea [22–30]. Although
conifers present challenges because of their large gen-
ome sizes, an Axiom array has been described for inter-
ior spruce [31].
The specific objectives of this study were to (1) design

and test a large-scale Axiom genotyping array in
Douglas-fir, (2) characterize the performance of the
array and the population genetics of individual SNPs in
two populations of coastal Douglas-fir (Pseudotsuga
menziesii var. menziesii), (3) characterize the SNPs in re-
lation to the Douglas-fir reference genome sequence,
and (4) conduct a preliminary test of the array on sam-
ples of interior Douglas-fir (P. menziesii var. glauca).

Results
Array performance
We developed and tested an Axiom genotyping array de-
signed to genotype 55,766 SNPs. First, we created a
combined dataset of SNPs described by Howe et al. [17]
and Müller et al. [32] (i.e., the OSU and UH datasets,
Fig. 1). To the OSU dataset of 338,663 SNPs, we added
16,859 UH SNPs that seemed to represent novel tran-
scripts. The combined dataset was filtered using various
criteria to arrive at the final set of SNPs tested on the
array, which consisted of 52,578 SNPs from the OSU
dataset and 3188 SNPs from the UH dataset. Because
two assays were included for some SNPs, and the A/T
and C/G SNPs required two probesets each, the total
number of probesets on the array was 58,350.
The quality control (QC) thresholds used for SNP

genotyping affect the number of samples and SNPs for
which data are obtained. Thus, we evaluated array per-
formance using three QC approaches (Default, Rescue,
and Modified) and five final SNP call rates. The Default
protocol used the default Affymetrix QC thresholds
(Table S1, Additional file 1) [12]. The Rescue protocols
used the default QC thresholds for Phase 1 analysis,
followed by a Phase 2 “Rescue” step in which the final
SNP call rate was reduced from 97% to as low as 60%.
We also tested a Modified QC protocol that was de-
signed to retain more samples by lowering the sample-
level and plate-level thresholds in the Phase 1 analysis
(Table S1, Additional file 1).
Based on a combined analysis of the first coastal

Douglas-fir population (C1) and the interior Douglas-fir
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population (I1) (N = 1920), 1694 samples (88.2%) were
successfully genotyped using the Default QC protocol.
Because the four Rescue protocols used the same
sample-level and plate-level QC thresholds for Phase 1,
the number of genotyped samples was the same. When
we used the Modified protocol, the number of success-
fully genotyped samples increased to 1898 (98.9%). For
the second coastal Douglas-fir population (C2), 348 of
384 samples (90.6%) were successfully genotyped using

the Default and Rescue protocols, and 376 (97.9%) were
successfully genotyped using the Modified protocol.
To assess array performance and repeatability, we

assayed SNP success using all samples (i.e., including inde-
pendent samples from the same tree). Using the Default
QC thresholds (with a final SNP call rate threshold of
97%), we were able to genotype 16,177 SNPs in the C1/I1
set of samples and 18,932 SNPs in the C2 population. This
is an average of 17,555 SNPs across both populations, and

Fig. 1 Flow chart of steps used to select SNPs for the Axiom genotyping array. SNPs on the Axiom array were selected from the Oregon State
University (OSU) dataset described by Howe et al. [17] and the University of Hohenheim (UH) dataset described by Müller et al. [32]. ‘Discovered
SNPs’ are the starting SNPs and isotigs from each dataset. Isotigs are transcript variants assembled using the Newbler de novo assembler. ‘Novel
SNPs’ are SNPs in novel UH transcripts, which are transcripts missing from the OSU transcriptome [17]. ‘High-confidence SNPs’ are OSU SNPs with
a target SNP probability (PS) < 0.001 or UH SNPs detected by 2 or 3 SNP detection programs. ‘Infinium genotyped SNPs’ are OSU SNPs previously
genotyped using an Infinium genotyping array [17]. ‘Evaluated SNPs’ are the SNPs evaluated for suitability of flanking sequences. ‘Buildable SNPs’
are SNPs with at least one 35-nt flanking sequence with no other (i.e., non-target) high-confidence SNPs or indels. ‘Total buildable SNPs’ are the
combined OSU and UH SNPs that were ranked for inclusion on the Axiom array using the variables described in Table 2
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31.5% of the 55,766 putative SNPs tested on the array
(Table 1). We also examined four Rescue protocols, with
final SNP call rate cut-offs ranging from 90% down to 60%
(Table 1). Averaged across both populations, the number
of successful SNPs for the Rescue protocols varied from
20,926 to 25,037 (37.5 to 44.9% conversion). The average
number of successful SNPs for the Modified protocol was
22,742 (40.8% conversion; Table S1, see Additional file 1).
Each of the analyzed populations (C1/I1 and C2) had suc-
cessful SNPs that were non-polymorphic in the other
population. Thus, if we sum across both populations, the
numbers of successful SNPs were considerably higher,
ranging from 20,669 for the default QC threshold (97%
call rate) to 28,094 for the Rescue protocol using a 60%
call rate (37.1 to 50.4% conversion; Table 1). For the
Modified protocol, the number of successful SNPs was
25,794 across both populations (46.3% conversion). SNP
success was also assayed for two subsets of unrelated
coastal Douglas-fir trees (Table S2, see Additional file 1),
and results across both populations are shown in Fig. 2.
These data were based on 112 unrelated trees from popu-
lation C1 and 283 trees from C2 analyzed using the De-
fault QC protocol, plus the four Rescue protocols.
We measured genotyping accuracy using duplicate sam-

ples from 58 trees, each genotyped using one to three

independent DNA isolations. Excluding missing values,
genotyping accuracy was at least 98.4% (i.e., using the Res-
cue protocol with a final SNP CR of 60%). The inferred al-
lele accuracy for this protocol was 99.2%, with 9.8%
missing values. The highest genotyping accuracy was
99.3% for the Default protocol. The inferred allele accur-
acy for this protocol was 99.6%, with 2.5% missing values.

Array design variables as predictors of genotyping success
To understand which factors affected probeset success,
we first studied whether probeset success was associated
with our array design variables (Table 2). Probeset suc-
cess was 50.0% overall, but higher for selected categories
of SNPs and probesets. Not surprisingly, genotyping
success was much higher (74.5%) using probesets that
targeted SNPs that had already been validated using an
Infinium array. Probeset success was associated with
other array design variables, but to a lesser extent.
Among the four transcript ranking variables, the number
of hits to scaffolds was the best predictor of probeset
success. Probeset success was 58.5% when the SNP se-
quence (71 nt) had a single scaffold hit (Table 2). Among
the probeset-within-transcript variables, pConvert was
most closely associated with probeset success. Probesets
with pConvert scores in the upper quartile (Q3) had a

Table 1 Percentages of successful SNPs using an Axiom genotyping array in Douglas-fir

SNP categoryb Final SNP call rate thresholda Affymetrix abbreviation [11]

Default Rescue

97% 90% 80% 70% 60%

Off-target variant 1 1 1 1 1 OTV

Other 30 29 26 24 23 Other

Call rate below threshold 8 3 2 2 2 CallRateBelowThreshold

Not Converted 40 34 30 27 26 OTV + Other + CallRateBelowThreshold

No minor homozygote 13 13 13 13 13 NoMinorHom

Monomorphic high resolution 16 16 16 16 16 MonoHighResolution

Polymorphic high resolution 31 31 31 31 31 PolyHighResolution

Rescued – 6 10 13 13 Rescued from Other and CallRateBelowThreshold

Convertedc 60 66 70 73 74 PolyHighResolution + NoMinorHom +
MonoHighResolution + Rescued

Percent successful (population ave) 31.5 37.5 41.6 44.0 44.9 PolyHighResolution + Rescued

Number successful (population ave) 17,555 20,926 23,223 24,548 25,037 PolyHighResolution + Rescued

Percent successful (population sum) 37.1 42.9 46.9 49.5 50.4 PolyHighResolution + Rescued

Number successful (population sum) 20,669 23,917 26,180 27,616 28,094 PolyHighResolution + Rescued
aWe applied QC thresholds in one or two phases of analysis. The Default protocol consisted of the default Affymetrix parameters, including a CR threshold of 97%.
In the Rescue protocols, we used the Default thresholds for phase 1, but then applied lower CR thresholds (60–90%) to the Other and CallRateBelowThreshold
categories in phase 2
bSNPs (N = 55,766) were classified into six categories (OTV, Other, CallRateBelowThreshold, NoMinorHom, MonoHighResolution, PolyHighResolution) and one
Rescued category. Successful SNPs were those that were polymorphic with a call rate (CR) exceeding the indicated CR threshold after one or two phases of
analysis with alternative quality control (QC) thresholds. Table values are averages from two populations (C1/I1 and C2) that were analyzed separately, except for
the ‘population sum’ rows, which are based on sums. The C1/I1 population consisted of coastal Douglas-fir (N = 1682) and interior Douglas-fir (N = 12) samples
that passed QC thresholds and were analyzed together. The C2 population consisted of coastal Douglas-fir (N = 348) samples that passed QC thresholds and were
analyzed independently
cConverted SNPs were those that were successfully assayed using the Default or Rescue protocol, but not necessarily polymorphic
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probeset success of 57.7% (Table 2). We also derived a
final ranking variable that combined the among-
transcript and within-transcript information. The best
category of this variable (lower quartile; Q1) had a pro-
beset success of 61.5%.
Based on logistic regression, the best predictor of probe-

set success was the number of hits to scaffolds (a tran-
script ranking variable), followed by pConvert and the
target SNP probability (Table 3; columns labeled “Array
design variables”). The receiver operating characteristic
(ROC) curve for this logistic model is presented in Fig. 3.
The ROC curve shows how we can control the accuracy
of SNP discovery using logistic regression. Accuracy is
measured by plotting the true positive rate (on the Y-axis)
versus the false positive rate (on the X-axis). True positive
rate is the proportion of real SNPs that are correctly iden-
tified. It is also called sensitivity because a highly sensitive
SNP classifier would identify most of the real SNPs. The
false positive rate is the proportion of false SNPs that are
incorrectly classified as SNPs. A highly specific SNP classi-
fier would have a low false positive rate. Using logistic re-
gression, one can choose a SNP probability threshold that
meets certain objectives. For example, using the final se-
lected variables (Table 3, Fig. 3) and a predicted SNP
probability of 0.5, we could achieve a true positive rate of
76.9% and a false positive rate of 44.9% (Fig. 3, data not
shown). That is, we could have refined our set of selected

SNPs, identifying almost 80% of the true SNPs, while re-
ducing the false positive rate slightly, from 47.8 to 44.9%.
These results suggest our ad hoc approach to SNP selec-
tion worked well. However, in the future, we could use
our logistic model directly.

Affymetrix variables as predictors of genotyping success
Affymetrix calculated a Repetitive variable (T, F) based on
v0.5 of the Douglas-fir reference genome. We generally
excluded repetitive probesets, except 969 probesets for
SNPs that had been successfully genotyped using the Infi-
nium array. Of these, 651 (67.2%) were successfully geno-
typed. After filtering repetitive probesets, array design
focused on the pConvert variable. The average pConvert
score was slightly higher for the successful probesets
(0.615) than for the unsuccessful probesets (0.595) (Table
2). Furthermore, a wide range of pConvert scores was as-
sociated with the successful probesets. For example, after
excluding the repetitive probesets described above, the
pConvert scores for the successful probesets ranged from
0.258 to 0.862, and 38 successful probesets had pConvert
scores below the boundary of 0.4 between the ‘neutral’
and ‘not recommended’ categories. For the unsuccessful
probesets, the pConvert scores were slightly lower, ran-
ging from 0.106 to 0.832. The Affymetrix Recommenda-
tion variable is based on bins of pConvert. We excluded
the ‘not possible’ category, and except for the SNPs that

Fig. 2 SNP performance and population genetic statistics versus SNP call rate threshold in Douglas-fir. Using all related and unrelated trees in the
study, we identified polymorphic SNPs using SNP call rate (CR) thresholds of 60, 70, 80, 90, and 97%. These successful SNPs were then tested on
two populations of unrelated trees (NC1 = 112 and NC2 = 283). The values in the figure are median values averaged across the two populations for
SNPs that were polymorphic and in HWE (P ≥ 0.01). CR is the measured SNP call rate (percent/100), HETobs is observed heterozygosity, PIC is
polymorphic information content, MAF is minor allele frequency, and SNPs are the numbers of polymorphic SNPs in HWE. The scale on the right
vertical axis shows the number of SNPs (dashed line), whereas the scale on the left is for all other variables (solid lines)

Howe et al. BMC Genomics            (2020) 21:9 Page 5 of 17



Table 2 Transcript and probeset ranking variables versus genotyping success using an Axiom genotyping array

Variable No. of
probesets

Category
or mean

Percent or mean Number

Success Fail Success Fail

Transcript ranking variablesa

No. of hits to scaffoldsb (transcript mean) (v0.5) 58,350 1 58.5 41.5 18,745 13,286

> 1 41.5 58.5 9403 13,242

0 27.5 72.5 1011 2663

Transcript confidence scoreb (absent for UH SNPs) 54,625 Higher 55.8 44.2 13,987 11,087

Lower 49.6 50.4 14,663 14,888

No. of SNPs per transcriptc 58,350 Mean 12.00 10.36 29,159 29,191

Q3 56.2 43.8 9202 7173

Q1 43.5 56.5 7375 9570

Combined rankc (transcripts) 58,350 Mean 27,252.2 31,096.5 29,159 29,191

Q1 52.5 47.5 7659 6930

Q3 35.7 64.3 5214 9375

Probeset-within-transcript ranking variables

Infinium successb,d 6173 SNP success 74.5 25.5 4598 1575

Probability of flanking SNPsb,e 58,350 Low 50.8 49.2 27,732 26,844

Moderate 37.8 62.2 1427 2347

No. of perfect allelesb (percent identity = 100%)(v0.5) 58,350 1 53.5 46.5 23,916 20,799

0 39.2 60.8 5042 7810

2 25.7 74.3 201 582

pConvertc 57,381 Mean 0.615 0.595 28,508 28,873

Q3 57.7 42.3 8319 6087

Q1 41.5 58.5 6429 9059

Target SNP probabilityb,f (OSU SNPs) 53,958 P < 0.0001 55.0 45.0 24,600 20,138

P < 0.001 39.7 60.3 3658 5562

Target SNP probabilityb (UH SNPs) 3725 3 programs 23.3 76.7 128 422

2 programs 12.0 88.0 381 2794

Final rankc,g (transcripts and probesets-within-transcripts) 58,350 Mean 27,891.8 30,457.6 29,159 29,191

Q1 61.5 38.5 8966 5622

Q3 46.6 53.4 6800 7788

Other variables

Recommendationb,h 57,295 Recommended 54.7 45.3 17,779 14,748

Neutral 43.2 56.8 10,691 14,078
aTranscripts refer to the Newbler isotigs [17] or putative transcripts [32] used for SNP discovery. v0.5 is version 0.5 of the Douglas-fir reference genome. UH SNPs
were those detected by Müller et al. [32], whereas OSU SNPs were those detected by Howe et al. [17]
bFor the categorical variables, percentages and numbers of probesets are reported for each category and means are absent. All differences among categories
were highly significant (P < 0.0001) using a likelihood ratio chi-square test
cFor the ranks and continuous variables, means are reported in bold, and percentages and numbers of probesets are reported for the upper (Q3) and lower (Q1)
quartiles. Categories are ranked by probeset success. Successful SNPs were those that had a call rate > 60% and were polymorphic. All differences between means
were highly significant (P < 0.0001) using a T-test (non-rank variables) or a Wilcoxon rank test (Combined rank and Final rank variables)
dFor SNPs successfully genotyped with the Infinium platform, Axiom probeset success (74.5%) was significantly greater than the overall probeset success rate of
50.0% (P < 0.0001)
eLow (rank = 1) or moderate (rank = 2) chance of having flanking SNPs or indels
fThe P < 0.001 category indicates that 0.0001 ≤ P < 0.001
gThe final probeset rank was based on the combined transcript rank plus the probeset-within-transcript variables
hThe Affymetrix Recommendation variable was not used to select probesets because it is a categorical variable derived from pConvert
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had been successfully genotyped using the Infinium array,
we also excluded the ‘not recommended’ category. Geno-
typing success differed between the remaining categories,
being 54.7% for the ‘recommended’ category and 43.2%
for the ‘neutral’ category (Table 2).

Genomic context as a predictor of genotyping success
After the array was constructed, we calculated new
BLAST variables using an updated version of the reference
genome (v1.0). For these SNP-level analyses, the average
genotyping success was 50.4%. SNP success was 52.5% for
the OSU SNPs (tested SNPs = 52,578) and 14.6% for the
UH SNPs (tested SNPs = 3188). For the top category of
each BLAST variable, SNP success ranged from 50.9 to
61.0% (Table 4). The best variable was the difference in
percent identity (PID) between the best hit and second-
best hit. Although we grouped these differences into cat-
egories for statistical analysis (Table 4), this difference was
16% PID for the successful SNPs and 11% for the failed
SNPs. The number of hits to scaffolds was also a good
predictor of SNP success. SNP success was 60.9% for
SNPs that had only one hit, 29.1% for SNPs that had more
than one hit, and 17.3% for SNPs with no hits. We also
conducted logistic regression using selected array design
variables plus new variables based on version 1.0 of the
reference genome (Table 3). Based on these analyses, the
best predictor of SNP success was the difference in PID
between the best hit and second-best hit, followed by the
target SNP probability and pConvert score (Table 3; Final

selected variables). The ROC curve for the logistic model
is presented in Fig. 3.

Genomic distributions of SNPs
Based on the transcriptome assemblies used for SNP
discovery [17, 32], successful SNPs were associated with
15,038 putative transcripts (isotigs). We also evaluated
genome coverage by counting the number of best hits for
scaffolds, singletons, gene models, and transcripts using
version 1.0 of the reference genome. Of the 28,094 success-
ful SNPs, 27,936 had matches to v1.0 of the reference
genome. These 27,936 successful SNPs were associated
with 10,428 scaffolds, 181 singletons, 7159 gene models,
and 9852 transcripts. Of the 10,428 scaffolds with SNPs,
3744 had a single SNP and 6684 had more than one SNP.
For the latter group, the average distance between adjacent
SNPs was 52,043 nt.

Population genetic statistics and effects of QC thresholds
Population genetic statistics for SNPs that were success-
fully genotyped and in Hardy-Weinberg equilibrium
(HWE; P ≥ 0.01) are reported in Fig. 2 and Table S2 (see
Additional file 1). These data were based on the unre-
lated trees from the coastal Douglas-fir populations (C1
and C2, described in Methods) using the Default QC
protocol plus the four Rescue protocols. The statistics
differed little between the C1 and C2 populations (data
not shown), but there was a very slight decrease in SNP
diversity as the CR threshold was increased from 60 to

Table 3 SNP ranking variables versus genotyping success using an Axiom genotyping array and stepwise logistic regression

Variable DF Array design variables (ROC area = 0.6449)a Final selected variables (ROC area = 0.6781)a

Step
entered

Chi-square
statistic

Chi-square
probability

Step
entered

Chi-square
statistic

Chi-square
probability

Scaffold PID (best-hit – second-best hit) (v1.0)b 1 – – – 1 4557.23 < 0.0001

No. of hits to scaffolds (transcript mean) (v0.5)c,d 2 1 1531.38 < 0.0001 – – –

Target SNP probability 1 3 642.62 < 0.0001 2 588.16 < 0.0001

pConvert 1 2 730.04 < 0.0001 3 291.26 < 0.0001

Number of perfect alleles (PID = 100%) (v0.5)c 2 4 302.18 < 0.0001 – – –

Number of SNPs per transcriptd 66 5 285.60 < 0.0001 – – –

Number of hits to singletons (v1.0)b 2 – – – 4 141.07 < 0.0001

Number of hits to gene models (v1.0)b 2 – – – 5 85.06 < 0.0001

Number of hits to scaffolds (v1.0)b 2 – – – 6 31.73 < 0.0001

Probability of flanking SNPs 1 6 43.55 < 0.0001 7 20.08 < 0.0001

Scaffold second-best hit PID (v1.0)b 1 – – – 8 21.18 < 0.0001

Transcript confidence score 1 7 6.77 0.0093 9 12.91 0.0003

No. of hits to reference transcripts (v1.0)b 2 – – – 10 14.67 0.0007
aArray design variables included variables calculated using v0.5 of the Douglas-fir reference genome. After genotyping, alternative variables were calculated using
v1.0 of the reference genome and included in the set of final selected variables. Successful SNPs were those that had a call rate > 60% and were polymorphic.
ROC area is the area under the receiver operating characteristic curve using cross-validation
bv1.0 variables are the number of BLAST hits or percent identities (PID) using v1.0 of the Douglas-fir reference genome (scaffolds, singletons, gene models, or
transcripts) as the target and SNP sequences (71-mers) as the queries
cv0.5 variables were calculated using BLAST, Douglas-fir reference scaffolds (v0.5) as the target, and SNP sequences (71-mers) as the queries
dExcept for ‘reference transcripts,’ ‘transcript’ refers to the Newbler isotigs used for SNP discovery by Howe et al. [17]
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97% (Fig. 2). Across both populations, for example, me-
dian MAF was 0.233 and HETobs was 0.352 using a call
rate threshold of 60%, but these values decreased to
0.198 and 0.314 using the Default QC protocol with a
call rate of 97% (Table S2, Additional file 1). Similar
trends were seen for HETexp and PIC. Because of SNP
selection, the distribution of MAF was quite flat (Fig. 4).

Discussion
We designed and tested an Axiom genotyping array for
Douglas-fir. The array included SNP assays for 55,766
potential SNPs that were discovered from transcriptome
sequencing projects described by Müller et al. [32] and
Howe et al. [17]. Because the SNPs were derived from
transcriptome sequences, the array targets SNPs in the

Fig. 3 Receiver operating characteristic (ROC) curves for two sets of variables used to predict SNP genotyping success in Douglas-fir. a Shows the
predictive ability of variables used to design the Axiom array (Table 3). Some of these variables were calculated using an earlier version of the
Douglas-fir reference genome (v0.5) [16]. b Shows the predictive ability of alternative design variables. We replaced some of the original design
variables with new variables calculated using v1.0 of the Douglas-fir reference genome [16], resulting in the final selected variables described in
Table 3. ROC curves are used to evaluate binary predictive models (e.g., predictions of SNP success versus failure). Successful SNPs were those
that had a call rate > 60% and were polymorphic
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Table 4 SNP ranking variables versus SNP genotyping success using an Axiom genotyping array

Variablea No. of SNPs Category Percent Number

Success Fail Success Fail

Percent identity (PID)b,c

Scaffold PID (best hit) 55,766 > 80 50.9 49.1 27,936 26,906

≤ 80 17.1 82.9 158 766

Scaffold PID (second-best hit) 55,766 ≤ 80 59.9 40.1 22,775 15,218

> 80 29.9 70.1 5319 12,454

Scaffold PID (best-hit, second-best hit) 55,766 > 80, ≤ 80 61.0 39.0 22,617 14,452

> 80, > 80 29.9 70.1 5319 12,454

≤ 80, ≤ 80 17.1 82.9 158 766

Number of hitsb

Number of hits to scaffolds 55,766 1 60.9 39.1 22,946 14,753

> 1 29.1 70.9 4980 12,115

0 17.3 82.7 168 804

Number of hits to singletons 55,766 0 51.5 48.5 27,922 26,319

1 11.8 88.2 79 589

> 1 10.9 89.1 93 764

Number of hits to gene models 55,766 1 55.8 44.2 10,760 8522

0 50.8 49.2 16,208 15,705

> 1 24.6 75.4 1126 3445

Number of hits to reference transcripts 55,766 1 54.1 45.9 12,389 10,529

> 1 47.9 52.1 3618 3943

0 47.8 52.2 12,087 13,200
aSNP variables are the numbers of BLAST hits or percent identities (PID) using v1.0 of the Douglas-fir reference genome (scaffolds, singletons, gene models, or
transcripts) as the target and SNP sequences (71-mers) as the queries. Percentages and numbers of SNPs are reported for each category. Successful SNPs were
those that had a call rate > 60% and were polymorphic
bAll differences among categories were highly significant (P < 0.0001) using a likelihood ratio chi-square test
cSNP blast hits were categorized as either > 80% or ≤ 80% identity (PID)

Fig. 4 Distributions of minor allele frequencies for successful Douglas-fir SNPs. Open bars represent successful SNPs, whereas solid bars represent
successful SNPs that were in Hardy-Weinberg Equilibrium (HWE; P ≥ 0.01). Successful SNPs were SNPs that were polymorphic and had SNP call
rates > 60%. Minor allele frequencies are averaged across two populations of unrelated trees (C1 = 112 trees and C2 = 283 trees)
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expressed genes of the Douglas-fir genome. This approach
was chosen to obtain good genome coverage and increase
the likelihood that SNPs would be linked to quantitative
traits. The array was primarily designed to practice genomic
selection, but the validated SNPs will also be valuable for
population genetic studies, pedigree-based QTL analyses,
evaluation of candidate genes, genome-wide association
genetics, and tree breeding activities such as verifying
breeding materials, managing inbreeding, characterizing
mating systems, and measuring pollen contamination in
seed orchards. We used an array-based approach, rather
than large-scale GBS, because our aim is to transfer these
markers to tree breeders. Using the Axiom array, genotyp-
ing can be easily outsourced and the data can be analyzed
using user-friendly, array-specific software [11, 12].

Array performance
In this section, we focus on the performance of the array
itself, which we evaluated by testing the array on trees of
coastal and interior Douglas-fir. Ultimately, we evaluated
SNP success based on 2042 samples (88.6%) that passed
the default Affymetrix QC thresholds. Across all Douglas-
fir samples, as many as ~ 28 K SNPs were successfully
genotyped and polymorphic, depending on the SNP call
rate threshold. We worked with Affymetrix bioinformati-
cists to develop protocols to ‘rescue’ SNPs that did not pass
the default Affymetrix QC criteria (e.g., 97% SNP call rate).
Lowering the call rate threshold from 97 to 60% using the
custom R scripts (R script S1, Additional file 1) increased
the number of successful SNPs from 20,669 to 28,094,
resulting in conversion rates of 37.1 to 50.4%. Based on pre-
liminary analyses, these are enough SNPs to practice gen-
omic selection in a typical Douglas-fir breeding population.
We evaluated SNP call rate thresholds as low as 60% be-

cause genomic selection can be effective with substantial
amounts of missing data. Using data imputation, for ex-
ample, Rutkoski et al. [33] concluded that genomic selec-
tion was possible with up to 70% missing data. However,
even using a call rate threshold of 60%, the average call rate
for our successful SNPs was 96.1% (i.e., less than 4% miss-
ing data overall). Furthermore, even at the 60% call rate,
genotyping accuracy was 98.4%. By including SNPs with
modest or low call rates (i.e., below the default call rate
threshold of 97%), it may be possible to improve genome
coverage, thereby improving the performance of these
SNPs for applications such as genetic mapping, genome
assembly, parentage assignment, and genomic selection.
The Axiom array is used to measure hybridization

intensities between allele-specific probes and target gen-
omic sequences. Statistical algorithms are then used to
infer genotypes by clustering the hybridization inten-
sities and classifying the SNPs into one of six classes:
PolyHighResolution, MonoHighResolution, NoMinorHom,
CallRateBelowThreshold, OTV, and Other. Examples of

the six types of clustering patterns are included in Liu
et al. [34] and Affymetrix [11]. However, using custom R
scripts, we reclassified some SNPs into a seventh Res-
cued class.
SNP calls were made for the PolyHighResolution, Res-

cued, MonoHighResolution, and NoMinorHom classes
(i.e., these classes were ‘converted’ into SNP genotypes;
Table 1). The PolyHighResolution and Rescued SNPs
were considered ‘successful’ because they were reliably
genotyped and polymorphic. Using the default thresh-
olds, the PolyHighResolution SNPs had three well-
defined clusters representing the diploid genotypes AA,
AB, and BB. In contrast, the Rescued SNPs were reclassi-
fied from the CallRateBelowThreshold and Other classes
by lowering the final SNP call rate and by implementing
a more stringent (lower) confidence score threshold. Av-
eraged across the two populations, 31 to 45% of SNPs
were successfully genotyped, depending on the final call
rate threshold. The three largest remaining classes (i.e.,
after excluding the successful SNPs) were Other, Mono-
HighResolution, and NoMinorHom.
The Other class consisted of SNPs that could not be

grouped into a few discrete clusters and did not fall into
any of the other default classes. Using the default QC
thresholds, 30% of SNPs were classified as Other. This is at
least twice that reported in some species of plants and ani-
mals [23, 30, 35–37], but may not be unusual for conifers.
For example, the Other category represented at least 30% of
SNPs in lodgepole pine (Pinus contorta), loblolly pine
(Pinus taeda), and interior spruce (Picea glauca, Picea
engelmannii, and their hybrids) (F. Isik and S. Yeaman, pers.
comm). The large Other class probably results from the
large, repetitive genomes of conifers, and the resulting chal-
lenges imposed on genome assembly and SNP discovery
(see Introduction). Although we reduced this class from 30
to 23% of SNPs using the rescue protocols, this was still the
largest class of SNPs that did not convert.
SNPs may occur in the Other class because of poor

thermodynamics of the probe, non-target hybridization,
and SNPs in the flanking region (i.e., SNPs in the probe
target sequence). Non-target hybridization can occur
when there are other sequences in the genome similar to
the probe. We attempted to avoid this by considering
two Affymetrix variables during array design. For the
most part, we excluded SNPs when the Affymetrix Re-
petitive variable was ‘T’ (true). That is, when the number
of 16-mer hits between the SNP sequence and the refer-
ence genome (v0.5) exceeded 300 hits. We also used the
Affymetrix pConvert score to help select SNPs. The
pConvert value reflects the thermodynamics of the
probe and the number of 16-mer matches in the gen-
ome. However, we calculated additional BLAST variables
that also helped predict SNP success (i.e., using the SNP
sequence as query and reference genome v1.0 as target).
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The best predictor of SNP success was the difference in
percent identity between the best hit and second-best
hit. This difference, which was 16% for successful SNPs
versus 11% for failed SNPs, could be used to increase
the number of successful SNPs in new Douglas-fir arrays
or other species. The numbers of hits to scaffolds, sin-
gletons, gene models, and transcripts of reference gen-
ome v1.0 were also significantly related to SNP success,
but to a lesser degree. Finally, because the probability of
flanking SNPs was significantly related to SNP success,
this variable might also be used to reduce the number of
SNPs in the Other class.
SNPs in the MonoHighResolution class (16% of SNPs)

were monomorphic. These putative SNPs may have been
transcriptome sequencing errors, or real SNPs found in
the SNP discovery population [17] that were not segregat-
ing in our validation populations. The discovery popula-
tion consisted of trees sampled across much of the
species’ range, but for SNP validation, we used different
trees that were less widely distributed. Furthermore, al-
though we included interior Douglas-fir for SNP discovery
[17], we included only 13 interior Douglas-fir trees in this
study. Monomorphic genotypes can also result from er-
rors during SNP discovery; i.e., by misinterpreting loci as
alleles during transcriptome assembly, or by concluding
that sequencing errors are true SNPs. In any case, we did
not count these monomorphic SNPs as successful because
they were uninformative in our validation populations.
The NoMinorHom class (13% of SNPs) may consist of

SNPs with particularly low MAFs, or SNPs with segrega-
tion distortion, such as SNPs linked to recessive genes
with deleterious effects. In either case, we did not count
these as successful SNPs because they would probably be
excluded from most applications. Overall, it should be
possible to reduce the proportion of MonoHighResolution
and NoMinorHom SNPs by enhancing the detection of
high-MAF SNPs during SNP discovery. For the final se-
lected variables (Table 3), target SNP probability was the
second-best predictor of SNP success. Thus, it should be
possible to reduce the MonoHighResolution and NoMinor-
Hom classes by lowering the SNP probability threshold.
Given the declining costs of high-throughput sequencing,
this can be easily accomplished by increasing read cover-
age. Variables associated with genomic context helped
identify successful SNPs (Table 3). Presumably, this may
be partly due to avoidance of transcriptome assembly er-
rors. The availability of improved genome assemblies
should help improve SNP discovery in the future.
The CallRateBelowThreshold class consisted of SNPs

that did not meet the call rate threshold, but did have
acceptable cluster properties. Using the rescue protocols,
this class was reduced from about 8% of SNPs using the
default thresholds (call rate = 97%) to 2% using a final
call rate of 60%.

The final class of SNPs, the off-target variants (OTV),
are SNPs with unexpected, low-intensity clusters that
probably resulted from mismatches between the array
probe and genomic target sequence [38]. In diploids, the
resulting patterns can be interpreted as either AA, AB,
BB, and OTV, or AA, BB, and OTV. These OTV clusters
are often miscalled as heterozygotes [39]. Although it
might have been possible to call some of these SNPs
using the OTV_Caller function [11], we did not do this
because the proportion of OTV SNPs was only 1%.

SNP characteristics
We evaluated SNP markers based on their genome cover-
age and population genetic statistics. Based on the tran-
scriptome assemblies used for SNP discovery [17, 32],
successful SNPs were associated with 15,038 putative tran-
scripts. We also evaluated genome coverage by counting
the number of best hits for scaffolds, singletons gene
models, and transcripts using v1.0 of the reference gen-
ome. Based on these analyses, successful SNPs were associ-
ated with 10,428 scaffolds, 181 singletons, 7159 gene
models, and 9852 transcripts. Thus, we conclude that we
can genotype about 10 K to 15 K gene loci using the
Axiom array. Eventually, relationships among these loci
will be clarified using linkage mapping and BLAST ana-
lyses using updated versions of the reference genome.
We used a subset of 395 unrelated trees to calculate

SNP population genetic statistics for coastal Douglas-fir.
These analyses included as many 24,744 successful SNPs
averaged across the two test populations (60% call rate
threshold), 22,896 of which were judged to be in HWE
(P ≥ 0.01). We also tested HWE using other P-values and
multiple comparison adjustments, and these results are
available in Data file S1 (see Additional file 2). Over a
range of call rate thresholds (97 to 60%), the median call
rate for SNPs in HWE ranged from 99.2 to 99.8%, and
the median MAF ranged from 0.198 to 0.233. Fig. 2
demonstrates that observed heterozygosities were also
high and only modestly affected by the call rate thresh-
old. The high diversity of these SNPs makes them par-
ticularly desirable for parental assignment and genomic
prediction. However, ascertainment bias should be con-
sidered when using these SNPs for other purposes. Be-
cause the SNPs on the array were highly selected, MAF
is inflated compared to a random sample of SNPs.

Conclusion
The Axiom genotyping array will serve as an excellent
foundation for implementing genomic selection in
Douglas-fir. Overall, the successful SNPs (~ 28 K) have high
call rates, are well distributed across the genome, have high
MAFs, and target expressed genes. The biggest hurdle for
implementing genomic selection is the per-sample cost,
which may exceed the cost of progeny testing by several
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fold. Thus, reducing the costs of SNP genotyping will be
important. Smaller numbers of SNPs will probably be opti-
mal for validating genotypes, assigning parentage, estimat-
ing coancestry, tracking inbreeding, analyzing mating
systems, and estimating pollen contamination in seed or-
chards. We currently use simple-sequence repeat markers
(SSRs) for these latter purposes [40], but switching to SNPs
would facilitate greater automation of genotyping and data
analysis. Custom Axiom arrays are available for 300 to mil-
lions of SNPs. However, because fewer than 300 SNPs are
needed for some applications, it will be valuable to convert
some of the Axiom SNP assays to smaller platforms. For
example, we developed cost-efficient Sequenom assays for
some of these SNPs, and other low-density platforms are
available [6].
Our results indicate that SNP pre-screening would be

valuable for large genotyping projects (e.g., > 2000 to
4000 samples). Although we demonstrated that improve-
ments in SNP filtering can increase SNP success, the
proportion of successful SNPs would increase dramatic-
ally by using pre-screening to exclude the unsuccessful
SNPs on the final array. This step would be particularly
desirable when the number of samples is much larger
than the minimum order size, which is currently 480
samples for the Axiom array [41]. For example, if we
had genotyped many thousands of trees, we may have
reduced costs by manufacturing a second-generation
array with less than half the number of SNPs. Further-
more, the costs of SNP validation could also be reduced
by pooling samples across species. The minimum order
size for Axiom arrays (480 samples) is larger than what
should be needed for estimating assay performance (e.g.,
SNP call rate) and detecting SNPs with MAFs greater
than 0.05. For example, only 59 or 90 trees should be
needed to detect these SNPs at a success rate of 95% or
99%, respectively. Thus, one could reasonably validate
SNPs for five to eight species simultaneously using as
few as 480 samples.

Methods
Plant materials
SNP genotyping was conducted on two populations of
coastal Douglas-fir (C1 and C2) and one population of in-
terior Douglas-fir (I1). C1 consisted of 1825 trees (1907
samples) from two breeding populations managed by the
Northwest Tree Improvement Cooperative: Coos Bay Low
and South Central Coast. Trees were selected using three
cycles of breeding and testing. The first-cycle selections
consisted of 61 trees from native stands in coastal south-
ern Oregon, plus 7 of their progeny growing in first-cycle
field tests (i.e., 5 open-pollinated trees and 2 controlled-
cross progeny). Next, we selected 609 trees from the
second-cycle field tests; i.e., controlled-cross progeny of
first-cycle selections. Finally, we genotyped 1033 progeny

of the second-cycle selections. These trees came from 24
full-sib families that were growing in the greenhouse. Be-
cause some inter-generational crosses were used, the
resulting pedigree was complex. In addition to these pedi-
greed trees, we genotyped 59 trees from a single woodsrun
seedlot and 56 trees of uncertain parentage. Because the
duplicated tree samples were handled separately (i.e., inde-
pendent DNA isolations and SNP genotyping), these sam-
ples were included in analyses designed to test array
performance. However, we used 112 unrelated trees (one
sample per tree) to calculate population genetic statistics.
Some of the unrelated C1 trees were derived from crosses
between trees collected from different geographic loca-
tions. C2 consisted of 384 coastal Douglas-fir trees from
western Oregon and Washington (one sample per tree).
We used these trees to help judge the performance of the
Axiom array, and then selected 283 unrelated trees for cal-
culating population genetic statistics. The I1 samples con-
sisted of foliage collected from 13 trees in native stands.
All of the genotyped trees described above came from
the same broad areas that were sampled for SNP dis-
covery [17, 32]. For each C1, C2, and I1 sample, 10–15
young needles were placed in vials with granular silica
gel desiccant (Activa Flower Drying Art), and then
stored at room temperature. Once dry, 3 needles were
cut into ~ 2 mm lengths, placed in 96-well plates, and
then stored at − 20 °C.

DNA isolation
Dry needles were pre-treated with liquid nitrogen, and
then pulverized in a shaker with tungsten beads for two
cycles of 60s at 20 Hz. DNA was isolated using the
DNeasy-96 Plant Kit (Qiagen), with the addition of a
proteinase-K treatment. DNA concentrations were mea-
sured using the Pico Green fluorescent dye (Invitrogen)
and a Gemini XPS microplate reader (Molecular De-
vices). Samples with concentrations ≥ 20 ng·μl− 1 were
used for SNP genotyping.

Selection of SNPs for the Axiom array
SNPs tested on the Axiom array were derived from the
Oregon State University (OSU) dataset described by Howe
et al. [17] and the University of Hohenheim (UH) dataset
described by Müller et al. [32]. The OSU discovery panel
consisted of coastal Douglas-fir trees sampled across Ore-
gon and Washington, plus interior Douglas-fir trees col-
lected across much of its range [17]. The UH discovery
panel consisted of Douglas-fir trees from British Colombia,
Washington, Colorado, and New Mexico [32]. For the OSU
SNPs, we used SNP probabilities and past genotyping suc-
cess to select SNPs for the Axiom array. PS and PF are the
p-values associated with a SNP being a true target SNP or a
true variant in the SNP flanking region (i.e., SNP or indel).
These were calculated using the methods described by Wei
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et al. [42], using a MAF value of 0.01 and sequence error
rate of 0.01 [17]. From the OSU dataset of 676,030 SNPs,
we selected a total of 338,663 SNPs to be evaluated for in-
clusion on the Axiom array (Fig. 1). Of these, 337,938 were
selected because they were detected using a target SNP
probability (PS) of 0.001 (high-confidence SNPs; Fig. 1). Al-
though they had higher p-values, we added another 725
SNPs because they had been successfully genotyped using
the Infinium platform [17]. Overall, the evaluated dataset
included 5847 SNPs that had been previously geno-
typed using the Infinium array. Of these SNPs, we iden-
tified 208,258 that were ‘buildable’; i.e., had a least one
35-nt flanking sequence with no other SNPs or indels
using a flanking SNP probability (PF) of 0.001. To this
dataset, we added 13,410 buildable SNPs from the UH
dataset that were chosen to target transcripts not
already represented in the OSU dataset. To identify
novel transcripts, we compared 141,626 UH assembled
isotigs (excluding singletons [32]) to the OSU reference
transcriptome using a BLAST E-value cutoff of 10− 10.
Isotigs are transcript variants assembled using the New-
bler de novo assembler [17, 32]. We identified 63,286
novel isotigs, 8617 of which contained biallelic SNPs
(40,206 SNPs). From these, we selected 16,859 high-
confidence SNPs that were detected by two or three
SNP detection programs [32]. From these, we identified
13,410 SNPs that were ‘buildable;’ i.e., had a least one
35-nt flanking sequence that did not have flanking
SNPs detected by two or three SNP detection pro-
grams. In total, we sent 221,668 candidate SNPs from
the OSU and UH datasets to Affymetrix (now
Thermo Fisher Scientific) to be evaluated by their
proprietary software (Fig. 1). After the filtering steps
described below, we included 55,766 SNPs on the
Axiom array.
Each candidate SNP sent to Affymetrix consisted of the

target SNP plus two 35-nt flanking sequences (total = 71
nt). For each of the two flanking sequences per SNP (for-
ward and reverse), Affymetrix calculated a Repetitive indi-
cator variable, pConvert score, and a Recommendation. For
the Repetitive variable (T, F), Affymetrix counts the number
of 16-nt hits between the SNP sequence and the supplied
reference genome. Any flanking sequence with more than
300 hits was classified as repetitive (T). Affymetrix used the
v0.5 Douglas-fir reference sequence for this analysis (asm-
1.scafSeq.fasta, 5/11/2015 [16]). The pConvert score (0–1)
reflects the relative probability of probe success based on
the thermodynamics of the probe and the number of 16-nt
matches to the reference genome. Probesets with a Repeti-
tive score of T were assigned a pConvert score of 0, and
higher pConvert scores indicate a greater probability of
SNP success. Affymetrix classified probesets as either ‘not
possible’ or ‘buildable,’ and then for the buildable probesets,
used the pConvert score to classify each probeset as either

‘recommended’ (0.6 ≤ pConvert ≤1.0), ‘neutral’ (0.4 ≤ pCon-
vert < 0.6), or ‘not recommended’ (0 ≤ pConvert < 0.4).
To design the array, we first removed candidate SNPs

that had no acceptable probesets. Unacceptable probesets
were those with (1) no corresponding 71-nt matches in
the reference genome, (2) SNPs or indels in their target
sequences (i.e., in the forward or reverse flanking
sequences, PF = 0.001), or (3) Affymetrix classifications of
‘not recommended’ or ‘not possible.’ However, we did not
remove SNPs if they had already been successfully
assayed using the Infinium platform [17], as long as
they had at least one buildable probeset. Second, we
removed most A/T and C/G SNPs because they occupy
twice as much room on the array (i.e., require two
probesets to assay).
To select probesets for the array, we first ranked tran-

scripts and probesets-within-transcripts based on the
various criteria described below. Then, to maximize gen-
ome coverage, we selected the best probeset from each
transcript. Because the number of SNPs on the array
exceeded the number of transcripts, we cycled through
the ranked list of transcripts more than once. In general,
we selected one probeset per SNP. However, when this
was impossible (i.e., when the transcript had too few
SNPs), we selected two probesets per SNP to increase
the number of transcripts with successful SNP assays.
Thus, on the final array, most SNPs were interrogated
by the single best forward or reverse probeset using the
criteria described below. Ultimately, we included 58,350
probesets representing 55,766 SNPs on the array. The
ranking criteria used in this process are described next.
We ranked the OSU transcripts using three variables.

The first variable was the number of BLAST hits be-
tween the SNP sequence and the reference genome aver-
aged across all SNPs in the transcript. One BLAST hit
was counted for each 65-nt match between the 71-nt
SNP sequence and the reference genome. The rank
order for this variable (best to worst) was 1, > 1, and 0
hits. The second variable was the transcript confidence
score described by Howe et al. [17] (lower is better).
These confidence scores were previously derived by
comparing our Douglas-fir transcripts to a set of white
spruce (Picea glauca) unigenes [43]. White spruce was
chosen because it represents a closely related genus in
the Pinaceae, and had a particularly well curated set of
transcript sequences available for comparison. Lower
confidence scores represent simpler relationships and
(hypothetically) greater confidence that the Douglas-fir
assembly was correct. The third variable was the num-
ber of SNPs per transcript (higher is better). Tran-
scripts with more SNPs were ranked higher because
they have more probesets from which to select the best
one. The UH transcripts did not have OSU confidence
scores because they were identified as part of a separate
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SNP discovery project [32]. Thus, they were ranked
only by the number of BLAST hits and number of SNPs
per transcript.
After ranking the transcripts, we ranked probesets-

within-transcripts based on five criteria. First, SNPs suc-
cessfully genotyped with the Infinium platform were
ranked at the top (other SNPs had not been tested using
Infinium). The second variable reflected the likelihood of
having SNPs or indels (variants) in the flanking sequences.
This was accomplished by accounting for variants in the
flanking sequences at multiple probability levels. For the
OSU target SNPs, we used flanking probabilities of 0.1,
0.01, and 0.001 (PF) to identify low-, medium- and high-
confidence SNPs. For the UH dataset, we identified low-,
medium- and high-confidence SNPs based on the number
of programs used to call a SNP (1, 2, or 3 SNP detection
programs [32]). Next, we identified probesets that had no
flanking SNPs, even when all possible SNPs were consid-
ered (i.e., low-, medium-, and high-confidence SNPs).
These probesets were assigned a rank of 1 (highest prior-
ity) because they are least likely to have undetected SNPs
in the flanking sequence. Then, we repeated this process
after excluding the low confidence SNPs (rank = 2), and
then after excluding all but the high confidence SNPs
(rank = 3). The third variable was the number of perfect
SNP alleles (71-nt sequences) found in the reference gen-
ome. We used BLAST to compare each of our two SNP
alleles to the reference genome, and then counted the
number of these alleles that had at least one match (i.e.,
possible counts are 1, 2, or 0 alleles, in rank order). Be-
cause the reference genome is haploid, a count of 1 sug-
gests the SNP occupies a single genome location. A count
of 2 indicates the SNP occupies more than one genome
location (i.e., one locus for each SNP allele). A count of 0
suggests there are no matching sequences in the genome.
This would occur if the reference had a third alternative
allele (e.g., for triallelic SNPs), the target sequence spans
an intron, or the target sequence is missing from the gen-
ome assembly. Counts of 2 or 0 may also occur via misas-
sembly of our transcriptome sequence or reference
genome. The fourth and fifth variables were the Affyme-
trix pConvert score (higher is better) and the probability
of the target SNP. These probabilities were based on the
OSU target SNP probabilities (PS for the OSU SNPs,
smaller is better) or the number of programs that were
used to call the target SNP (UH SNPs, higher is better).

Array processing and SNP calling
DNA samples were processed by GeneSeek (Neogen Gen-
omics, Lincoln, NE) using the standard protocol for the
Affymetrix Axiom array. Samples from populations C1 and
I1 were processed jointly in two batches and then analyzed
together. Samples from population C2 were processed and
analyzed separately from C1 and I1. Raw SNP data were

analyzed using Axiom Analysis Suite v.1.1.0.616 and the
Best Practices Workflow (Affymetrix, Santa Clara, CA). We
conducted three types of analyses (Default, Rescue, and
Modified) using two phases of quality control (QC) filter-
ing. The Default protocol used the Affymetrix diploid (de-
fault) QC thresholds [12]. SNPs were filtered using a SNP
call rate cutoff (cr-cutoff) ≥ 97%. Samples (trees) were fil-
tered using a Dish-QC threshold (axiom_dishqc_DQC) ≥
0.82 and a sample call rate (qc_call_rate) ≥ 97%. The sample
call rate is the average SNP call rate across all SNPs for a
sample. Plates were filtered using a percent of passing sam-
ples (plate_qc_percentsamplespassed) ≥ 95% and a plate call
rate (plate_qc_averagecallrate) ≥ 98.5%. The plate call rate is
the average sample call rate for passing samples on a plate.
Using the Default protocol, the Axiom Analysis Suite classi-
fies SNPs into six categories: OTV, Other, CallRateBelow-
Threshold, NoMinorHom, MonoHighResolution, and
PolyHighResolution [11]. SNPs in the PolyHighResolution
class (polymorphic high-resolution) were considered suc-
cessful Axiom SNPs. We also used four SNP rescue proto-
cols that employed two phases of SNP filtering. We used
the default thresholds in Phase 1, and then re-classified the
SNPs in the Other and CallRateBelowThreshold categories
into a Rescued category if they passed a (lowered) SNP call
rate cut-off of 90, 80, 70, or 60%. In Phase 2, we used the
Ps_CallAdjust SNPolisher function to lower the SNP Confi-
dence Score threshold from the default of 0.15 to 0.10 [11].
The more stringent threshold (0.10) increases the number
of missing values (no calls), but improves genotyping accur-
acy. In the Modified protocol, we changed the default
thresholds in Phase 1 as follows: SNP call rate cutoff (cr-
cutoff) ≥ 95%; sample Dish-QC threshold ≥ 0.50, sample
call rate threshold (qc_call_rate) ≥ 80%, plate percent of
passing samples (plate_qc_percentsamplespassed) ≥ 80%,
and plate call rate threshold (qc_averagecallrate) ≥ 90% [12].
We then used a SNP call rate threshold ≥80% and SNP
Confidence Score threshold ≥ 0.10 in Phase 2 [11]. For the
Rescue and Modified protocols, SNPs in the PolyHighReso-
lution and Rescued classes were considered successful
SNPs.

SNP population genetic statistics
We selected 395 unrelated trees from the C1 and C2
populations, and then used the SAS ALLELE procedure
(SAS v.9.4; Statistical Analysis System, Cary, NC) to cal-
culate SNP call rate (CR), MAF, observed and expected
heterozygosities (HETobs, HETexp), polymorphic infor-
mation content (PIC), and probabilities of deviation
from HWE using a chi-square goodness-of-fit test. We
excluded SNPs that were not in HWE (P < 0.01), calcu-
lated statistics separately for each population (C1 and
C2), and then averaged the values across the two popu-
lations. These analyses were conducted using the Default
and Rescue protocols (CR = 97, 90, 80, 70, and 60%).
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Genomic locations and annotations of Douglas-fir SNPs
BLASTN [44] was used to determine the genomic loca-
tions and annotations of the Douglas-fir SNPs. We ran
BLASTN using default parameters, Axiom probeset se-
quences (71-mers) as the queries, and four reference
genome datasets as the targets: psme.transcript.fna (08/
25/2015), psme.allgenes.transcripts.fasta (08/22/2016),
Psme_v1.0.scaffolds.fasta (11/12/2015), and Psme_
v1.0.singletons.fasta (11/12/2015). These files are part of
the Douglas-fir reference sequence database v1.0 [16].
Results from the four BLASTN runs were included in
Additional file 2.

Predictors of SNP success
We evaluated two sets of variables as predictors of SNP
success: (1) array design variables and (2) variables cal-
culated using v1.0 of the Douglas-fir reference genome.
As described above, some of the array design variables
were calculated using v0.5 of the reference genome.
After a new reference genome became available (v1.0),
we calculated new BLAST variables using the same SNP
sequences (71-mers) as queries. The draft reference gen-
ome (v0.5) had 18.5M scaffolds, whereas the newer gen-
ome assembly (v1.0) had 2.8M scaffolds [15].
First, we tested for associations between probeset success

(i.e., success or failure; N = 58,350) and ten array design var-
iables, including four transcript variables, five probeset-
within-transcript variables, and one final rank variable. Al-
though they were not used to select SNPs, we also analyzed
the ‘recommended’ and ‘neutral’ classes of the Affymetrix
Recommendation variable, which are bins of pConvert.
Two variables that were approximately normally distributed
(No. of SNPs per transcript and pConvert) were analyzed
using a T-test and a Satterthwaite adjustment for heteroge-
neous variances. Two rank variables (Combined rank for
transcripts and Final rank) were analyzed using a Wilcoxon
rank test with Monte-Carlo estimation of p-values in SAS
PROC NPAR1WAY. The remaining variables (see Results)
were analyzed as categorical variables using a likelihood ra-
tio chi-square test for independence. Probesets were con-
sidered a success if they resulted in polymorphic genotypes
in either the C1/I1 or C2 population using the Rescue QC
protocol and a CR of 60%.
Second, we tested for associations between SNP suc-

cess (N = 55,766) and seven variables calculated using
v1.0 of the reference genome. We used BLASTN to
compare SNP sequences (71-mers) to v1.0 scaffolds, sin-
gletons, gene models and transcripts using a percent
identity (PID) cutoff of 80% for missing values (i.e., no
hits). The first two variables consisted of the PID of the
best scaffold hit and the PID of the second-best scaffold
hit. Although these variables were continuous, many
SNPs fell into two classes (PID = 100% or PID = 80% for
missing values). Therefore, to test for differences in SNP

success, we binned the SNPs into two groups (PID > 80%
and PID ≤ 80%). We also evaluated a third variable that
captured differences in PID between the top two scaffold
hits. For these analyses, we compared SNP success among
three SNP categories: (1) PID > 80% for the top two scaf-
fold hits, (2) PID > 80% for the top scaffold hit and ≤ 80%
for the second-best hit, and (3) PID ≤ 80% for the top two
scaffold hits. A likelihood ratio chi-square test was used to
compare the successful and failed SNPs for each variable.
For the remaining variables, we counted the number of
hits at a PID > 90%, binned these numbers into three cat-
egories (1, > 1, and 0, in rank order), and then used a like-
lihood ratio chi-square test to compare the successful and
failed SNPs. This analysis was conducted separately for
scaffolds, singletons, gene models, and transcripts, result-
ing in four variables. SNPs were considered a success if
they had a least one probeset that was successful using the
criteria described above.
After examining the individual variables, we used lo-

gistic regression to develop multivariate prediction equa-
tions for SNP success. In the first model, we used the
seven array design variables as independent variables
(i.e., predictors). In the second model, we dropped the
number of SNPs per transcript and replaced the two
v0.5 reference genome variables with six v1.0 variables.
We conducted these analyses using the SAS LOGISTIC
procedure, stepwise model selection option, and cross-
validation.
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