Dobrzanski et al. BMC Genomics (2020) 21:134
https://doi.org/10.1186/s12864-019-6402-x

BMC Genomics

RESEARCH ARTICLE Open Access

In silico prediction and expression profile
analysis of small non-coding RNAs in
Herbaspirillum seropedicae SmR1

Tatiane Dobrzanski', Vania Pobre®’, Leandro Ferreira Moreno', Helba Cirino de Souza Barbosa®,
Rose Adele Monteiro'~, Fabio de Oliveira Pedrosa’, Emanuel Maltempi de Souza', Cecilia Maria Arraiano® and
Maria Berenice Reynaud Steffens'

Check for
updates

Abstract

Background: Herbaspirillum seropedicae is a diazotrophic bacterium from the (3-protecbacteria class that colonizes
endophytically important gramineous species, promotes their growth through phytohormone-dependent
stimulation and can express nif genes and fix nitrogen inside plant tissues. Due to these properties this
bacterium has great potential as a commercial inoculant for agriculture. The H. seropedicae SmR1 genome is
completely sequenced and annotated but despite the availability of diverse structural and functional analysis
of this genome, studies involving small non-coding RNAs (sRNAs) has not yet been done. We have
conducted computational prediction and RNA-seq analysis to select and confirm the expression of sRNA
genes in the H. seropedicae SmR1 genome, in the presence of two nitrogen independent sources and in
presence of naringenin, a flavonoid secreted by some plants.

Results: This approach resulted in a set of 117 sRNAs distributed in riboswitch, cis-encoded and trans-
encoded categories and among them 20 have Rfam homologs. The housekeeping sRNAs tmRNA, ssrS and
4.5S were found and we observed that a large number of sRNAs are more expressed in the nitrate condition
rather than the control condition and in the presence of naringenin. Some sRNAs expression were confirmed
in vitro and this work contributes to better understand the post transcriptional regulation in this bacterium.

Conclusions: H. seropedicae SmR1 express sRNAs in the presence of two nitrogen sources and/or in the
presence of naringenin. The functions of most of these sSRNAs remains unknown but their existence in this
bacterium confirms the evidence that sRNAs are involved in many different cellular activities to adapt to
nutritional and environmental changes.
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Background

Herbaspirillum seropedicae SmR1 is a diazotrophic and
endophytic bacterium that belongs to the [3-proteobacteria.
This microorganism fixes nitrogen under microaerobic
conditions inside the plant tissues of the economically
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important cereal crops wheat, rice, maize and sorghum [1].
H. seropedicae strains also appears associated with sugar
cane and forage grasses [2, 3], fruit crops [4] and common
bean [5]. Several studies have demonstrated the benefits of
Herbaspirillum-plant interaction through the increase of
the biomass of the inoculated plant [6—10]. Nitrogen cellu-
lar sources are the atmospheric dinitrogen and the nitrate,
present in several environments. H. seropedicae SmR1 fixes
nitrogen to ammonia in a reaction catalysed by the enzyme
nitrogenase [11, 12]. The bacterial-plant interaction can
promote plant growth and increase yield of crops since
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some compounds produced by the bacterium can stimulate
the synthesis of phytohormones by plants [13]. Plants also
play an important role in establishing this interaction since
they produce compounds that affect their associations with
microorganisms. One of such compounds is naringenin, a
flavonoid produced as secondary metabolite, that can
stimulate or inhibit specific genetic responses in different
bacteria associated with plants [14, 15]. It was demon-
strated that naringenin stimulates the endophytic
colonization of Arabidopsis thaliana by H. seropedicae 767
[16]. In H. seropedicae SmR1, naringenin regulates the ex-
pression of several genes, positively or negatively [17]. This
microorganism can catabolize naringenin probably to ob-
tain carbon and energy [18].

The single circular chromosome of the H. seropedi-
cae SmR1 strain was sequenced and 4804 open read-
ing frames were annotated [19]. Since then, there are
many studies focusing the genomic structure, gene
expression and physiology of H. seropedicae SmR1
[12, 17, 18, 20-22], but the investigation about the
presence and function of small non-coding RNAs
(sRNAs) was never performed. sSRNAs have key regu-
latory roles in post-transcriptional control of gene ex-
pression. They can modulate turnover of target
mRNAs and affect their translation [23-25]. They can
be found in all three domains of life and are particu-
larly important in bacteria allowing them to rapidly
respond to environmental challenges [26, 27]. These
molecules are 50-500 nucleotides long and are lo-
cated predominantly in intergenic or in untranslated
regions in the bacterial genomes [28]. sSRNAs can be
divided in two major categories trans-encoded RNAs
(traRNA) and cis-encoded RNAs (caRNA) [29]. The
caRNA can act at transcriptional or translational level
and are sensory RNAs elements such as riboswitches
that adopt two conformational structures in response
to chemical signals such as small ligands [30-33].
The traRNA comprises the trans-encoded sRNAs that
are partially complementary to their target [23] and
the antisense small RNAs (asRNAs) that are totally
complementary to their target [34, 35]. There are still
traRNAs that bind to proteins to modulate their ac-
tivity such as 6S RNA [36]. The paring of many traR-
NAS to mRNA target sites is facilitated by the RNA
chaperone Hfq, a Sm family protein, which binds to
adenine- and uridine-rich sequences (AU-motif) in
sRNA [37, 38]. H. seropedicae SmR1 contains a con-
served Hfq protein with a classic hexameric ring
shape, observed in all available Hfq structures, with
sRNA and mRNA contact surfaces [39]. The presence
of a variety of types of small non-coding RNAs pro-
vides a versatile regulation of metabolic functions [25,
40-42]. The bioinformatic prediction of sRNAs
followed by RNA-seq approach made possible genome
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screens for sRNAs and has shown that there are
much more bacterial regulatory sRNAs than previ-
ously thought [43]. In this study we applied in silico
approach to predict sRNAs in H. seropedicae SmR1
genome and RNA-seq analysis to confirm their ex-
pression in bacteria grown in the presence of two ni-
trogen sources (ammonia or nitrate) and in the
presence of naringenin. A set of 117 sRNAs tran-
scripts were confirmed and some of them showed se-
quence identity with well-characterized sRNAs in
other bacteria. Some sRNAs were experimentally de-
tected confirming their existence.

Results

sRNAs in the H. seropedicae SmR1 genome

To search sRNAs in the genome of H. seropedicae SmR1
we used the nocoRNAc software [44], a bioinformatic
tool that predicts sSRNAs based on the co-localization of
transcriptional terminators and promoter and is not lim-
ited to intergenic regions [44]. We identified 769 puta-
tive SRNAs. At the same time, we verified the presence
of sRNAs transcripts in the RNA-seq data of H. serope-
dicae SmR1 using Cufflinks [45]. We were able to iden-
tify 1395 regions being transcribed which could encode
sRNAs. Were analysed three RNA-seq data conditions
obtained during the exponential growth phase of the
bacterium: (i) control (CRT) - bacteria grown in
NFbHPN medium containing NH4Cl as nitrogen source,
(i) presence of naringenin (NAR) - bacteria cultured in
NFbHPN medium containing NH4Cl and the flavonoid
naringenin, and (iii) nitrate (NIT) - bacteria grown in
NFbHP medium containing KNO3 as nitrogen source.
Using the coverage criterion which established a mini-
mum coverage 25 as a confidence level to select SRNAs
in at least one of the three culture conditions we were
able to verify the expression of 117 sRNAs transcripts in
H. seropedicae SmR1 which have been termed Hsnc001
to Hsnc117 (Additional file 1). Forty sSRNAs (34.5%) re-
sulted only from Cufflinks, 63 sRNAs (54.3%) resulted
only from nocoRNAc and 14 (12.1%) appeared in both
approaches. These sRNAs range in length from 41 to
560 nucleotides and are equally distributed in the gen-
ome of H. seropedicae SmR1 being 67 annotated on the
sense and 50 on the antisense strand in intergenic re-
gions (Fig. 1la). According to the genomic location the
sRNAs were distributed in riboswitch (10), cis-encoded
(26) and trans-encoded (81) categories (Fig. 1b). Regard-
ing base composition of the SRNAs we observed a range
of 35 to 75% GC content, with an average of 54.97%
(Additional file 1), whereas the genome has about 63.4%
GC [19]. We observed that the riboswitches present high
GC content (61.8%) and the known housekeeping
sRNAs tmRNA, ssrS and 4.5S had 52.3, 53.7 and 65.7%
GC content, respectively.
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sRNAs of H. seropedicae SmR1

Comparison of H. seropedicae SmR1 117 sRNAs tran-
scripts with RNA family’s data base (Rfam) returned only
20 sequences with hits and information about putative
function (Table 1). This result suggests that most of the
H. seropedicae SmR1 sRNAs may be new or present low
level of identity with those deposited in the Rfam data-
base. Among the sRNAs identified the Toxic small RNA
(tsRNA) and sucA RNA motif were found essentially in
B-proteobacteria [46, 47] whereas YKkC/YxKD leader is
present in some Cyanobacteria and Proteobacteria [48].
The sRNAs belonging to the family of small toxic RNAs
in H. seropedicae SmR1 were Hsnc59, Hsnc63, Hsnc86
and Hsncl07 (Table 1). These small Toxic RNAs were
found to be expressed in several strains of Burkholderia
cenocepacia and, although they do not present a known
function, they are capable of inhibiting Escherichia coli
growth when introduced in a cloning vector [47, 49].
The Hsnc006 was annotated as the sucA 5’'UTR which is
considered a riboswitch candidate since the ligand that
changes its conformation is still unknow [50]. This
sequence is the 5° UTR of sucAsucBlpd operon and,
according to RNA-seq data, the RNA motif and the op-
eron exhibited proportional expression level in the three
conditions analysed (Additional file 1). We found two
copies of YKkC/YxkD leader (Hsncll0 and Hsncl16)
upstream HSERO_RS22365 and HSERO_RS22370, re-
spectively, which encode two lipid kinases involved in
the inorganic ion transport and metabolism. Recently
this riboswitch was renamed as guanidin-I riboswitch
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since it senses and responds to guanidine and controls
genes that modify or pump guanidine as a toxic com-
pound of bacteria [51].

We also found the TPP (Hsncl09) and FMN
(Hsnc035) riboswitches. The TPP riboswitch is immedi-
ately upstream of HSERO_RS02120 (thiC) encoding the
phosphomethylpyrimidine synthase and is known to
bind directly to thiamine pyrophosphate (TPP) turning
off TPP biosynthesis [52]. The FMN riboswitch is up-
stream of HSERO_RS09820 (ribE) encoding the 6,7-di-
methyl-8-ribitylllumazine synthase which catalyses one
of last steps in the biosynthesis of riboflavin. FMN binds
to the FMN aptamer and regulates the ribE expression
[53]. H. seropedicae SmR1 still presents the SAH ribos-
witch (Hsnc113), Cobalamin riboswitch (Hsnc115), ZMP
/ ZTP riboswitch (Hsnc029), Yybp-ykoY (Hsnc112) and
Fluoride riboswitch (Hsnc002). The SAH riboswitch is
upstream HSERO_RS21435, encoding S-adenosyl- (L)
-homocysteine (SAH), and is involved in S-adenosyl- (L)
-methionine (SAM) regeneration cycle [54, 55] Cobala-
min riboswitch is upstream HSERO_RS13325-HSERO_
RS13320 operon encoding the cobalt transporter CbtB-
CbtA acting in concert with vitamin B12 biosynthesis
systems [56, 57]. ZMP/ZTP riboswitch regulates the ex-
pression of carbon metabolism genes [58, 59]. H. serope-
dicae SmR1 showed this riboswitch (Hsnc029) upstream
to the HSERO_RS06140 (glyA) encoding serine hydroxy-
methyltransferase, a pyridoxal phosphate-dependent en-
zyme that plays an important role in the cellular
pathways of a carbon [59].

-
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Table 1 H. seropedicae SmR1 sRNAs identified in Rfam

Page 4 of 13

Predicted Rfam

SRNA size GC% D Acession Start End Bit score e-value
Hsnc001 99 65.66 455 RF00169 1 99 764 8E-19
Hsnc002 m 60.36 Fluoride riboswitch RFO1734 8 81 50.3 4.4e-10
Hsnc006 94 56.38 sucA RNA motif RF01070 12 93 79.8 23e-16
Hsnc029 100 61.00 ZMP/ZTP riboswitch RFO1750 1 100 59.3 2.6e-09
Hsnc035 169 65.09 FMN riboswitch RFO0050 1 169 1126 53e-28
Hsnc050 177 5367 ssrS (6S) RF00013 1 177 67.3 2.5e-14
Hsnc059 93 4946 Betaproteobacteria toxic RNA RF02278 25 93 59.6 14e-12
Hsnc063 115 4348 Betaproteobacteria toxic RNA RF02278 48 115 624 34e-13
Hsnc083 384 5234 tmRNA RF00023 1 381 193.0 4.6e-57
Hsnc086 97 4742 Betaproteobacteria toxic SRNA RF02278 34 97 64.7 7.6e-14
Hsnc107 98 43.88 Betaproteobacteria toxic SRNA RF02278 31 97 61.1 6.1e-13
Hsnc109 293 5836 TPP riboswitch RF00059 86 196 55.6 23e-10
Hsnc110 101 64.36 ykkC-yxkD RF00442 1 101 99.0 1.8e-23
Hsnc111 335 61.19 RNA RNaseP RFO0010 1 335 2121 1.1e-68
Hsnc112 184 63.04 yybP-ykoY RF00080 16 184 47.7 6E-12
Hsnc113 90 65.56 SAH riboswitch RF01057 1 90 49.1 9.6e-09
Hsnc114 373 5147 5"UTR cspA RFO1766 1 373 94.3 1.6e-24
Hsnc115 247 63.97 Cobalamin riboswitch RF0O0174 1 247 1112 1.6e-30
Hsnc116 100 60.0 ykkC-yxkD RF00442 1 100 934 48e-22
Hsnc117 387 4897 5"UTR cspA RFO1766 1 388 86.7 2.7e-22

Yybp-ykoY is a manganese riboswitch that binds dir-
ectly to Mn>* and is associated with YebN/MntP genes
[60—62]. In H. seropedicae SmR1, this riboswitch is lo-
cated upstream HSERO_RS02630 encoding the manga-
nese efflux pump MntP. In Xanthomonas oryzae this
riboswitch acts as an essential Mn>* sensor in infections
during interaction with rice [61]. Fluoride riboswitch lo-
cated upstream of HSERO_RS12335 coding the voltage-
gated chloride channel protein. This riboswitch has been
experimentally verified by [63] detecting fluoride and
triggering the expression of genes that can help Entero-
bacter cloacae FRM to mitigate fluoride toxicity, using a
fluorine carrier to expel fluoride from the cells.

Table 2 Oligonucleotides used in radiolabelling reactions

Probe Sequence (5" - 3

ssrS-F CCGTGTTCGCGATTGCC

ssrS-T7 TAATACGACTCACTATAGGCCGGCATCCTGAACCTG
Hsnc042-F GATGCCCGACTGCTGAAACG

Hsnc042-T7 TAATACGACTCACTATAGGTAGCGTCGGAATCGCGTTCCTG
Hsnc073-F GCAATAACCAATGCGCAGG

Hsnc073-T7 TAATACGACTCACTATAGGGCATCATCAAGGGATGCCAG
Hsnc028 AAATCAGGCGTTTGTCATGGTTCGGTAAG

Hsnc082 AACGATGGAAGTACGGTGGTTCGCGTGATG

The T7 promoter sequence in the oligos is underlined

We found only two sRNAs with hits in the cis-
encoded category, the cspA 5’'UTR mRNAs Hsncl14 and
Hsncl17. These sSRNAs were identified in H. seropedicae
SmR1 in untranslated regions of genes HSERO_RS07020
and HSERO_RS15195 encoding cold-shock proteins.
These elements are known to be involved in the expres-
sion of c¢spA in response to temperature shift [64, 65]
however it was already demonstrated that they might
have a role in stress tolerance [66]. Both H. seropedicae
cspA 5 ‘UTR mRNAs contain single-strand AU-motif in
mRNA which could be binding sites of the RNA
chaperone Hfq, as demonstrated in E. coli [67].

Some well-preserved housekeeping sRNAs were also
found in H. seropedicae SmR1, ssrfS or 6S RNA
(Hsnc050), 4.5S RNA (Hsnc001) and tmRNA (Hsnc083).
These sRNAs associate with proteins and are highly
expressed in the cell. The 6S interacts with the primary
form of holoenzyme of RNA polymerase, negatively reg-
ulates transcription and is involved in modulating stress
and optimizing survival during nutrient limitation [68].
The 4.5S is part of the signal recognition particle (SRP)
ribonucleoprotein complex [69]. In most bacteria the
SRP consists of an RNA molecule (4.5S) and the Ffh
protein that bind to ribosome stopping protein synthesis.
The tmRNA (transfer messenger RNA) forms a ribonu-
cleoprotein complex (tmRNP) that binds to bacterial
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ribosomes that are blocked in the middle of protein syn-
thesis; it is able to recycle the blocked ribosome by
bringing a stop codon and g a proteolysis-inducing tag
to unfinished polypeptides [70].

Expression of sRNA in H. seropedicae SmR1

Bacteria have a versatile system to respond quickly to
environmental changes. In this process, many sRNAs
are often expressed to regulate gene expression in a
specific or different conditions and stages of growth.
Thus, we wanted to determine how sRNAs are
expressed in different culture conditions. The reading
count of exponential phase in RNA-seq data was per-
formed for each sRNA followed by normalization by
Reads Per Kilobase Million (RPKM). A heat map that
includes the 117 sRNA reveals different expression
profiles according to the growth condition of H. sero-
pedicae SmR1 (Fig. 2). We observed that a large clus-
ter with 62 sRNAs are more expressed in the nitrate
condition than in the control and naringenin condi-
tions. Another cluster with 24 sRNAs is more
expressed in the naringenin condition than in the
control and nitrate conditions. This demonstrates the
role of environment in the expression of sRNAs and
the influence of sRNAs when the bacterium is ex-
posed to certain nutritional conditions.

Experimental validation of H. seropedicae SmR1 sRNAs
We also used the coverage criterion of RNA-seq reads
greater than or equal to five, in at least one of the
three culture conditions (Additional file 1), to select
Hsnc050, Hsnc028, Hsnc042, Hsnc073 and Hsnc082
sRNAs and validate their expression by Northern blot.
Although coverage values do not represent expression
quantification (as opposed to RPKM quantification),
they can indicate that a given sRNA may be
expressed. ssrS (Hsnc050) was chose as a control
since it is a conserved housekeeping sRNA among
bacterial species [68, 71, 72].

Considering that many sRNAs are induced under
stress conditions, such as the lack of nutrients in the
stationary phase, we evaluate the expression of the
sRNAs in two phases of growth, exponential (ODggg =
0.7) and stationary phase (after 10h of culture). H.
seropedicae SmR1 was cultured under the CRT, NAR
and NIT conditions and the total RNA was extracted
and hybridized with specific radiolabelled probes. We
were able to confirm that the five selected sSRNAs are
expressed in H. seropedicae SmR1 (Fig. 3). It is not-
able that all RNAs were expressed in all analysed
growth conditions (CRT, NAR and NIT) as well as in
the exponential and stationary phases (Fig. 3). We
quantified at least three replicates of northern blots
for each sRNA that was experimentally validated. The
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CRT conditions of each growth phase were used as
the standard of comparison between the different
treatments. The expression of sRNAs did not show
significant differences between culture conditions and
growth phases (Fig. 3). However, a small decrease in
expression for the Hsnc042 sRNA in the NAR condi-
tion in stationary phase and for Hsnc073 sRNA under
NAR and NIT conditions in stationary phase was
observed.

The function of these sRNAs is yet to be elucidated.
In addition, we notice that Hsnc073 and Hsnc082
sRNAs showed lengths in the northern blot smaller
(~78nt and ~ 120 nt respectively) than the length ini-
tially predicted by bioinformatics (182nt and 157 nt
respectively) (Fig 4). We suggest the smaller lengths
of Hsnc073 and Hsnc082 sRNAs may be due to
sRNA processing since most of the sRNAs are tran-
scribed with larger length and then later processed by
RNases for smaller functional lengths [28]. This dif-
ference can be also due to an imprecision in the pre-
diction of sRNAs by the bioinformatics tools used in
this work. Previously, we already observed that the
nocoRNAc tool can predict sRNAs with larger than
expected lengths, as the case of ssrS (6S). This sSRNA
was initially predicted with a length of 327 nucleo-
tides by nocoRNAc, however based on RNA-seq we
corrected its length to 177 nucleotides and, in fact,
an RNA band with around this length was obtained
in the northern blot (Fig. 3). Bacterial ssrS (6S) RNAs
are generally transcribed as pre-6S RNA and then
processed in 5 end by ribonucleases that cuts a short
sequence to mature form [73]. The H. seropedicae 6S
RNA length is very close to the 6S of Neisseria
meningitidis MC58 and Pseudomonas aeruginosa
which are about 180 nucleotides [71]. The Hsnc028
(126 nucleotides) and Hsnc073 (182 nucleotides) also
presented well distributed coverage in the RNA-seq
profile (data not shown).

Discussion

In this work we identified and validated sRNAs in p-
proteobacteria H. seropedicae SmR1, a highly versatile
diazotrophic bacterium capable of metabolizing a wide
range of carbon and nitrogen sources. Initially, we
showed that 2164 sRNAs were predicted by bioinfor-
matics tools Cufflinks and nocoRNAc that uses a spe-
cific prediction method for prokaryotic sRNA. To
confirm which of these sRNAs are expressed in H.
seropedicae SmR1, we analysed RNA-seq data from
three culture conditions (CRT, NAR and NIT) and
verified the expression of 117 sRNAs, each expressed
in at least one of the three conditions analysed. The
number of sSRNAs predicted by bioinformatics tools varies
among species as already described for Streptomyces
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coelicolor (843 sRNAs) [44], Burkholderia pseudomallei
(1306 sRNAs) [74] and B. cenocepacia J2315 (213 sRNAs)
[75]. We can attribute this variation to the different
methods of total RNA purification and to the sSRNA pre-
diction and validation methods employed. Concerning to
H. seropedicae SMR1, we should also consider the strin-
gent criterion adopted as a confidence level for SRNA ex-
pression (minimum coverage =5) to avoid data noise and

false-positives from the biocomputational prediction. Be-
sides that, considering the size of the H. seropedicae
SmR1 genome and the number of ORFs, we can expect a
larger number of different SRNAs being expressed in other
culture metabolic conditions. When we submitted the
expressed sequences of the H. seropedicae SmR1 sRNAs
(Additional file 1) to Rfam database the sequences we
found only 20 sRNAs with hit to some RNA families
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naringenin (NAR) and in the nitrate (NIT) condition. Markers are indicated to the right and left in the images. Quantification of northern blot gels
is above each northern blot image. The CRT condition was defined as the standard for the quantifications, therefore, it presents a value of 100%
for each growth phase, whereas the NAR and NIT conditions vary in relation to the CRT

(Table 1). We were able to confirm the expression of
about 26 cis-encoded sRNAs in H. seropedicae SmR1 e
two of them had hit to the family of cspA sRNAs accord-
ing to Rfam. All 10 riboswitches showed good Rfam align-
ment scores (Table 1). Of the 81 trans-encoded sRNAs, 8
showed similarity given by Rfam. The occurrence of a
large number of H. seropedicae SmR1 sRNAs with no hit
in Rfam is not surprising since the database is populated
with sSRNAs from the most characterized model organ-
isms, such as E. coli, Salmonella enterica and Staphylococ-
cus aureus [76], and others that are phylogenetically
distant from H. seropedicae. Considering the genome size
of this bacterium we can expect a larger number of differ-
ent sSRNAs being expressed in other culture metabolic
conditions. Thus, we suggest that H. seropedicae SmR1
may exhibit specific SRNAs with closer similarity to other
organisms belonging to the same class. In -proteobacteria
the sRNAs have been described in Burkholderia species

although they were not well functionally characterized [47,
77, 78].

Many processes could be controlled by bacterial SRNAs
induced by specific metabolic or environmental signals
[79] or expressed constitutively under different growth
conditions, such as housekeeping sRNAs (tmRNA and
4.5S) that participate in the regulation of genes that are
constitutively expressed [80]. Interestingly, all H. seropedi-
cae SmR1 sRNAs had a mean GC content (54.97% GC)
below the mean of the genome content (63.4% GC). How-
ever, there are some sRNAs with slightly higher GC con-
tent such as riboswitches (61.81% GC) and known
housekeeping sSRNAs (ssrS, tmRNA and 4.5S with an aver-
age 57.22% GC). RNAs that exhibit high GC content gen-
erally exhibit a more rigid and conserved structure wich is
probably necessary for the regulation of specific target
molecules, such as maintenance genes or molecules that
hardly evolve. In contrast, sSRNAs that have a more flexible
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structure with a low GC content are probably involved in
regulating the expression of several different genes or mol-
ecules that frequently evolve [77, 80, 81]. We have ob-
served that the four Toxic sSRNAs have low GC content
(Hsnc063 43.48%, Hsnc086 47.42%, Hsncl07 43.88% and
Hsnc059 49.46%). The Toxic sRNAs currently found ex-
clusively in [-proteobacteria are trans-encoded and [49]
and possibly interact with several mRNAs through align-
ment with ribosomal binding site (RBS). Then we suggest
that these SRNAs have a more flexible structure with low
GC content to control the regulation of different targets.
We created a heatmap to observe the expression of
sRNAs between control and different culture conditions
and observed a large cluster of sSRNAs more expressed
in the NIT condition. The main source of nitrogen for
most organisms is ammonium and, in the absence or
low concentration of ammonium, bacteria need to
mobilize alternative nitrogen sources to maintain growth
and increase chances of survival. In the absence or re-
striction of ammonium, H. seropedicae SmR1 can as-
similate nitrate [12]. The RNA-seq profile revealed that
the change in nitrogen source from ammonium to ni-
trate caused modifications in the pattern of gene expres-
sion in H. seropedicae SmR1, more than 37% of the
genes were differentially expressed in the nitrate condi-
tion and the carbon consumption was increased [12].
Since sRNAs may play an important role in nutritional

deprivation [79], our data suggest that when the nitrate
is the only nitrogen source many sSRNAs may be influen-
cing the post-transcriptional regulation of genes involved
in carbon and nitrogen metabolism. When H. seropedi-
cae SmR1 was cultivated in the presence of nitrate
Bonato and collaborators [12] reported the increased ex-
pression of citric acid cycle genes with emphasis on sucA
and sucB (7.3 and 7.7 respectively). In our work we ob-
served the sucA RNA motif (Hsnc006) is highly
expressed in the presence of nitrate (10 mmol/L) when
compared to the control (20 mml/L NH,CI) (Additional
file 1). Since this motif typically appears at 5’ end of p-
proteobacteria sucA genes [46, 47] this could indicate a
unique adaptation of the energetic metabolism of this
bacterial Class to the changes in nitrogen sources. This
hypothesis should be investigated.

A small cluster of SRNAs more expressed in the presence
of naringenin was also observed in the heatmap. Narin-
genin is a plant-derived flavonoid and may act as a signal
molecule during endophytic colonization by H. seropedicae
SmR1 [82]. In this bacterium, naringenin triggers a change
in gene expression to reduce motility and flagella synthesis
[17]. An extensive bacterial sensory system for adaptation
and survival to the plant environment was also observed
during the early stages of colonization of maize [20]. Our
data suggest that many sSRNAs may be involved in the post-
transcriptional regulation of genes related to the adaptation
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and endophytic colonization of H. seropedicae SmR1 in
plants. Further investigation is required to determine if
some sRNAs may be related to flagella synthesis and bac-
terial motility as shown in other organisms [83, 84].

We were able to validate by Northern blot the expres-
sion of the Hsnc050 (ssrS RNA), Hsnc028, Hsnc042,
Hsnc073 and Hsnc082 sRNAs. According to the North-
ern blot Hsnc073 and Hsnc082 sRNAs had smaller
lengths than those predicted by bioinformatics. As we
said earlier this difference could be due to sRNA pro-
cessing or even imprecision in the prediction. Klein
et al. (2202) also observed a length difference of
sRNAs predicted for Pyrococcus furiosus, of the 11
sRNAs identified in Northern blot only one showed
length corresponding to the initially predicted size
[85]. Sinorhizobium meliloti also showed sRNAs with
smaller lengths than predicted for sRNAs ssrS and
sra25 (15nt of difference) as well as for sm84 (30 nt
of difference) and sm270 (10nt of difference) [86].
The sRNA processing requires enzymatic cleavage to
remove extra residues by ribonucleases to generate
functional stable forms [87]. H. seropedicae SmR1
presents RNase E (Hsero_RS09410) an endoribonu-
clease which preferentially cleaves AU-rich regions
[88] and affect sSRNA biogenesis [89]. PNPase (Hsero_
RS08755) could also trim sRNAs contributing to their
maturation and/or degradation [90]. In fact, this dif-
ference in size can also account for the differences in
expression observed between the RNA-Seq data and
the Northern blots.

Conclusions

We reported the expression of several sSRNA in H. sero-
pedicae SmR1 genome in the presence of two nitrogen
sources and/or in the presence of naringenin. The func-
tions of the novel sRNAs remain unknown but their ex-
istence in this bacterium confirms the evidence that
sRNAs are involved in many different cellular activities
to adapt bacterium to nutritional and environmental
changes. Some of them may participate in the regulation
of nitrogen metabolism or in the bacterial-plant inter-
action. The discovery and knowledge of these sRNA
molecules in this nitrogen fixation bacterium is very im-
portant due to its biotechnological significance.

Methods

Bacterial growth

H. seropedicae SmR1 (NCBI sequence: NC_014323.1)
was grown at 30°C and with agitation of 120 rpm in
NFbHPN medium containing 80 pug/mL streptomycin
[91]. Three growth conditions were used: (i) Control
condition (CRT), bacteria grown on NFbHPN medium
using malate as carbon source and 20 mmol/L NH,CI as
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nitrogen source; (ii) Naringenin condition (NAR), bac-
teria grown in NFbHPN medium in the presence of fla-
vonoid naringenin (100 pM); (iii) Nitrate condition
(NIT), bacteria grown in NFbHP medium, using malate
as carbon source and 10 mmol/L KNO3 as nitrogen
source [12, 17].

Screening of small RNAs by nocoRNAc and Cufflinks

The H. seropedicae SmR1 genome was screened with
the computational tool nocoRNAc [44] to search
sRNAs by features that include promoter sequence,
Rho-independent terminator and regions of sequence
conservation. Furthermore, regions with high level of
transcription, free of encoded proteins, were assessed
in three individual RNA-seq data sets using Cufflinks
[45] to verify the presence/expression of sRNAs. The
nocoRNAc (non-coding RNA characterization) tool
predicts putative SRNAs based on analyses not limited
to intergenic regions. In order to find the location of
candidates, firstly the SIDD sites, which are destabi-
lized regions in the genomic DNA, were identified as
putative promoter regions. The SIDD calculation was
conducted using default values. After that, the puta-
tive Rho-independent terminators were predicted by
the TranstermHP program, which is integrated in
nocoRNAc. The tool was run using the standard
protocol, with the option overwrite set up as de-
scribed in the user guide [44]. The coordinates of
SIDD sites with Rho-independent terminator are used
for generating a list of putative sRNAs. Thus, the
nocoRNAc tools may detect putative sRNAs in whole
genome, even those which are encoded antisense from
protein genes.

We assessed RNA-seq data to uncover sRNAs based
only on read alignments. The reads from RNA-seq were
mapped to H. seropedicae SmR1 genome with the tRNA,
mRNA, rRNA and their 50 flaking nucleotides masked.
We used the default parameters on the Cufflinks pro-
gram to localize transcribed/expressed regions on the
genome likely to encode sSRNAs.

Mapping and visualization of sequence reads and
analyses of predicted sRNAs

Before mapping the short reads to the H. seropedicae
SmR1 reference genome, the rRNA sequences were
masked using the cross-match program. Recursive trim-
ming of the reads at 5' and 3’ to 35 nucleotides were
performed using a Perl script and the Mate-Paired reads
were aligned to the reference genome using the align-
ment tool Short Read Mapping Program SHRiMP [92].
The program was set up to tolerate 3 mismatches. The
maximal number of hits to each read was 1. Samtools
[93] was used to convert data into SAM/BAM format.
Mapped RNA-seq reads in BAM format were visualized
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in the genome browse Artemis [94]. A sequence pre-
dicted as a sRNA was considered expressed when the
minimum read coverage was 5-fold.

RNA -Seq data analysis

The RNA-seq data sets used in this work are available
in the ArrayExpress database (www.ebiac.uk/arrayex-
press) under accession number E-MTAB-3435 e E-
MTAB-3646. Small non-coding RNA expression pro-
files was obtained with Artemis [95]. We employed
an RPKM normalized expression values of three
RNA-seq conditions describe in [12, 17] for the heat-
map and hierarchical clustering. We used Pearson
correlation as distance measure and average linkage
as clustering method in Heatmapper [96]. Genome
coordinate plot of non-coding RNA was performed
with DNAPIotter [97].

RNA extraction and northern blot analysis

Overnight cultures grown in the CRT, NAR and NIT
conditions were diluted in fresh medium to an initial
ODgoo = 0.1 and grown to exponential (ODgyy 0.7) and
stationary phase (10 h of growth). Culture samples were
withdrawn and mixed with an equal volume of RNA
stop buffer (10 mM Tris at pH 7.2, 5 mM MgCl,, 25 mM
NaN3, and 500 pg/mL chloramphenicol). The total RNA
extraction followed the protocol of cell lysis and phenol:
chloroform extraction (adapted from [90]. After a pre-
cipitation step in ethanol and 300 mM sodium acetate,
RNA was resuspended in MilliQ™-water. The integrity of
RNA samples was evaluated by agarose gel electrophor-
esis. When necessary, Turbo DNase (Ambion) treatment
following a new phenol: chloroform step was used to re-
move contaminant DNA. Next, 10-20 ug of total RNA
was used to analyse small RNA expression on 10% poly-
acrylamide gels in TBE 1x buffer. RNA was transferred
onto Hybond-N+ membrane (Amersham Biosciences)
using TAE 1x as transfer buffer. RNAs were UV cross-
linked to the membrane with a UVC 500 apparatus for
3 min (Amersham Biosciences). DNA templates carrying
a T7 promoter sequence for in vitro transcription were
generated by PCR using genomic DNA of H. seropedicae
SmR1 and the primers listed in Table 2. Hsnc028 and
Hsnc082 were detected by 5° -end labelling of an anti-
sense primer (Table 2). Radiolabelled probes using rUTP
a-3?P (T7 probes) or y-*P ATP (primer probes) were
purified on G25 Microspin columns (GE Healthcare).
Hybridizations were carried out overnight at 42°C or
68°C with the PerfectHyb Plus Hybridization Buffer
(Sigma). RNA Decade marker (Ambion) was used when
detecting non-coding RNAs up to 150nt; for longer
transcripts, the 100—1000 bp Ladder (Biotools) was used.
All radiochemicals were purchased from Perkin-Elmer.
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Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512864-019-6402-x.

Additional file 1. Herbaspirillum seropedicae SmR1 predicted sRNAs.
Expression of the 117 sRNAs of H. seropedicae SmR1 are shown in the
table by Coverage and RPKM using RNA-seq data under CRT, NAR and
NIT conditions. Defined identity sSRNAs have the Rfam code listed. All
SRNAs have features as the tools by which the sRNA was predicted
(nocoRNAc and / or Cufflinks), category (trans-encoded, cis-encoded or
riboswitch), percentage of G + C in the SRNA sequence, initial and final
position of the sSRNA found in the genome of H. seropedicae SmR1 as well
as the sense of the DNA strand (sense or antisense) and the size of the
SRNA.
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