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Abstract

Background: To evaluate binary classifications and their confusion matrices, scientific researchers can employ
several statistical rates, accordingly to the goal of the experiment they are investigating. Despite being a crucial issue
in machine learning, no widespread consensus has been reached on a unified elective chosen measure yet. Accuracy
and F1 score computed on confusion matrices have been (and still are) among the most popular adopted metrics in
binary classification tasks. However, these statistical measures can dangerously show overoptimistic inflated results,
especially on imbalanced datasets.

Results: The Matthews correlation coefficient (MCC), instead, is a more reliable statistical rate which produces a high
score only if the prediction obtained good results in all of the four confusion matrix categories (true positives, false
negatives, true negatives, and false positives), proportionally both to the size of positive elements and the size of
negative elements in the dataset.

Conclusions: In this article, we show how MCC produces a more informative and truthful score in evaluating binary
classifications than accuracy and F1 score, by first explaining the mathematical properties, and then the asset of MCC
in six synthetic use cases and in a real genomics scenario. We believe that the Matthews correlation coefficient should
be preferred to accuracy and F1 score in evaluating binary classification tasks by all scientific communities.

Keywords: Matthews correlation coefficient, Binary classification, F1 score, Confusion matrices, Machine learning,
Biostatistics, Accuracy, Dataset imbalance, Genomics

Background
Given a clinical feature dataset of patients with cancer
traits [1, 2], which patients will develop the tumor, and
which will not? Considering the gene expression of neu-
roblastoma patients [3], can we identify which patients
are going to survive, and which will not? Evaluating
the metagenomic profiles of patients [4], is it possible
to discriminate different phenotypes of a complex dis-
ease? Answering these questions is the aim of machine
learning and computational statistics, nowadays perva-
sive in analysis of biological and health care datasets, and
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many other scientific fields. In particular, these binary
classification tasks can be efficiently addressed by super-
vised machine learning techniques, such as artificial neu-
ral networks [5], k-nearest neighbors [6], support vector
machines [7], random forest [8], gradient boosting [9], or
other methods. Here the word binarymeans that the data
element statuses and prediction outcomes (class labels)
can be twofold: in the example of patients, it can mean
healthy/sick, or low/high grade tumor. Usually scientists
indicate the two classes as the negative and the posi-
tive class. The term classification means that the goal
of the process is to attribute the correct label to each
data instance (sample); the process itself is known as the
classifier, or classification algorithm.
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Scientists have used binary classification to address sev-
eral questions in genomics in the past, too. Typical cases
include the application of machine learning methods to
microarray gene expressions [10] or to single-nucleotide
polymorphisms (SNPs) [11] to classify particular condi-
tions of patients. Binary classification can also be used
to infer knowledge about biology: for example, compu-
tational intelligence applications to ChIP-seq can predict
transcription factors [12], applications to epigenomics
data can predict enhancer-promoter interactions [13], and
applications to microRNA can predict genomic inverted
repeats (pseudo-hairpins) [14].
A crucial issue naturally arises, concerning the outcome

of a classification process: how to evaluate the classifier
performance? A relevant corpus of published works has
stemmed until today throughout the last decades for pos-
sible alternative answers to this inquiry, by either propos-
ing a novel measure or comparing a subset of existing
ones on a suite of benchmark tasks to highlight pros and
cons [15–28], also providing off-the-shelf software pack-
ages [29, 30]. Despite the amount of literature dealing with
this problem, this question is still an open issue. How-
ever, there are several consolidated and well known facts
driving the choice of evaluating measures in the current
practice.
Accuracy, MCC, F1 score. Many researchers think the

most reasonable performance metric is the ratio between
the number of correctly classified samples and the over-
all number of samples (for example, [31]). This measure
is called accuracy and, by definition, it also works when
labels are more than two (multiclass case). However, when
the dataset is unbalanced (the number of samples in one
class is much larger than the number of samples in the
other classes), accuracy cannot be considered a reliable
measure anymore, because it provides an overoptimistic
estimation of the classifier ability on the majority class
[32–35].
An effective solution overcoming the class imbalance

issue comes from the Matthews correlation coefficient
(MCC), a special case of the φ phi coefficient [36].
Stemming from the definition of the phi coefficient, a

number of metrics have been defined and mainly used for
purposes other than classification, for instance as asso-
ciation measures between (discrete) variables, with the
Cramér’s V (or Cramér’s φ) being one of the most com-
mon rates [37].
Originally developed by Matthews in 1975 for compar-

ison of chemical structures [38], MCC was re-proposed
by Baldi and colleagues [39] in 2000 as a standard
performance metric for machine learning with a nat-
ural extension to the multiclass case [40]. MCC soon
started imposing as a successful indicator: for instance,
the Food and Drug Administration (FDA) agency of
the USA employed the MCC as the main evaluation

measure in the MicroArray II / Sequencing Quality Con-
trol (MAQC/SEQC) projects [41, 42]. The effectiveness
of MCC has been shown in other scientific fields as
well [43, 44].
Although being widely acknowledged as a reliable met-

ric, there are situations - albeit extreme - where either
MCC cannot be defined or it displays large fluctua-
tions [45], due to imbalanced outcomes in the classifica-
tion. Even if mathematical workarounds and Bayes-based
improvements [46] are available for these cases, they have
not been adopted widely yet.
Shifting context from machine learning to informa-

tion retrieval, and thus interpreting positive and nega-
tive class as relevant and irrelevant samples respectively,
the recall (that is the accuracy on the positive class)
can be seen as the fraction of relevant samples that are
correctly retrieved. Then its dual metric, the precision,
can be defined as the fraction of retrieved documents
that are relevant. In the learning setup, the pair pre-
cision/recall provides useful insights on the classifier’s
behaviour [47], and can be more informative than the
pair specificity/sensitivity [48]. Meaningfully combining
precision and recall generates alternative performance
evaluation measures. In particular, their harmonic mean
has been originally introduced in statistical ecology by
Dice [49] and Sørensen [50] independently in 1948, then
rediscovered in the 1970s in information theory by van
Rijsbergen [51, 52] and finally adopting the current nota-
tion of F1 measure in 1992 [53]. In the 1990s, in fact,
F1 gained popularity in the machine learning community,
to the point that it was also re-introduced later in the
literature as a novel measure [54].
Nowadays, the F1 measure is widely used in most appli-

cation areas of machine learning, not only in the binary
scenario, but also in multiclass cases. In multiclass cases,
researchers can employ the F1 micro/macro averaging
procedure [55–60], which can be even targeted for ad-hoc
optimization [61].
The distinctive features of F1 score have been discussed

in the literature [62–64]. Two main properties character-
ize F1 fromMCC. First, F1 varies for class swapping, while
MCC is invariant if the positive class is renamed negative
and vice versa. This issue can be overcome by extend-
ing the macro/micro averaging procedure to the binary
case itself [17], by defining the F1 score both on the posi-
tive and negative classes and then average the two values
(macro), and using the average sensitivity and average pre-
cision values (micro). The micro/macro averaged F1 is
invariant for class swapping and its behaviour is more sim-
ilar to MCC. However, this procedure is biased [65], and
it is still far from being accepted as a standard practice
by the community. Second, F1 score is independent from
the number of samples correctly classified as negative.
Recently, several scientists highlighted drawbacks of the
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F1 measure [66, 67]: in fact, Hand and Peter [68] claim that
alternative measures should be used instead, due to its
major conceptual flaws. Despite the criticism, F1 remains
one of the most widespread metrics among researchers.
For example, when Whalen and colleagues released Tar-
getFinder, a tool to predict enhancer-promoters interac-
tions in genomics, they showed its results measured only
by F1 score [13], making it impossible to detect the actual
true positive rate and true negative rate of their tests [69].
Alternative metrics. The current most popular and

widespread metrics include Cohen’s kappa [70–72]: orig-
inally developed to test inter-rater reliability, in the
last decades Cohen’s kappa entered the machine learn-
ing community for comparing classifiers’ performances.
Despite its popularity, in the learning context there are
a number of issues causing the kappa measure to pro-
duce unreliable results (for instance, its high sensitivity
to the distribution of the marginal totals [73–75]), stimu-
lating research for more reliable alternatives [76]. Due to
these issues, we chose not to include Cohen’s kappa in the
present comparison study.
In the 2010s, several alternative novel measures have

been proposed, either to tackle a particular issue such as
imbalance [34, 77], or with a broader purpose. Among
them, we mention the confusion entropy [78, 79], a statis-
tical score comparable with MCC [80], and the Kmeasure
[81], a theoretically grounded measure that relies on a
strong axiomatic base.
In the same period, Powers proposed informedness and

markedness to evaluate binary classification confusion
matrices [22]. Powers defines informedness as true posi-
tive rate – true negative rate, to express how the predictor
is informed in relation to the opposite condition [22]. And
Powers defines markedness as precision – negative pre-
dictive value, meaning the probability that the predictor
correctly marks a specific condition [22].
Other previously introduced rates for confusion matrix

evaluations are macro average arithmetic (MAvA) [18],
geometric mean (Gmean or G-mean) [82], and balanced
accuracy [83], which all represent classwise weighted
accuracy rates.
Notwithstanding their effectiveness, all the aforemen-

tioned measures have not yet achieved such a diffusion
level in the literature to be considered solid alternatives to
MCC and F1 score. RegardingMCC and F1, in fact, Dubey
and Tatar [84] state that these two measure “provide more
realistic estimates of real-world model performance”.
However, there are many instances where MCC and F1

score disagree, making it difficult for researchers to draw
correct deductions on the behaviour of the investigated
classifier.
MCC, F1 score, and accuracy can be computed when a

specific statistical threshold τ for the confusion matrix is
set. When the confusion matrix threshold is not unique,

researchers can instead take advantage of classwise rates:
true positive rate (or sensitivity, or recall) and true negative
rate (or specificity), for example, computed for all the pos-
sible confusion matrix thresholds. Different combinations
of these two metrics give rise to alternative measures:
among them, the area under the receiver operating char-
acteristic curve (AUROC or ROC AUC) [85–91] plays a
major role, being a popular performance measure when
a singular threshold for the confusion matrix is unavail-
able. However, ROC AUC presents several flaws [92], and
it is sensitive to class imbalance [93]. Hand and colleagues
proposed improvements to address these issues [94], that
were partially rebutted by Ferri and colleagues [95] some
years later.
Similar to ROC curve, the precision-recall (PR) curve

can be used to test all the possible positive predictive
values and sensitivities obtained through a binary classi-
fication [96]. Even if less common than the ROC curve,
several scientists consider the PR curve more informative
than the ROC curve, especially on imbalanced biological
and medical datasets [48, 97, 98].
If no confusion matrix threshold is applicable, we sug-

gest the readers to evaluate their binary evaluations by
checking both the PR AUC and the ROC AUC, focusing
on the former [48, 97]. If a confusion matrix thresh-
old is at disposal, instead, we recommend the usage of
the Matthews correlation coefficient over F1 score, and
accuracy.
In this manuscript, we outline the advantages of the

Matthews correlation coefficient by first describing its
mathematical foundations and its competitors accu-
racy and F1 score (“Notation and mathematical foun-
dations” section), and by exploring their relationships
afterwards (Relationships between rates). We decided to
focus on accuracy and F1 score because they are the
most common metrics used for binary classification in
machine learning. We then show some examples to illus-
trate why the MCC is more robust and reliable than F1
score, on six synthetic scenarios (“Use cases” section)
and a real genomics application (“Genomics scenario:
colon cancer gene expression” section). Finally, we con-
clude the manuscript with some take-home messages
(“Conclusions” section).

Methods
Notation andmathematical foundations
Setup. The framework where we set our investigation is
a machine learning task requiring the solution of binary
classification problem. The dataset describing the task is
composed by n+ examples in one class, labeled positive,
and n− examples in the other class, called negative. For
instance, in a biomedical case control study, the healthy
individuals are usually labelled negative, while the posi-
tive label is usually attributed to the sick patients. As a
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general practice, given two phenotypes, the positive class
corresponds to the abnormal phenotype. This ranking is
meaningful for example, in different stages of a tumor.
The classification model forecasts the class of each data

instance, attributing to each sample its predicted label
(positive or negative): thus, at the end of the classification
procedure, every sample falls in one of the following four
cases:

• Actual positives that are correctly predicted positives
are called true positives (TP);

• Actual positives that are wrongly predicted negatives
are called false negatives (FN);

• Actual negatives that are correctly predicted
negatives are called true negatives (TN);

• Actual negatives that are wrongly predicted positives
are called false positives (FP).

This partition can be presented in a 2 × 2 table called

confusion matrixM =
(
TP FN
FP TN

)
(expanded in Table 1),

which completely describes the outcome of the classifica-
tion task.
Clearly TP + FN = n+ and TN + FP = n−. When one

performs a machine learning binary classification, she/he
hopes to see a high number of true positives (TP) and
true negatives (TN), and less false negatives (FN) and false

positives (FP). WhenM =
(
n+ 0
0 n−

)
the classification is

perfect.
Since analyzing all the four categories of the confusion

matrix separately would be time-consuming, statisticians
introduced some useful statistical rates able to immedi-
ately describe the quality of a prediction [22], aimed at
conveying into a single figure the structure of M. A set of
these functions act classwise (either actual or predicted),
that is, they involve only the two entries of M belonging
to the same row or column (Table 2). We cannot consider
suchmeasures fully informative because they use only two
categories of the confusion matrix [39].
Accuracy. Moving to global metrics having three or

more entries of M as input, many researchers consider
computing the accuracy as the standard way to go. Accu-
racy, in fact, represents the ratio between the correctly
predicted instances and all the instances in the dataset:

accuracy = TP + TN
n+ + n− = TP + TN

TP + TN + FP + FN
(1)

Table 1 The standard confusion matrix M

Predicted positive Predicted negative

Actual positive True positives TP False negatives FN

Actual negative False positives FP True negatives TN

True positives (TP) and true negatives (TN) are the correct predictions, while false
negatives (FN) and false positives (FP) are the incorrect predictions

Table 2 Classwise performance measures

Sensitivity,
recall, true
positive rate

= TP
TP+FN = TP

n+ Specificity,
true negative
rate

= TN
TN+FP = TN

n−

Positive
predictive
value,
precision

= TP
TP+FP Negative

predictive
value

= TN
TN+FN

False positive
rate, fallout

= FP
FP+TN = FP

n− False
discovery
rate

= FP
FP+TP

TP: true positives. TN: true negatives. FP: false positives. FN: false negatives

(worst value: 0; best value: 1)
By definition, the accuracy is defined for every confu-

sion matrix M and ranges in the real unit interval [ 0, 1];
the best value 1.00 corresponds to perfect classification

M =
(
n+ 0
0 n−

)
and the worst value 0.00 corresponds to

perfect misclassificationM =
(

0 n+
n− 0

)
.

As anticipated (Background), accuracy fails in providing
a fair estimate of the classifier performance in the class-
unbalanced datasets. For any dataset, the proportion of
samples belonging to the largest class is called the no-
information error rate ni = max{n+,n−}

n++n− ; a binary dataset is
(perfectly) balanced if the two classes have the same size,
that is, ni = 1

2 , and it is unbalanced if one class is much
larger than the other, that is ni � 1

2 . Suppose now that
ni �= 1

2 , and apply the trivial majority classifier: this algo-
rithm learns only which is the largest class in the training
set, and attributes this label to all instances. If the largest
class is the positive class, the resulting confusion matrix

is M =
(
n+ 0
n− 0

)
, and thus accuracy = ni. If the dataset

is highly unbalanced, ni ≈ 1, and thus the accuracy mea-
sure gives an unreliable estimation of the goodness of the
classifier. Note that, although we achieved this result by
mean of the trivial classifier, this is quite a common effect:
as stated by Blagus and Lusa [99], several classifiers are
biased towards the largest class in unbalanced studies.
Finally, consider another trivial algorithm, the coin toss-

ing classifier: this classifier randomly attributes to each
sample, the label positive or negative with probability 1

2 .
Applying the coin tossing classifier to any binary dataset
gives an accuracy with expected value 1

2 , since 〈M〉 =(
n+/2 n+/2
n−/2 n−/2

)
.

Matthews correlation coefficient (MCC). As an alter-
native measure unaffected by the unbalanced datasets
issue, the Matthews correlation coefficient is a contin-
gency matrix method of calculating the Pearson product-
moment correlation coefficient [22] between actual and
predicted values. In terms of the entries ofM, MCC reads
as follows:
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MCC = TP · TN − FP · FN√
(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)

(2)

(worst value: –1; best value: +1)
MCC is the only binary classification rate that generates

a high score only if the binary predictor was able to cor-
rectly predict the majority of positive data instances and
the majority of negative data instances [80, 97].
It ranges in the interval [−1,+1], with extreme values –

1 and +1 reached in case of perfect misclassification and
perfect classification, respectively, while MCC = 0 is the
expected value for the coin tossing classifier.
A potential problemwithMCC lies in the fact thatMCC

is undefined when a whole row or column ofM is zero, as
it happens in the previously cited case of the trivial major-
ity classifier. However, some mathematical considerations
can help meaningfully fill in the gaps for these cases. IfM
has only one non-zero entry, this means that all samples in
the dataset belong to one class, and they are either all cor-
rectly (for TP �= 0 or TN �= 0) or incorrectly (for FP �= 0
or FN �= 0) classified. In this situations, MCC = 1 for the
former case and MCC = −1 for the latter case. We are
then left with the four cases where a row or a column of
M are zero, while the other two entries are non zero. That
is, whenM is one of

(
a 0
b 0

)
,
(
a b
0 0

)
,
(
0 0
b a

)
or

(
0 b
0 a

)
,

with a, b ≥ 1: n in all four cases, MCC takes the indefinite
form 0

0 . To detect a meaningful value of MCC for these
four cases, we proceed through a simple approximation
via a calculus technique. If we substitute the zero entries
in the above matrices with the arbitrarily small value ε, in
all four cases, we obtain

MCC = aε − bε√
(a + b)(a + ε)(b + ε)(ε + ε)

= ε√
ε

a − b√
2(a + b)(a + ε)(b + ε)

≈ √
ε

a − b√
2ab(a − b)

→ 0 for ε → 0

With these positionsMCC is now defined for all confusion
matrices M. As a consequences, MCC = 0 for the trivial
majority classifier, and 0 is also the expected value for the
coin tossing classifier.
Finally, in some cases it might be useful to consider the

normalized MCC, defined as nMCC = MCC+1
2 , and lin-

early projecting the original range into the interval [0,1],
with nMCC = 1

2 as the average value for the coin tossing
classifier.
F1 score. This metric is the most used member of

the parametric family of the F-measures, named after
the parameter value β = 1. F1 score is defined as the

harmonic mean of precision and recall (Table 2) and as a
function ofM, has the following shape:

F1 score = 2 · TP
2 · TP + FP + FN

= 2· precision · recall
precision + recall

(3)

(worst value: 0; best value: 1)
F1 ranges in [ 0, 1], where the minimum is reached for

TP = 0, that is, when all the positive samples are misclas-
sified, and the maximum for FN = FP = 0, that is for
perfect classification. Two main features differentiate F1
fromMCC and accuracy: F1 is independent from TN, and
it is not symmetric for class swapping.

F1 is not defined for confusion matricesM =
(
0 0
0 n−

)
:

we can set F1 = 1 for these cases. It is also worth men-
tioning that, when defining the F1 score as the harmonic
mean of precision and recall, the cases TP = 0, FP > 0,
and FN > 0 remain undefined, but using the expres-
sion 2·TP

2·TP+FP+FN , the F1 score is defined even for these
confusion matrices and its value is zero.
When a trivial majority classifier is used, due to the

asymmetry of the measure, there are two different cases:

if n+ > n−, then M =
(
n+ 0
n− 0

)
and F1 = 2n+

2n+n− , while

if n− > n+ then M =
(
0 n+
0 n−

)
, so that F1 = 0. Fur-

ther, for the coin tossing algorithm, the expected value is
F1 = 2n+

3n++n− .

Relationship betweenmeasures
After having introduced the statistical background of
Matthews correlation coefficient and the other two mea-
sures to which we compare it (accuracy and F1 score), we
explore here the correlation between these three rates. To
explore these statistical correlations, we take advantage of
the Pearson correlation coefficient (PCC) [100], which is
a rate particularly suitable to evaluate the linear relation-
ship between two continuous variables [101]. We avoid
the usage of rank correlation coefficients (such as Spear-
man’s ρ and Kendall’s τ [102]) because we are not focusing
on the ranks for the two lists.
For a given positive integer N ≥ 10, we consider all

the possible
(N+3

3
)
confusion matrices for a dataset withN

samples and, for eachmatrix, compute the accuracy, MCC
and F1 score and then the Pearson correlation coefficient
for the three set of values. MCC and accuracy resulted
strongly correlated, while the Pearson coefficient is less
than 0.8 for the correlation of F1 with the other two mea-
sures (Table 3). Interestingly, the correlation grows with
N, but the increments are limited.
Similar to what Flach and colleagues did for their iso-

metrics strategy [66], we depict a scatterplot of the MCCs
and F1 scores for all the 21 084 251 possible confusion
matrices for a toy dataset with 500 samples (Fig. 1). We
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Table 3 Correlation between MCC, accuracy, and F1 score values

N PCC (MCC,
F1 score)

PCC (MCC,
accuracy)

PCC (accuracy,
F1 score)

10 0.742162 0.869778 0.744323

25 0.757044 0.893572 0.760708

50 0.766501 0.907654 0.769752

75 0.769883 0.912530 0.772917

100 0.771571 0.914926 0.774495

200 0.774060 0.918401 0.776830

300 0.774870 0.919515 0.777595

400 0.775270 0.920063 0.777976

500 0.775509 0.920388 0.778201

1 000 0.775982 0.921030 0.778652

Pearson correlation coefficient (PCC) between accuracy, MCC and F1 score
computed on all confusion matrices with given number of samples N

take advantage of this scatterplot to overview the mutual
relations between MCC and F1 score.
The two measures are reasonably concordant, but the

scatterplot cloud is wide, implying that for each value of
F1 score there is a corresponding range of values of MCC
and vice versa, although with different width. In fact, for
any value F1 = φ, the MCC varies approximately between
[φ − 1,φ], so that the width of the variability range is

1, independent from the value of φ. On the other hand,
for a given value MCC = μ, the F1 score can range in
[ 0,μ + 1] if μ ≤ 0 and in [μ, 1] if μ > 0, so that the width
of the range is 1 − |μ|, that is, it depends on the MCC
value μ.
Note that a large portion of the above variability is due

to the fact that F1 is independent from TN: in general, all

matricesM =
(

α β

γ x

)
have the same value F1 = 2α

2α+β+γ

regardless of the value of x, while the corresponding MCC
values range from −

√
βγ

(α+β)(α+γ )
for x = 0 to the asymp-

totic a√
(α+β)(α+γ )

for x → ∞. For example, if we consider
only the 63 001 confusion matrices of datasets of size
500 where TP=TN, the Pearson correlation coefficient
between F1 and MCC increases to 0.9542254.
Overall, accuracy, F1, and MCC show reliable concor-

dant scores for predictions that correctly classify both
positives and negatives (having therefore many TP and
TN), and for predictions that incorrectly classify both pos-
itives and negatives (having therefore few TP and TN);
however, these measures show discordant behaviors when
the prediction performs well just with one of the two
binary classes. In fact, when a prediction displays many
true positives but few true negatives (or many true neg-
atives but few true positives) we will show that F1 and
accuracy can provide misleading information, while MCC

Fig. 1 Relationship between MCC and F1 score. Scatterplot of all the 21 084 251 possible confusion matrices for a dataset with 500 samples on the
MCC/F1 plane. In red, the (−0.04, 0.95) point corresponding to use case A1
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always generates results that reflect the overall prediction
issues.

Results and discussion
Use cases
After having introduced the mathematical foundations of
MCC, accuracy, and F1 score, and having explored their
relationships, here we describe some synthetic, realistic
scenarios where MCC results are more informative and
truthful than the other two measures analyzed.
Positively imbalanced dataset — Use case A1. Con-

sider, for a clinical example, a positively imbalanced
dataset made of 9 healthy individuals (negatives = 9%)
and 91 sick patients (positives = 91%) (Fig. 2c). Suppose
the machine learning classifier generated the following
confusion matrix: TP=90, FN=1, TN=0, FP=9 (Fig. 2b).
In this case, the algorithm showed its ability to predict

the positive data instances (90 sick patients out of 91 were
correctly predicted), but it also displayed its lack of talent
in identifying healthy controls (only 1 healthy individual
out of 9 was correctly recognized) (Fig. 2b). Therefore,

the overall performance should be judged poor. How-
ever, accuracy and of F1 showed high values in this case:
accuracy = 0.90 and F1 score = 0.95, both close to the
best possible value 1.00 in the [0, 1] interval (Fig. 2a). At
this point, if one decided to evaluate the performance of
this classifier by considering only accuracy and F1 score,
he/she would overoptimistically think that the computa-
tional method generated excellent predictions.
Instead, if one decided to take advantage of the

Matthews correlation coefficient in the Use case A1,
he/she would notice the resulting MCC = –0.03 (Fig. 2a).
By seeing a value close to zero in the [–1, +1] interval,
he/she would be able to understand that the machine
learning method has performed poorly.
Positively imbalanced dataset — Use case A2. Sup-

pose the prediction generated this other confusionmatrix:
TP = 5, FN = 70, TN = 19, FP = 6 (Additional file 1b).
Here the classifier was able to correctly predict nega-

tives (19 healthy individuals out of 25), but was unable to
correctly identify positives (only 5 sick patients out of 70).
In this case, all three statistical rates showed a low score

0.00

0.25

0.50

0.75

1.00

accuracy = 0.9 F1 score = 0.95 normMCC = 0.48

accuracy = 0.9
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Fig. 2 Use case A1— Positively imbalanced dataset. a Barplot representing accuracy, F1, and normalized Matthews correlation coefficient
(normMCC = (MCC + 1) / 2), all in the [0, 1] interval, where 0 is the worst possible score and 1 is the best possible score, applied to the Use case
A1 positively imbalanced dataset. b Pie chart representing the amounts of true positives (TP), false negatives (FN), true negatives (TN), and false
positives (FP). c Pie chart representing the dataset balance, as the amounts of positive data instances and negative data instances
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which emphasized the deficiency in the prediction process
(accuracy = 0.24, F1 score = 0.12, andMCC = −0.24).
Balanced dataset — Use case B1. Consider now, as

another example, a balanced dataset made of 50 healthy
controls (negatives = 50%) and 50 sick patients (positives
= 50%) (Additional file 2c). Imagine that the machine
learning prediction generated the following confusion
matrix: TP=47, FN=3, TN=5, FP=45 (Additional file 2b).
Once again, the algorithm exhibited its ability to pre-

dict the positive data instances (47 sick patients out of 50
were correctly predicted), but it also demonstrated its lack
of talent in identifying healthy individuals (only 5 healthy
controls of 50 were correctly recognized) (Additional file
2b). Again, the overall performance should be considered
mediocre.
Checking only F1, one would read a good value (0.66 in

the [0, 1] interval), and would be overall satisfied about
the prediction (Additional file 2a). Once again, this score
would hide the truth: the classification algorithm has per-
formed poorly on the negative subset. The Matthews
correlation coefficient, instead, by showing a score close
to random guessing (+0.07 in the [–1, +1] interval) would
be able to inform that the machine learning method has
been on the wrong track. Also, it is worth noticing that
accuracy would provide with an informative result in this
case (0.52 in the [0, 1] interval).
Balanced dataset — Use case B2. As another example,

imagine the classifier produced the following confusion
matrix: TP = 10, FN = 40, TN = 46, FP = 4 (Additional file
3b).
Similar to what happened for the Use case A2, the

method was able to correctly predict many negative cases
(46 healthy individuals out of 50), but failed in predict-
ing most of positive data instances (only 10 sick patients
were correctly predicted out of 50). Like for the Use case
A2, accuracy, F1 and MCC show average or low result
scores (accuracy = 0.56, F1 score = 0.31, and MCC =
+0.17), correctly informing you about the non-optimal
performance of the predictionmethod (Additional file 3a).
Negatively imbalanced dataset — Use case C1. As

another example, analyze now this imbalanced dataset
made of 90 healthy controls (negatives = 90%) and 10 sick
patients (positives = 10% ) (Additional file 4c).
Assume the classifier prediction produced this confu-

sion matrix: TP = 9, FN = 1, TN = 1, FP = 89 (Additional
file 4b).
In this case, the method revealed its ability to predict

positive data instances (9 sick patients out of 10 were cor-
rectly predicted), but it also has shown its lack of skill in
identifying negative cases (only 1 healthy individual out of
90 was correctly recognized) (Additional file 4c). Again,
the overall performance should be judged modest.
Similar to the Use case A2 and B2, all three statisti-

cal scores generated low results that reflect the mediocre

quality of the prediction: F1 score = 0.17 and accuracy =
0.10 in the [0, 1] interval, and MCC = −0.19 in the [–1,
+1] interval (Additional file 4a).
Negatively imbalanced dataset — Use case C2.

As a last example, suppose you obtained this alter-
native confusion matrix, through another prediction:
TP = 2, FN = 9, TN = 88, FP = 1 (Additional file 5b).
Similar to the Use case A1 and B1, the method was able

to correctly identify multiple negative data instances (88
healthy patients out of 89), but unable to correctly pre-
dict most of sick patients (only 2 true positives out of 11
possible elements).
Here, accuracy showed a high value: 0.90 in the [0, 1]

interval.
On the contrary, if one decided to take a look at F1 and

at the Matthews correlation coefficient, by noticing low
values value (F1 score = 0.29 in the [0, 1] interval and
MCC = +0.31 in the [–1, +1] interval), she/he would be
correctly informed about the low quality of the prediction
(Additional file 5a).
As we explained earlier, the key advantage of the

Matthews correlation coefficient is that it generates a high
quality score only if the prediction correctly classified a
high percentage of negative data instances and a high per-
centage of positive data instances, with any class balance
or imbalance.
Recap. We recap here the results obtained for the six

use cases (Table 4). For the Use case A1 (negatively
imbalanced dataset), the machine learning classifier was
unable to correctly predict negative data instances, and
it therefore produced confusion matrices featuring few
true negatives (TN). There, accuracy and F1 generated
overoptimistic and inflated results, while the Matthews
correlation coefficient was the only statistical rate which
identified the aforementioned prediction problem, and
therefore to provide a low truthful quality score.
In the Use case A2 (positively imbalanced dataset),

instead, the method did not predict correctly enough pos-
itive data instances, and therefore showed few true posi-
tives. Even if accuracy showed an excessively high result
score, the values of F1 and MCC correctly reflected the
low quality of the prediction.
In the Use case B1 (balanced dataset), the machine

learning method was unable to correctly predict nega-
tive data instances, and therefore produced a confusion
matrix featuring few true negatives (TN). In this case,
F1 generated an overoptimistic result, while accuracy and
the MCC correctly produced low results that highlight an
issue in the prediction.
The classifier did not find enough true positives for the

Use case B2 (balanced dataset), too. In this case, all the
analyzed rates (accuracy, F1, and MCC) produced average
or low results which correctly represented the prediction
issue.
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Table 4 Recap of the six use cases results

Balance Confusion matrix
Accuracy [0, 1] F1 score [0, 1] MCC [–1, +1] Figure Informative

Pos Neg TP FN TN FP Response

Use case A1
Positively
imbalanced
dataset

91 9 90 1 0 9 0.90 0.95 –0.03 Figure 2 MCC

Use case A2
Positively
imbalanced
dataset

75 25 5 70 19 6 0.24 0.12 –0.24 Suppl.
Additional
file 1

Accuracy,
F1 score,
MCC

Use case B1
Balanced
dataset

50 50 47 3 5 45 0.52 0.66 +0.07 Suppl.
Additional
file 2

Accuracy,
MCC

Use case B2
Balanced
dataset

50 50 10 40 46 4 0.56 0.31 +0.17 Suppl.
Additional
file 3

accuracy,
F1 score,
MCC

Use case C1
Negatively
imbalanced
dataset

10 90 9 1 1 89 0.10 0.17 –0.19 Suppl.
Additional
file 4

accuracy,
F1 score,
MCC

Use case C2
Negatively
imbalanced
dataset

11 89 2 9 88 1 0.90 0.29 +0.31 Suppl.
Additional
file 5

F1 score,
MCC

For the Use case A1, MCC is the only statistical rate able to truthfully inform the readership about the poor performance of the classifier. For the Use case B1, MCC and accuracy
are able to inform about the poor performance of the classifier in the prediction of negative data instances, while for the Use case A2, B2, C1, all the three rates (accuracy, F1,
and MCC) are able to show this information. For the Use case C2, the MCC and F1 are able to recognize the weak performance of the algorithm in predicting one of the two
original dataset classes. pos: number of positives. neg: number of negatives. TP: true positives. FN: false negatives. TN: true negatives. FP: false positives. Informative response:
list of confusion matrix rates able to reflect the poor performance of the classifier in the prediction task. We highlighted in bold the informative response of each use case

Also in the Use case C1 (positively imbalanced dataset),
the machine learning method was unable to correctly rec-
ognize negative data instances, and therefore produced
a confusion matrix with a low number of true negative
(TN). Here, accuracy again generated an overoptimistic
inflated score, while F1 and the MCC correctly produced
low results that indicated a problem in the prediction
process.
Finally, in the last Use case C2 (positively imbalanced

dataset), the prediction technique failed in predicting neg-
ative elements, and therefore its confusion matrix showed
a low percentage of true negatives. Here accuracy again
generated overoptimistic, misleading, and inflated high
results, while F1 and MCC were able to produce a low
score that correctly reflected the prediction issue.
In summary, even if F1 and accuracy results were able to

reflect the prediction issue in some of the six analyzed use
cases, the Matthews correlation coefficient was the only
score which correctly indicated the prediction problem in
all six examples (Table 4).
Particularly, in the Use case A1 (a prediction which gen-

erated many true positives and few true negatives on a
positively imbalanced dataset), the MCC was the only sta-
tistical rate able to truthfully highlight the classification
problem, while the other two rates showed misleading
results (Fig. 2).

These results show that, while accuracy and F1 score
often generate high scores that do not inform the user
about ongoing prediction issues, the MCC is a robust,
useful, reliable, truthful statistical measure able to cor-
rectly reflect the deficiency of any prediction in any
dataset.

Genomics scenario: colon cancer gene expression
In this section, we show a real genomics scenario where
the Matthews correlation coefficient result being more
informative than accuracy and F1 score.
Dataset. We trained and applied several machine learn-

ing classifiers to gene expression data from the microar-
ray experiments of colon tissue released by Alon et al.
[103] and made it publically available within the Par-
tial Least Squares Analyses for Genomics (plsgenomics)
R package [104, 105]. The dataset contains 2,000 gene
probsets for 62 patients, of which 22 are healthy controls
and 40 have colon cancer (35.48% negatives and 64.52%
positives) [106].
Experiment design. We employed machine learning

binary classifiers to predict patients and healthy con-
trols in this dataset: gradient boosting [107], decision tree
[108], k-nearest neighbors (k-NN) [109], support vector
machine (SVM) with linear kernel [7], and support vector
machine with radial Gaussian kernel [7].
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For gradient boosting and decision tree, we trained the
classifiers on a training set containing 80% of randomly
selected data instances, and test them on the test set con-
taining the remaining 20% data instances. For k-NN and
SVMs, we split the dataset into training set (60% data
instances, randomly selected), validation set (20% data
instances, randomly selected), and the test set (remain-
ing 20% data instances). We used the validation set for
the hyper-parameter optimization grid search [97]: num-
ber k of neighbors for k-NN, and cost C hyper-parameter
for the SVMs. We trained each model having a different
hyper-parameter on the training set, applied it to the val-
idation set, and then picked the one obtaining the highest
MCC as final model to be applied to the test set. For all
the classifiers, we repeated the experiment execution ten
times and recorded the average results for MCC, F1 score,
accuracy, true positive (TP) rate, and true negative (TN)
rate.
We then ranked the results obtained on the test sets or

the validation sets first based on the MCC, then based on
the F1 score, and finally based on the accuracy (Table 5).
Results: differentmetric, different ranking. The three

rankings we employed to report the same results (Table 5)
show two interesting aspects. First, the top classifier
changes when we consider the ranking based on MCC, F1

Table 5 Colon cancer prediction rankings

Classifier MCC F1 score Accuracy TP rate TN rate

MCC ranking:

Gradient boosting +0.55 0.81 0.78 0.85 0.69

Decision tree +0.53 0.82 0.77 0.88 0.58

k-nearest neighbors +0.48 0.87 0.80 0.92 0.52

Linear SVM +0.41 0.82 0.76 0.86 0.53

Radial SVM +0.29 0.75 0.67 0.86 0.40

F1 score ranking:

k-nearest neighbors +0.48 0.87 0.80 0.92 0.52

Linear SVM +0.41 0.82 0.76 0.86 0.53

Decision tree +0.53 0.82 0.77 0.88 0.58

Gradient boosting +0.55 0.81 0.78 0.85 0.69

Radial SVM +0.29 0.75 0.67 0.86 0.40

Accuracy ranking:

k-nearest neighbors +0.48 0.87 0.80 0.92 0.52

Gradient boosting +0.55 0.81 0.78 0.85 0.69

Decision tree +0.53 0.82 0.77 0.88 0.58

Linear SVM +0.41 0.82 0.76 0.86 0.53

Radial SVM +0.29 0.75 0.67 0.86 0.40

Prediction results on colon cancer gene expression dataset, based on MCC, F1
score, and accuracy. linear SVM: support vector machines with linear kernel. MCC:
worst value –1 and best value +1. F1 score, accuracy, TP rate, and TN rate: worst
value 0 and best value 1. To avoid additional complexity and keep this table simple
to read, we prefered to exclude the standard deviation of each result metric. We
highlighted in bold the ranking of each rate

score, or accuracy. In the MCC ranking, in fact, the top
performing method is gradient boosting (MCC = +0.55),
while in the F1 score ranking and in the accuracy rank-
ing the best classifier resulted being k-NN (F1 score = 0.87
and accuracy = 0.81). The ranks of the other methods
change, too: linear SVM is ranked forth in the MCC rank-
ing and in the accuracy ranking, but ranked second in the
F1 score ranking. Decision tree changes its position from
one ranking to another, too.
As mentioned earlier, for binary classifications like this,

we prefer to focus on the ranking obtained by the MCC,
because this rate generates a high score only if the clas-
sifier was able to correctly predict the majority of the
positive data instances and the majority of the nega-
tive data instances. In our example, in fact, the top
MCC ranking classifier gradient boosting did quite well
both on the recall (TP rate = 0.85) and on the speci-
ficity (TN rate = 0.69). k-NN, that is the top performing
method both in the F1 score ranking and in the accu-
racy ranking, instead, obtained an excellent score for
recall (TP rate = 0.92) but just sufficient on the speci-
ficity (TN rate = 0.52).
The F1 score ranking and the accuracy ranking, in con-

clusion, are hiding this important flaw of the top classifier:
k-NN was unable top correctly predict a high percentage
of patients. The MCC ranking, instead, takes into account
this information.
Results: F1 score and accuracy canmislead, butMCC

does not. The second interesting aspect of the results
we obtained relates to the radial SVM (Table 5). If a
researcher decided to evaluate the performance of this
method by observing only the F1 score and the accu-
racy, she/he would notice good results (F1 score = 0.75
and accuracy = 0.67) and might be satisfied about them.
These results, in fact, mean 3/4 correct F1 score and 2/3
correct accuracy.
However, these values of F1 score and accuracy would

mislead the researcher once again: with a closer look to the
results, one can notice that the radial SVM has performed
poorly on the true negatives (TN rate = 0.40), by correctly
predicting less than half patients. Similar to the synthetic
Use case A1 previously described (Fig. 2 and Table 4),
the Matthews correlation coefficient is the only aggregate
rate highlighting the weak performance of the classifier
here.With its low value (MCC = +0.29), theMCC informs
the readers about the poor general outcome of the radial
SVM, while the accuracy and F1 score show misleading
values.

Conclusions
Scientists use confusion matrices to evaluate binary clas-
sification problems; therefore, the availability of a unified
statistical rate that is able to correctly represent the qual-
ity of a binary prediction is essential. Accuracy and F1
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score, although popular, can generate misleading results
on imbalanced datasets, because they fail to consider
the ratio between positive and negative elements. In this
manuscript, we explained the reasons why Matthews cor-
relation coefficient (MCC) can solve this issue, through
its mathematical properties that incorporate the dataset
imbalance and its invariantness for class swapping. The
criterion of MCC is intuitive and straightforward: to get a
high quality score, the classifier has to make correct pre-
dictions both on the majority of the negative cases, and
on the majority of the positive cases, independently of
their ratios in the overall dataset. F1 and accuracy, instead,
generate reliable results only when applied to balanced
datasets, and produce misleading results when applied to
imbalanced cases. For these reasons, we suggest all the
researchers working with confusion matrices to evaluate
their binary classification predictions through the MCC,
instead of using F1 score or accuracy.
Regarding the limitations of this comparative article, we

recognize that additional comparisons with other rates
(such as Cohen’s Kappa [70], Cramér’s V [37], and K
measure [81]) would have provided further information
about the role of MCC in binary classification evaluation.
We prefered to focus on accuracy and F1 score, instead,
because accuracy and F1 score are more commonly used
in machine learning studies related to biomedical applica-
tions.
In the future, we plan to investigate further the rela-

tionship betweenMCC and Cohen’s Kappa, Cramér’s V, K
measure, balanced accuracy, Fmacro average, and Fmicro
average.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12864-019-6413-7.

Additional file 1: Use case A2—Positively imbalanced dataset. (a) Barplot
representing accuracy, F1 score, and normalizedMatthews correlation
coefficient (normMCC = (MCC + 1) / 2), all in the [0, 1] interval, where 0
is the worst possible score and 1 is the best possible score, applied to the
Use case A2 positively imbalanced dataset. (b) Pie chart representing the
amounts of true positives (TP), false negatives (FN), true negatives (TN), and
false positives (FP). (c) Pie chart representing the dataset balance, as the
amounts of positive data instances and negative data instances.

Additional file 2: Use case B1— Balanced dataset. (a) Barplot
representing accuracy, F1 score, and normalizedMatthews correlation
coefficient (normMCC = (MCC + 1) / 2), all in the [0, 1] interval, where 0
is the worst possible score and 1 is the best possible score, applied to the
Use case B1 balanced dataset. (b) Pie chart representing the amounts of
true positives (TP), false negatives (FN), true negatives (TN), and false
positives (FP). (c) Pie chart representing the dataset balance, as the
amounts of positive data instances and negative data instances.

Additional file 3: Use case B2— Balanced dataset. (a) Barplot
representing accuracy, F1 score, and normalizedMatthews correlation
coefficient (normMCC = (MCC + 1) / 2), all in the [0, 1] interval, where 0
is the worst possible score and 1 is the best possible score, applied to the
Use case B2 balanced dataset. (b) Pie chart representing the amounts of
true positives (TP), false negatives (FN), true negatives (TN), and false
positives (FP).

(c) Pie chart representing the dataset balance, as the amounts of positive
data instances and negative data instances.

Additional file 4: Use case C1— Negatively imbalanced dataset.
(a) Barplot representing accuracy, F1 score, and normalizedMatthews
correlation coefficient (normMCC = (MCC + 1) / 2), all in the [0, 1]
interval, where 0 is the worst possible score and 1 is the best possible
score, applied to the Use case C1 negatively imbalanced dataset. (b) Pie
chart representing the amounts of true positives (TP), false negatives (FN),
true negatives (TN), and false positives (FP). (c) Pie chart representing the
dataset balance, as the amounts of positive data instances and negative
data instances.

Additional file 5: Use case C2— Negatively imbalanced dataset.
(a) Barplot representing accuracy, F1 score, and normalizedMatthews
correlation coefficient (normMCC = (MCC + 1) / 2), all in the [0, 1]
interval, where 0 is the worst possible score and 1 is the best possible
score, applied to the Use case C2 negatively imbalanced dataset. (b) Pie
chart representing the amounts of true positives (TP), false negatives (FN),
true negatives (TN), and false positives (FP). (c) Pie chart representing the
dataset balance, as the amounts of positive data instances and negative
data instances.
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