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Abstract

Background: Non-key traits (NKTs) in radiata pine (Pinus radiata D. Don) refer to traits other than growth, wood
density and stiffness, but still of interest to breeders. Branch-cluster frequency, stem straightness, external resin
bleeding and internal checking are examples of such traits and are targeted for improvement in radiata pine
research programmes. Genomic selection can be conducted before the performance of selection candidates is
available so that generation intervals can be reduced. Radiata pine is a species with a long generation interval,
which if reduced could significantly increase genetic gain per unit of time. The aim of this study was to evaluate
the accuracy and predictive ability of genomic selection and its efficiency over traditional forward selection in
radiata pine for the following NKTs: branch-cluster frequency, stem straightness, internal checking, and external
resin bleeding.

Results: Nine hundred and eighty-eight individuals were genotyped using exome capture genotyping by
sequencing (GBS) and 67,168 single nucleotide polymorphisms (SNPs) used to develop genomic estimated
breeding values (GEBVs) with genomic best linear unbiased prediction (GBLUP). The documented pedigree was
corrected using a subset of 704 SNPs. The percentage of trio parentage confirmed was about 49% and about 50%
of parents were re-assigned. The accuracy of GEBVs was 0.55-0.75 when using the documented pedigree and 0.61—
0.80 when using the SNP-corrected pedigree. A higher percentage of additive genetic variance was explained and
a higher predictive ability was observed when using the SNP-corrected pedigree than using the documented
pedigree. With the documented pedigree, genomic selection was similar to traditional forward selection when
assuming a generation interval of 17 years, but worse than traditional forward selection when assuming a
generation interval of 14 years. After the pedigree was corrected, genomic selection led to 37-115% and 13-77%
additional genetic gain over traditional forward selection when generation intervals of 17 years and 14 years were
assumed, respectively.

Conclusion: It was concluded that genomic selection with a pedigree corrected by SNP information was an
efficient way of improving non-key traits in radiata pine breeding.
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Introduction
Genomic selection (GS) is an approach for improving
quantitative traits in forest tree breeding populations that
uses high density markers dispersed across the whole gen-
ome [1-7]. Genomic predictions are estimated based on
information from markers, phenotypes and pedigrees to
increase the accuracy of breeding values. There are two
groups of individuals that are used in genomic selection:
the training individuals and the selection candidates.
Marker and pedigree information is available for both
groups of individuals, but phenotypes are only available for
the training individuals. The breeding values of selection
candidates can be estimated without the need to ascertain
their own individual phenotypes. In traditional tree breed-
ing, selection candidates must be tested in field trials over
a number of years to obtain their performance measure-
ments. With genomic selection, breeding cycles can skip
the field performance testing phase thereby significantly
reducing the generation interval. This benefit of genomic
selection is particularly important to species with long
generation intervals and requiring large field testing experi-
ments such as forest trees [1, 5, 8] and is particularly useful
for those traits that express late in life (e.g. wood density)
or have low to medium heritability (e.g. growth and
disease resistance) [9, 10]. Until recently, obtaining
sufficient single nucleotide polymorphisms (SNPs) to
cover the entire genome and hence capture enough
genomic variation was prohibitively expensive. The
development of next-generation sequencing techniques has
enabled researchers to obtain tens of thousands of SNPs at a
reasonable cost through genotyping-by-sequencing (GBS)
[11]. GBS uses methylation-sensitive restriction enzymes to
reduce genome complexity and avoid the repetitive fraction
of the genomes. It is becoming increasingly important to
acquire genomic information in plant species with complex
genomes that lack reference genomes. Where expressed
sequence data are available, exome-capture GBS offers an
alternative that allows researchers to focus on gene regions,
generating a smaller, more manageable dataset and a cost-
effective sequencing solution for studying genomes in species
with large genomes, such as loblolly pine (Pinus taeda) [12].
SNPs have been found to be associated with phenotypic
performance [13-15]. Traits under selection can follow
specific genetic architectures so several models assuming
different distributions of marker effects should be investi-
gated. There are essentially two types of genetic architec-
ture: (1) genetic effects follow a mixed inheritance process
where there are few genetic variants of large effects and
many variants of very small effects, or (2) genetic effects fol-
low Fisher’s infinitesimal model and each effect contributes
only a very small fraction of the total genetic variance. Vari-
able selection procedures such as Bayesian methodologies
(including BayesB, BayesC, BayesCr, etc.) are successively
used in traits with the first type of genetic architecture,
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where the marker effects are modeled to follow a priori
distributions [16—18]. These Bayesian methodologies for
genomic selection are implemented in two steps: 1) breed-
ing values are estimated using phenotypes and pedigree in-
formation, and 2) prediction equations using SNP markers
are estimated using de-regressed estimated breeding values
(EBVs) as inputs, and then used to derive genomic EBVs
(GEBVs) [19-21]. The genomic breeding values of selection
candidates are calculated based on the prediction equations
and their marker genotypes. However, this two-step pro-
cedure has been found to inflate the accuracy of genetic
evaluation when individuals with only small numbers of oft-
spring were used [22]. The second type of genetic architec-
ture can be successively fitted by genomic best linear
unbiased prediction (GBLUP) which estimates genomic
breeding values by incorporating genomic relationships
derived from markers in a mixed model framework. No
prediction equations are estimated for individual markers.
The GBLUP method is preferred for forest tree breeding
programmes since only shallow and simple pedigrees are
usually available, so reliable de-regression of EBVs cannot
be undertaken [23]. Moreover, experimental design features
can be included in the model. The genotype by environ-
ment interaction can also be formulated and variance-
covariance structures incorporated into GBLUP models to
account for genetic/residual heterogeneity [3].

Growth, wood density and stiffness are the most eco-
nomically important traits for radiata pine (Pinus radiata
D. Don) growers and the improvement of these traits has
been the main focus of radiata pine breeding programmes.
They are called the key traits (KTs) in radiata pine breed-
ing, while other traits of interest to radiata pine breeders
are called non-key traits (NKTs) [24—26]. Branch-cluster
frequency, stem straightness, external resin bleeding, and
internal checking are examples of such traits. These non-
key traits have been targeted for improvement in previous
radiata pine research programmes [27, 28]. Selection indi-
ces have been proposed to incorporate non-key traits
together with the key traits into breeding programmes in
New Zealand [25, 26].

New Zealand’s Radiata Pine Breeding Company (RPBC)
has established a genomic selection project as part of its
overall goal of genetically improving the growth, form,
wood quality, and resistance to pests and diseases of
radiata pine. Phenotypes for two form traits (branch-clus-
ter and stem straightness) and two wood quality traits (in-
ternal checking and external resin bleeding) were available
for the training population of this genomic selection pro-
ject. Branch-cluster frequency refers to the frequency of
branch-clusters between one and six metres above the
ground on the main stem. It affects both branch size and
mean internode length, particularly in the first 3—-11 m of
the tree bole above the ground. Stem straightness affects
log grade, log length and sawn-timber recovery [25, 29].
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External resin bleeding and internal checking are two
wood defects in radiata pine timber and lower the value of
appearance-grade timber, leading to large economic losses
for the forest industry [28]. Stem straightness and branch-
cluster frequency both have medium to high heritabilities
[30] while external resin bleeding and internal checking
have low to high heritabilities [26, 31, 32].

This study was the application of genomic selection in
radiata pine breeding with a limited number of genotypes
in the training population. The objective of this study was
to demonstrate the efficacy of applying genomic selection
in radiata pine breeding for the non-key traits described.
The accuracy of genomic breeding values, the predictive
ability of genomic selection, and the expected genetic
gains for these non-key traits in radiata pine were investi-
gated in this study.

Results

Pedigree correction

The training population in this study comprised two
clonally propagated radiata pine breeding trial series
planted in New Zealand: POP2 and POP3. Trio par-
entage assignments for POP2 and POP3 was con-
ducted with Cervus [33, 34]. The percentage of trio
parentage confirmed was 48.91 and 49.33% for POP2
and POP3, respectively. There were 83 parents in
total in the documented pedigree of POP2 and
POP3. About 50% of parents were re-assigned in the
SNP-corrected pedigree. The total number of parents
in the SNP-corrected pedigree was 107.
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Heritability and accuracy of breeding values

The heritability estimates (hi) in ABLUP (best linear un-
biased prediction using the average numerator relationship
matrix) and the combined heritability estimates (hﬁm) in
GBLUP were lower when the SNP-corrected pedigree was
used compared with the documented pedigree for branch-
cluster frequency and stem straightness (Table 1). However,
the heritability estimates were similar when comparing the
SNP-corrected pedigree and the documented pedigree for
internal checking and external resin bleeding. In GBLUP,
the marker-based heritability (/42,) was higher when using
the SNP-corrected pedigree than using the documented
pedigree. The combined heritability estimated in GBLUP
was higher than the heritability estimated in ABLUP for
branch-cluster frequency, stem straightness and internal
checking, whereas heritability estimates for external resin
bleeding were similar in GBLUP and ABLUP.

The accuracy of GEBVs was lower (0.55-0.75) for branch-
cluster frequency, stem straightness, internal checking and
external resin bleeding) than EBVs from ABLUP (0.73-0.84)
when using the documented pedigree. The accuracy of
GEBVs was higher for branch-cluster frequency (0.80) than
that of EBVs from ABLUP (0.73) while that of GEBVs for
stem straightness, internal checking and external resin bleed-
ing (0.61-0.70) was lower than that of EBVs from ABLUP
(0.73-0.87) when using the SNP-corrected pedigree. Higher
accuracy was observed for external resin bleeding in ABLUP
when using the documented pedigree than using the SNP-
corrected pedigree. Similar accuracy was observed in ABLUP
when using the documented pedigree and SNP-corrected

Table 1 Heritabilities, accuracy of EBVs and GEBVs, and the percentage of genetic variation explained by SNP markers (%VA) for
branch-cluster frequency, stem straightness, internal checking and external resin bleeding when using documented or SNP-

corrected pedigrees

Statistical model  Pedigree Genetic parameter  Branch-cluster frequency — Stem straightness  Internal checking  External resin bleeding
ABLUP Documented hé 0.17 0.13 0.23 0.33
Iegy 0.77 0.73 0.78 0.84
SNP-corrected hﬁ 0.09 0.10 0.23 0.34
Iey 073 0.73 0.77 087
GBLUP Documented h; 0.18 0.09 0.11 0.12
h? 0.28 0.18 0.29 0.35
am
Ioeay 075 068 055 0.56
9%VA 64% 54% 39% 36%
SNP-corrected hfn 021 0.1 0.16 0.18
h? 0.22 0.13 0.28 0.34
am
Ioeay 0.80 0.70 065 061
%VA 96% 74% 59% 46%

hZ: heritability from ABLUP, h2: marker-based heritability from GBLUP, h2,: the combined heritability based on variance explained by SNP markers and residual
additive genetic variance from GBLUP. Heritabilities and residual variances reported here are the average across seven sites for branch-cluster frequency and stem

straightness, and across four sites for internal checking and external resin bleeding
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pedigree for stem straightness and internal checking. Lower
accuracy in ABLUP was observed for branch-cluster fre-
quency when using the documented pedigree compared with
the SNP-corrected pedigree. Lower accuracy was observed in
GBLUP when using the documented pedigree than when
using the SNP-corrected pedigree for all traits.

For branch-cluster frequency and stem straightness,
the percentage of additive genetic variance explained by
SNP markers was 54—64% in GBLUP using the docu-
mented pedigree, and 74-96% in GBLUP using the
SNP-corrected pedigree. For internal checking and ex-
ternal resin bleeding, the percentage of additive genetic
variance explained by SNP markers was 36-39% in
GBLUP using the documented pedigree and 46-59% in
GBLUP using the SNP-corrected pedigree.

Predictive ability of genomic selection

The predictive ability, defined as the average correlation
between GEBVs from GBLUP in the cross-validation and
EBVs from ABLUP using all phenotypes, increased for
branch-cluster frequency, stem straightness, internal check-
ing and external resin bleeding when using the SNP-
corrected pedigree over the documented pedigree (Table 2).
The predictive ability of genomic selection ranged from
0.47 to 0.54 for the four traits examined when using the
documented pedigree and ranged from 0.55 to 0.70 when
using the SNP-corrected pedigree. The predictive ability of
traditional BLUP was higher than that from genomic selec-
tion, ranging from 0.65 to 0.77 for the four traits examined
when using the documented pedigree, and ranged from
0.64 to 0.78 when using the SNP-corrected pedigree.

When using the documented pedigree, genomic selec-
tion was only superior to the traditional BLUP selection for
branch-cluster frequency, and only reached 91-98% of the
efficiency of traditional forward selection, with no clonal
archive establishment, for the other traits. When using
forward selection with the establishment of a clonal arch-
ive, the generation interval reduced from 17 years to 14
years and the efficiency of genomic selection was reduced.
Genomic selection reached 75-81% of the efficiency of for-
ward selection for stem straightness, internal checking and
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external resin bleeding, and had similar efficiency to for-
ward selection for branch-cluster frequency.

However, when the pedigree was corrected using SNP
information, the efficiency of genomic selection over for-
ward selection increased. When forward selection with a
generation interval of 17 years was used, genomic selec-
tion was equivalent to forward selection for external
resin bleeding but led to 37-115% additional benefit
over forward selection for branch-cluster frequency,
stem straightness and internal checking. When forward
selection with a generation interval of 14 years was used,
genomic selection only reached 84% of the efficiency of
forward selection for external resin bleeding, but still
obtained 13-77% extra genetic gain for branch-cluster
frequency, stem straightness and internal checking.

Discussion

Genomic selection has been conducted for growth and
wood properties in Eucalyptus [5], white spruce (Picea
glauca (Moench) Voss) [6, 7], interior spruce (Picea engel-
mannii x glauca) [1, 23], and loblolly pine (Pinus taeda L.)
[2]. Isik et al. [3] conducted genomic selection on growth
and stem sweep in maritime pine (Pinus pinaster Ait.). For
Eucalyptus, the accuracy of GEBVs across sites was 0.66—
0.79 for growth traits and 0.65—0.88 for wood specific grav-
ity within site [5]. For loblolly pine, the accuracy of genomic
breeding values across four sites was 0.65—0.75 for diameter
at breast height (DBH) and 0.63-0.74 for height [2]. The
current study added two form traits and two wood defect
traits that were evaluated for genomic selection in radiata
pine. The predictive ability of genomic selection in cross-
validation was 0.47-0.50 for branch-cluster frequency and
stem straightness in the current study. A similar predictive
ability (0.49) of genomic selection was reported for stem
sweep in maritime pine [3]. Predictive abilities reported for
growth traits were 0.46-0.55 in Eucalyptus [2] and
0.43-0.47 in maritime pine [3]. In white spruce, the
predictive ability was 0.32-0.44 for wood and growth
traits when both training and validation datasets shared
individuals of the same families but decreased to 0.13—
0.28 when training and validation datasets were made
up of individuals from different families [6].

Table 2 The predictive abilities of genomic selection (rj,) and traditional selection (rjy,) and the relative efficiency (£,7 or £y4) of
genomic selection over traditional BLUP selection for branch-cluster frequency, stem straightness, internal checking and external

resin bleeding

Trait Documented pedigree SNP-corrected pedigree

11k, I, £ Eis Ik, IH, Eyy 2P
Branch-cluster frequency 0.50 0.77 1.28 1.05 0.70 0.78 2.15 1.77
Stem straightness 047 0.73 0.98 0.81 0.55 0.72 1.51 1.25
Internal checking 0.51 0.71 0.92 0.75 0.59 0.70 137 113
External resin bleeding 0.54 0.65 091 0.75 0.57 0.64 1.02 0.84

S Ly =17years, T L, = 14 years
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When a SNP-corrected pedigree was used, the predictive
ability was quite high (0.55-0.70) and seemed overesti-
mated for branch-cluster frequency and stem straightness,
given low heritabilities (0.13—0.22) reported in this paper.
The low heritability might be because a narrow-sense herit-
ability rather than a broad-sense heritability was reported.
Another reason for the high predictive ability for these two
traits could be because the EBV was estimated using a pedi-
gree that was corrected by 704 markers. These 704 markers
were a well-selected subset of whole genomic markers that
were used in the GBLUP method to estimate GEBV.

Genomic selection can increase the amount of genetic
gain per year that is delivered to the forest by shortening
the breeding cycle. In the current study, the selection ef-
ficiency of genomic selection was 37-115% higher than
traditional forward selection when the breeding cycle
was reduced from 17 years to 9 years for branch-cluster
frequency, stem straightness and internal checking. This
is very similar to the efficiency of genomic selection re-
ported in loblolly pine, where the selection efficiency per
unit time in genomic selection was 53—112% higher than
selection through phenotypes, assuming a reduction of
50% in the breeding cycle [2]. A higher selection effi-
ciency of genomic selection was reported in interior
spruce with an increase of 106—133%, assuming a 25%
reduction in the breeding cycle [23]. In Eucalyptus, the
efficiency of genomic selection over traditional selection
was 50-100% for a reduction of 50% in the breeding
cycle and 200-300% for a reduction of 75% in the breed-
ing cycle [2]. However, simulations of a conifer breeding
programme, with a training population size of 2000 and
assuming a reduction in the breeding cycle from 17 years
to 9years, demonstrated additional genetic gain from
genomic selection was 40% for a trait with low heritabil-
ity and 95% for a trait with high heritability [18].

The best linear unbiased prediction (BLUP) methodology
has been widely applied in livestock and plant breeding pro-
grammes to rank selection candidates [35]. It employs an
average numerator relationship matrix, derived from the
pedigree and based on expected relatedness between indi-
viduals, and incorporated in the mixed linear model equa-
tions [36]. Correct pedigree information is essential for
accurately selecting the right individuals as parents of the
next generation. However, pedigree errors are common in
breeding programmes for both livestock and plant species,
with an average of 10% error reported [37-41]. In the
current study, the SNP-corrected pedigree re-assigned half
of the documented parents, suggesting parentage error was
around 50% in the training population. This pedigree error
seemed high compared with that reported in the livestock
and crop programmes mentioned above. Both error and
missing genomic data could be contributing to the high
parentage re-assignment we observed. The genotyping
error rate in the exome capture GBS data was estimated to
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be approximately 5%, based on replicated samples. The rate
of missing genotypes in the data used for this parentage re-
construction was about 8%. Additional errors may also have
been introduced by human operation throughout the whole
process, from pollination to planting in the forest, and sam-
ple to collection to DNA extraction and genotyping.

Pedigree errors resulted in incorrect estimates of vari-
ance components and heritabilities and decreased breed-
ing value accuracies. The genetic gains of breeding
populations could be reduced by 4.3—-17% when using in-
correct pedigree information [37, 42, 43]. In the current
study, the SNP-corrected pedigree considerably increased
the accuracy of genomic selection, similar to that reported
by Munoz et al. [44]. The SNP-corrected pedigree also
increased the percentage of variation explained by SNP
markers from 36 to 64% to 46—96%, which suggests that it
is the pedigree correction that increases the benefit of gen-
omic selection over traditional BLUP selection.

Three types of narrow-sense heritabilities of branch-
cluster frequency, stem straightness, internal checking
and external resin bleeding were estimated using a
model assuming homogeneous genetic variance and het-

erogeneous residual variances across sites. ]:li was a
pedigree-based heritability estimated through a BLUP
model (ABLUP) that used the average numerator rela-

tionship calculated from pedigree. hfn was a marker-
based heritability estimated thought a genomic BLUP
(GBLUP) model that used genomic relationship matrix
calculated from genomic data, which indicated a ratio of

the additive genetic variation explained by genomic

markers. I:’f;m was a heritability estimated fitted both gen-
omic relationship matrix and the average numerator re-
lationship matrix simultaneously, which indicated a ratio
of the additive genetic variation explained by genomic
markers and the residual additive genetic variation that
was not explained by genomic markers. Genomic selec-
tion was not quite efficient for capturing the additive
genetic variations for all these NKT, only explaining 36—
64% of total additive genetic variations. After correcting
pedigree with the 704 parentage reconstruction markers,
genomic selection captured most of the total additive
genetic variation for branch-cluster frequency and stem
straightness, however, it was not quite efficient for in-
ternal checking and external resin bleeding. Therefore, it
is important for some traits to fit the residual polygenic
genetic effects to capture the residual additive genetic
variance when conducting genomic selection.
Narrow-sense heritabilities in the training population
ranged from 0.09 to 0.28 for branch-cluster frequency
and from 0.10 to 0.18 for straightness in the current
study, where data from two trial series were combined
in one analysis. Similar narrow-sense heritabilities within
each trial series of the training population were reported
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by Li et al. [45], ranging from 0.13 to 0.28 for branch-
cluster frequency and from 0.04 to 0.18 for stem
straightness. The heritabilities for these two traits were
also within the range reported in the literature. Heritabil-
ity of branch-cluster frequency in radiata pine has been
estimated as 0.19 in control-pollinated populations [46]
and 0.37 in juvenile clones [47]. The heritability of stem
straightness in radiata pine has been estimated as 0.11 to
0.17 in control-pollinated populations [30, 48, 49] and
0.28 for juvenile clones [47].

For radiata pine, low to moderate heritabilities were
reported for external resin bleeding, and low to high
heritabilities reported for internal checking in the litera-
ture. The narrow-sense heritability was 0.33 for external
resin bleeding at a single site, and 0.40 for internal
checking across two sites, in an open-pollinated progeny
test of 224 first-generation families [31]. In a control-
pollinated trial series with 150-165 pollen parents
crossed to five Female Testers, the narrow-sense herit-
ability was 0.16 for internal checking across two sites
[31]. In another study, heritability for internal checking
was 0.04-0.61 with an average of 0.35 at nine sites in six
trial series [32].

The training population used in this study was limited
both in terms of population size and available pheno-
types, with only 988 clonally replicated genotypes avail-
able for branch-cluster frequency and stem straightness,
and 465 for internal checking and external resin bleed-
ing. Nevertheless, we found that the combination of a
SNP-corrected pedigree and GBLUP resulted in accur-
acies that were acceptable (0.61-0.80). This is a very en-
couraging result for a population of this size. Accuracies
of genomic selection are related to the size of the train-
ing population available and simulations suggest that
higher accuracies can be achieved with larger training
populations [10]. The accuracies of GEBVs for internal
checking and external resin bleeding, for which less than
half the individuals were phenotyped, were lower than
that for branch-cluster frequency and stem straightness
(Table 2). Increasing the number of genotypes tested for
internal checking and external resin bleeding should in-
crease the accuracy of their GEBVs. The accuracy of
GEBVs will likely increase in the future as additional ge-
notypes and phenotypes become available for an ex-
panded training population.

The genotypes used in this study were tested in multiple
environments (sites). The genetic model used assumed
homogeneous genetic variance and heterogeneous residual
variances across different environments. No genotype by
environment interaction was considered in this study. A
low level of genotype by environment interaction has been
previously reported for internal checking, branch-cluster
and stem straightness [31, 32, 50]. Li et al. [45] found there
were considerable genotype by environment interactions
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for branch-cluster frequency and stem straightness in both
the POP2 and POP3 populations. Models that assumed
heterogeneous genetic and residual variances, including
factor analytic models [51], were also attempted but were
unstable and would not converge.

Nevertheless, the accuracy and predictive ability of
GEBVs for the traits investigated in this study are prom-
ising for the RPBC stakeholders, with potential applica-
tions for accelerating breeding of radiata pine. In the
future, genomic selection will also be available for testing
on additional traits, including key traits and resistance to
diseases.

Conclusion

This study presents the first GEBVs for four non-key traits
in the New Zealand radiata pine breeding programme,
with a theoretical accuracy of 0.61-0.80 and a predictive
ability of 0.55-0.70 for the traits examined, when using a
pedigree corrected by SNP marker information. The pre-
dictive ability reported for the non-key traits in this study
indicates that GEBVs are able to achieve an accuracy of
0.55-0.70 when used to predict individuals that are not in-
cluded in the training population but have relatedness in
common with the training population. These results are
encouraging and indicate the method will be effective for
operational implementation for these traits in radiata pine
improvement. The results from this study appeared to
favour the forward selection genomics approach, which
will significantly reduce the generation interval of radiata
pine. This has the potential to deliver benefits over for-
ward selection of 13-77% or 37-115% for branch-cluster
frequency, stem straightness and internal checking, with
or without clonal archive establishment, respectively.

Materials and methods

Genetic material

Genetic material used in this study was provided by
RPBC and data were collected from two RPBC clonally
propagated radiata pine breeding trial series planted in
New Zealand. Planting of the genetic material and col-
lection of the data complied with the RPBC genetic
material planting and data collection guidelines. Details
of these two trial series are described by Li et al. [45],
where the former was called POP2 and the latter POP3.
The first trial series POP2 comprised 457 progeny from
63 parents and were planted in 1997 at two sites (Tarawera
and Woodhill forests), with a single-paired mating design.
The second trial series POP3 comprised 524 progeny from
24 parents and was planted in 1999 at three sites (Kinleith,
Tarawera and Woodhill forests) with a factorial mating
design. Tarawera and Kinleith forests located in the central
North Island. Woodhill forest locates in the northwest of
the North Island. The effective population size was 30.07
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based on the status number for the training popula-
tion [52, 53].

Phenotypic data

Branch-cluster frequency and stem straightness were
assessed at age seven in POP3 and at age 8 in POP2.
Branch-cluster frequency was assessed using a 9-point
system where 1 = uninodal and 9 = extremely multinodal
[49]. Stem straightness was also assessed using a 9-point
subjective scale where 1 =crooked and 9 = very straight
[48]. Internal checking was assessed as a visual score on
a scale of 0-3 in POP3, where 0=none, 1=low, 2=
moderate, and 3 = severe. Equivalent visual scores for in-
ternal checking in POP2 were obtained by converting
the percentage of collapse in increment-cores at breast
height, assessed at age 9; 0 =below 3.5%, 1 =3.5-4.5%;
2 =4.5-6.5%; and 3 = greater than 6.5% [32]. The severity
of external resin bleeding from bark split was assessed at
age 9 in the POP2 trial series on a scale of 0-3, where
0 =none, 1 =low, 2 = moderate, and 3 = severe. Although
these phenotypes were assessed as categorical traits, the
distribution of their scores was close to a normal distri-
bution. A summary of branch-cluster frequency, stem
straightness, internal checking, and external resin bleed-
ing data is presented in Table 3.

Genomic data

Four-hundred and sixty-five progeny from POP2, 523 pro-
geny from POP3, and 117 unrelated individuals from the
wider radiata pine breeding population (including 53 par-
ents of POP2 and 24 parents of POP3) were genotyped
using the exome capture genotyping by sequencing (GBS)
method [12]. Details of SNP discovery and capture probe
design and testing are described in [54]. The total number
of SNPs markers genotyped was 1,371,123. The allele fre-
quencies of these SNPs were calculated using the 117 un-
related individuals. Those SNP markers with a minor
allele frequency of less than 0.03 were excluded from the
analysis, leaving 67,168 SNP markers to be used in this
study. The call rate of SNP markers for individual geno-
types ranged from 0.60 to 0.93, with an average of 0.89.
Where individual SNP genotypes were missing, substitu-
tion with the population mean for that SNP was used.
Heterozygosity ranged from 0.11 to 0.35, with a mean of

Table 3 Summary of statistics for NKTs in POP2 and POP3

Trial Trait N Mean  SD Min  Max
POP2 5290 6.52 149 1
5289 6.68 140 1
2732 1.26 0.99

Branch-cluster frequency
Stem straightness
Internal checking
2275  0.89 0.87
6851 4.64 187 1
6851  6.51 168 1

External resin bleeding

POP3  Branch-cluster frequency

o O
O OV W W WOV O

Stem straightness
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0.28 and a standard deviation of 0.03 in POP2. Heterozy-
gosity ranged from 0.11 to 0.41, with a mean of 0.27 and
a standard deviation of 0.04 in POP3.

Statistical models

In this study, the predictive ability of GEBVs estimated
using a GBLUP model that was based on the genomic rela-
tionship matrix was compared with those estimated using
an ABLUP model that was based on the average numerator
relationship matrix. The genomic relationship matrix was
calculated based on genomic information whereas the aver-
age numerator relationship matrix on pedigree information.
This study aimed to demonstrate the efficacy of genomic
selection for non-key traits in radiata pine using existing
clonally replicated trial datasets. The genetic parameters
and EBVs from ABLUP were estimated through the linear
mixed model described in eq. (1), with the assumptions of
homogeneous additive and non-additive genetic variances,
heterogeneous residual variances, heterogeneous variances
for replication, set within replication and incomplete block
across sites. Attempts were made assuming heterogeneous
genetic variance across all sites, but a full genetic variance-
covariance matrix was unable to estimate due to small
numbers of genotypes at some sites.

y=Xp+Zja+Zd+Z;r+Z,w+Zpb+e (1)

where y is a vector of measurements, /3 is a vector of
fixed effects (intercept and site), a is a vector of poly-
genic additive genetic effects following Var(a) ~ N(0, o2
A) where 02 is the additive genetic variance and A is the
pedigree-based average numerator relationship matrix
[55], d is a vector of non-additive genetic effects follow-
ing Var(d) ~ N(0,0%1) where o2 is the non-additive
genetic variance fitting both dominance and epistatic
effects and [ is the identity matrix, r is a vector of repli-
cation effects following Var(r)~N(0, Py ® I), where Py is
a replication variance-covariance structure matrix with

o2 .. 0
. 1 . . . . .
Py=| : . 0 |, 0} is the replication variance for
0 0 o}

n
site i, w is a vector of set nested within replication fol-
lowing Var(w)~N(0, W, ® I), where W, is a set nested
within replication variance-covariance structure matrix

o, .. O
with Wy = “ 0 |, o} s the set nested
0 0 o)

within replication variance for site i, b is a vector of in-
complete block effects following Var(b)~N(0,By,® )
where By is a block variance-covariance structure matrix

2
o, - 0

withBy=| ¢ 0 |, 0} isthe incomplete block
0 0 o

variance for site i, e is a vector of residual effects following
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er

o o

Var(e)~N(0, Ry ® I) with Ry = . , 07 is the
0 0 o
residual variance for site i, X, Z,, Z,, Z,, Z,, and Z,, are inci-
dence matrices assigning fixed and random effects to mea-
surements in vector y, and # is the number of sites.

The genetic parameters and GEBVs from GBLUP were
estimated through the linear mixed model described in
eq. (2), with the assumptions of homogeneous additive
and non-additive genetic variances, heterogeneous re-
sidual variances, heterogeneous variances for replication,
set within replication and incomplete block across sites:

:WN

y=XB+Zym+Z,a" +Z4d + Z,r + Z,w
+Zyb+e (2)

where terms are the same as those in eq. (1) except m is
the vector of genomic breeding values following Var(m)
~ N(0,0%G), 02, is the additive genetic variance explained
by markers and G is the normalized marker-based relation-
ship matrix [56), a " is the vector of residual polygenic addi-
tive genetic effects following Var(a*) ~ N(0,02.A), where
o2 is the additive genetic variance not explained by genetic
markers, Z,, and Z,- are the incidence matrices assigning
random genomic effects and random residual additive gen-
etic effects to measurements in vector y.

Three types of heritabilities were estimated and reported.

Firstly, the pedigree-based heritability (l:z:_) was estimated on

the basis of variance components obtained from the
~2

pedigree-based analysis (ABLUP) as fzj = %, where
10,4040,

&> is the additive genetic variance, &7 is the non-additive
. . A2 . . . .
genetic variance and ¢, is the environmental variance at site

i. Secondly, marker-based heritability (izfm) representing the

proportion of genetic variance explained by SNP markers in
A2

. 22 o 9 .
GBLUP, was estimated as hm[ = " ~—— where ofn is

0,+0,:+0,4+0,
the additive genetic variance explained by SNP markers, 2.
is the residual additive genetic variance not explained by
SNP markers but captured by pedigree, 55 is the non-
additive genetic variance and 62 is the residual variance at
site i. Finally, a combined marker-based and pedigree-based

heritability (izfmi ), representing the additive genetic variance
fitted jointly by SNP markers and pedigree in GBLUP, was
. ~2
estimated as /1, = —%—%—
i 0,+0,.40,+0,
The accuracy of both pedigree- and marker-based

breeding values was estimated as r = _/1- —2£V [36],
(14+F;)0,
where r is the accuracy of breeding values, PEV is the

prediction error variance, F; is the inbreeding coefficient
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of individual genotype i, and &i is the estimated additive
genetic variance linked to the breeding values, which is
equal to 02 in ABLUP and to ¢? in GBLUP. The per-
centage of additive genetic variance explained by SNP

markers in GBLUP (%VA) was calculated as %VA

A2

= Iu % 100%.

*

Wl+o.ﬂ

Predictive ability and relative efficiency of genomic
selection
The predictive ability of genomic selection refers to the
accuracy achieved when GEBVs are used to predict the
performance of individuals that are not included in the
training population. Firstly, EBVs of all genotypes in the
whole population were estimated with the ABLUP model
using pedigree information and all phenotypes available.
Secondly, GEBVs of all genotypes were estimated using
the GBLUP model through a ten-fold random cross-
validation procedure with ten replications [23]. The whole
population was randomly divided into ten groups, each
group having one-tenth of the genotypes. In each replica-
tion, GEBVs were estimated with the GBLUP model with
nine groups of genotypes as a training population and the
remaining group of genotypes as a validation population.
Phenotypes of genotypes in the validation population were
set as missing values. A Pearson product-moment correl-
ation was calculated between GEBVs and EBVs of the ge-
notypes in the validation population for each replication.
The average of these correlations from ten replications
was reported as the predictive ability of genomic selection.
The relative efficiency (E) of genomic selection over
traditional BLUP selection that is based on phenotypes
and pedigree indicates the benefit of genomic selection
over traditional BLUP selection when generation interval
is considered. Genomic selection is more efficient than
traditional BLUP selection when E was over 100%, less
efficient when E is below 100%, and equally efficient
when E is equal to 100%. It was evaluated as a ratio of
the expected genetic gain from GBLUP over the ex-
pected genetic gain from ABLUP per unit time. There-
fore, we have:

iriH,0a,
L r'IH L
E=—%_100% = —% .22.100%
IriH,04, riH,04, Lg
L,

where i is the selection intensity, T, iS the predictive
ability of genomic selection that was calculated from 10-
fold random cross-validation with GBLUP, ry, is the
predictive ability of traditional BLUP selection that was
calculated from 10-fold random cross-validation with
ABLUP, o4, is the square root of additive genetic vari-
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ance explained by SNP markers from GBLUP using all
phenotypes, o4, is the square root additive genetic vari-
ance in ABLUP using all phenotypes, L, is the generation
interval of radiata pine for a selection based on GEBVs,
and L, is the generation interval of radiata pine for a selec-
tion based on EBVs. Based on a scenario analysis con-
ducted by Li and Dungey [18] in conifers, L, was 9 years
in a forward selection strategy and L, was 14 or 17 years
for a forward selection with or without the establishment
of a separate clonal archive of field-tested material,
respectively.

Comparison between two pedigrees

The documented pedigree of the training population was
found with errors. The parentage of the training popula-
tion was reconstructed using a panel of 704 SNPs with a
call rate of greater than 0.75 and a minor allele frequency
of 0.35 and 0.5. These parentage reconstruction SNPs did
not deviate from Hardy-Weinberg equilibrium and did not
show evidence of linkage disequilibrium between them.
Details of selection criteria and parentage reconstruction
performance of these SNPs were described in [54]. An ex-
clusion analysis approach that was described by Telfer
et al. [57] was used to determine a trio relationship (a pro-
geny and two candidate parents). For a given trio combin-
ation of a progeny and two candidate parents, an exclusion
for the trio was considered if a SNP genotype in the pro-
geny was not one of four genotypic combinations that were
possibly formed from genotypes of the SNP in the candi-
date parents. The number of exclusions was calculated for
all 704 SNPs for all possible trio relationship combinations
of the documented candidate parents. Among all possible
trio relationships related to a progeny, the trio relationship
with the lowest number of exclusions was assigned as pedi-
gree for the progeny.
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