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Abstract

Background: Impaired proteostatic regulation of proteins with prion-like domains (PrLDs) is associated with a
variety of human diseases including neurodegenerative disorders, myopathies, and certain forms of cancer. For
many of these disorders, current models suggest a prion-like molecular mechanism of disease, whereby proteins
aggregate and spread to neighboring cells in an infectious manner. The development of prion prediction
algorithms has facilitated the large-scale identification of PrLDs among “reference” proteomes for various
organisms. However, the degree to which intraspecies protein sequence diversity influences predicted prion
propensity has not been systematically examined.

Results: Here, we explore protein sequence variation introduced at genetic, post-transcriptional, and post-
translational levels, and its influence on predicted aggregation propensity for human PrLDs. We find that
sequence variation is relatively common among PrLDs and in some cases can result in relatively large
differences in predicted prion propensity. Sequence variation introduced at the post-transcriptional level (via
alternative splicing) also commonly affects predicted aggregation propensity, often by direct inclusion or
exclusion of a PrLD. Finally, analysis of a database of sequence variants associated with human disease reveals
a number of mutations within PrLDs that are predicted to increase prion propensity.

Conclusions: Our analyses expand the list of candidate human PrLDs, quantitatively estimate the effects of
sequence variation on the aggregation propensity of PrLDs, and suggest the involvement of prion-like
mechanisms in additional human diseases.

Keywords: Prion-like domains, Sequence variation, Protein aggregation, Prion, Prion prediction, Neurodegenerative
disease

Background
Prions are infectious proteinaceous elements, most often
resulting from the formation of self-replicating protein
aggregates. A key component of protein aggregate self-
replication is the acquired ability of aggregates to
catalyze the conversion of identical proteins to the non-
native, aggregated form. Although prion phenomena
may occur in a variety of organisms, budding yeast has
been used extensively as a model organism to study the
relationship between protein sequence and prion activity
[1–4]. Prion domains from yeast prion proteins tend to

share a number of unusual compositional features, in-
cluding high glutamine/asparagine (Q/N) content and
few charged and hydrophobic residues [2, 3]. Furthermore,
the amino acid composition of these domains (rather than
primary sequence) is the predominant feature conferring
prion activity [5, 6]. This observation has contributed to
the development of a variety of composition-centric prion
prediction algorithms designed to identify and score
proteins based on sequence information alone [7–13].
Many of these prion prediction algorithms were exten-

sively tested and validated in yeast as well. For example,
multiple yeast proteins with experimentally-demonstrated
prion activity were first identified as high-scoring prion
candidates by early prion prediction algorithms [9–11].
Synthetic prion domains, designed in silico using the
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Prion Aggregation Prediction Algorithm (PAPA), exhib-
ited bona fide prion activity in yeast [14]. Additionally, ap-
plication of these algorithms to proteome sequences for a
variety of organisms has led to a number of important dis-
coveries. The first native bacterial PrLDs with demon-
strated prion activity in bacteria (albeit in an unrelated
bacterial model organism) were also initially identified
using leading prion prediction algorithms [15, 16]. A prion
prediction algorithm was used in the initial identification
of a PrLD from the model plant organism Arabidopsis
thaliana [17], and this PrLD was shown to aggregate and
propagate as a prion in yeast (though it is currently un-
clear whether it would also have prion activity in its native
host). Similarly, multiple prion prediction algorithms ap-
plied to the Drosophila proteome identified a prion-like
domain with bona fide prion activity in yeast [18]. A var-
iety of PrLD candidates have been identified in eukaryotic
virus proteomes using prion prediction algorithms [19],
and one viral protein was recently reported to behave like
a prion in eukaryotic cells [20]. These examples represent
vital advances in our understanding of protein features
conferring prion activity, and illustrate the broad utility of
prion prediction algorithms.
Some prion prediction algorithms may even have com-

plementary strengths: identification of PrLD candidates
with the first generation of the Prion-Like Amino Acid
Composition (PLAAC) algorithm led to the discovery of
new prions [11], while application of PAPA to this set of
candidate PrLDs markedly improved the discrimination
between domains with and without prion activity in vivo
[7, 14]. Similarly, PLAAC identifies a number of PrLDs
within the human proteome, and aggregation of these
proteins is associated with an assortment of muscular
and neurological disorders [21–34]. In some cases, in-
creases in aggregation propensity due to single amino
acid substitutions are accurately predicted by multiple
aggregation prediction algorithms, including PAPA
[33, 35]. Furthermore, the effects of a broad range of
mutations within PrLDs expressed in yeast can also
be accurately predicted by PAPA and other prion predic-
tion algorithms, and these predictions generally extend to
multicellular eukaryotes, albeit with some exceptions
[36, 37]. The complementary strengths of PLAAC and
PAPA are likely derived from their methods of devel-
opment. The PLAAC algorithm identifies PrLD candi-
dates by compositional similarity to domains with
known prion activity, but penalizes all deviations in
composition (compared to the training set) regardless
of whether these deviations enhance or diminish
prion activity. PAPA was developed by randomly mu-
tagenizing a canonical Q/N-rich yeast prion protein
(Sup35) and directly assaying the frequency of prion
formation, which was used to quantitatively estimate
of the prion propensity of each of the 20 canonical

amino acids. Therefore, PLAAC seems to be effective at
successfully identifying PrLD candidates, while PAPA is
ideally-suited to predict which PrLD candidates are most
likely to have true prion activity, and how changes in PrLD
sequence might affect prion activity.
To date, most proteome-scale efforts of prion prediction

algorithms have focused on the identification of PrLDs
within reference proteomes (i.e. a representative set of
protein sequences for each organism). However, reference
proteomes do not capture the depth and richness of pro-
tein sequence variation that may affect PrLDs within a
species. Here, we explore the depth of intraspecies protein
sequence variation affecting human PrLDs at the genetic,
post-transcriptional, and post-translational stages (Fig. 1).
We estimate the range of aggregation propensity scores
resulting from known protein sequence variation, for all
high scoring PrLDs. To our surprise, aggregation propen-
sity ranges are remarkably large, suggesting that natural
sequence variation could potentially result in large inter-
individual differences in aggregation propensity for certain
proteins. Furthermore, we define a number of proteins
whose aggregation propensities are affected by alternative
splicing or pathogenic mutation. In addition to proteins
previously linked to prion-like disorders, we identify a
number of high-scoring PrLD candidates whose predicted
aggregation propensity increases for certain isoforms or
upon mutation, and some of these candidates are associ-
ated with prion-like behavior in vivo yet are not currently
classified as “prion-like”. Finally, we provide comprehen-
sive maps of PTMs within human PrLDs derived from a
recently-collated PTM database.

Results
Sequence variation in human PrLDs leads to wide ranges
in estimated aggregation propensity
Multiple prion prediction algorithms have been applied
to specific reference proteomes to identify human PrLDs
[8, 13, 38–41]. While these predictions provide import-
ant baseline maps of PrLDs in human proteins, they do
not account for the considerable diversity in protein
sequences across individuals. In addition to the ~ 42 k
unique protein isoforms (spanning ~ 20 k protein-
encoding genes) represented in standard human refer-
ence proteomes, the human proteome provided by
the neXtProt database includes > 6 million annotated
single amino acid variants [42]. Importantly, these
variants reflect the diversity of human proteins, and
allow for the exploration of additional sequence space
accessible to human proteins.
The majority of known variants in human coding

sequences are rare, occurring only once in a dataset of
~ 60,700 human exomes [43]. However, the frequency of
multiple-variant co-occurrence for each possible variant
combination in a single individual has not been
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quantified on a large scale. Theoretically, the frequency
of rare variants would result in each pairwise combin-
ation of rare variants occurring in a single individual
only a few times in the current human population. We
emphasize that this is only a rough estimate, as it as-
sumes independence in the frequency of each variant,
and that the observed frequency of rare variants corre-
sponds to the actual population frequency.
With these caveats in mind, we applied a modified ver-

sion of our Prion Aggregation Prediction Algorithm
(PAPA; see Methods for modifications and rationale) to
the human proteome reference sequences to obtain
baseline aggregation propensity scores and to identify
relatively high-scoring PrLD candidates. Since sequence
variants could increase predicted aggregation propensity,
we employed a conservative aggregation propensity
threshold (PAPA score ≥ 0.0) to define high-scoring
PrLD candidates (n = 5173 unique isoforms). Nearly all
PrLD candidates (n = 5065; 97.9%) have at least one
amino acid variant within the PrLD region that influ-
enced the PAPA score. Protein sequences for all pairwise
combinations of known protein sequence variants were
computationally generated for all proteins with moderately

high-scoring PrLDs (>20million variant sequences, derived
from the 5173 protein isoforms with PAPA score ≥ 0.0).
While most proteins had relatively few variants that influ-
enced predicted aggregation propensity scores, a number of
proteins had > 1000 unique PAPA scores, indicating that
PrLDs can be remarkably diverse (Fig. 2a). To estimate
the overall magnitude of the effects of PrLD sequence
variation, the PAPA score range was calculated for each
set of variants (i.e. for all variants corresponding to a
single protein). PAPA score ranges adopt a right-
skewed distribution, with a median PAPA score range
of 0.10 (Fig. 2b, c; Additional file 1). Importantly, the
estimated PAPA score range for a number of proteins
exceeds 0.2, indicating that sequence variation can have
a dramatic effect on predicted aggregation propensity
(by comparison, the PAPA score range = 0.92 for the
entire human proteome). Additionally, we examined the
aggregation propensity ranges of prototypical prion-like
proteins associated with human disease [21–25, 27–34],
which are identified as high-scoring candidates by both
PAPA and PLAAC. In most cases, the lowest aggregation
propensity estimate derived from sequence variant sam-
pling scored well-below the classical aggregation threshold

Fig. 1 Protein sequence variation introduced at the genetic, post-transcriptional, and post-translational stages. Graphical model depicting sources
of protein sequence variation potentially affecting PrLD regions
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(PAPA score = 0.05), and the highest aggregation pro-
pensity estimate scored well-above the aggregation
threshold (Fig. 2d). Furthermore, for a subset of
prion-like proteins (FUS and hnRNPA1), aggregation
propensity scores derived from the initial reference
sequences differed considerably for alternative iso-
forms of the same protein, suggesting that alternative
splicing may also influence aggregation propensity. It
is possible that natural genetic variation between indi-
viduals may substantially influence the prion-like be-
havior of human proteins.

Alternative splicing introduces sequence variation that
affects human PrLDs
As observed in Fig. 2d, protein isoforms derived from
the same gene can correspond to markedly different ag-
gregation propensity scores. Alternative splicing essen-
tially represents a form of post-transcriptional sequence
variation within each individual. Alternative splicing
could affect aggregation propensity in two main ways.
First, alternative splicing could lead to the inclusion or
exclusion of an entire PrLD, which could modulate
prion-like activity in a tissue-specific manner, or in

Fig. 2 Sampling of human PrLD sequence variants yields broad ranges of aggregation propensity scores. a Histogram indicating the frequencies
corresponding to the number of unique PAPA scores per protein. b The distribution of aggregation propensity ranges, defined as the difference
between the maximum and minimum aggregation propensity scores from sampled sequence variants, is indicated for all PrLDs scoring above
PAPA = 0.0 and with at least one annotated sequence variant. c Histograms indicating categorical distributions of aggregation propensity scores
for the theoretical minimum and maximum aggregation propensity scores attained from PrLD sequence variant sampling, as well as original
aggregation propensity scores derived from the corresponding reference sequences. d Modified box plots depict the theoretical minimum and
maximum PAPA scores (lower and upper bounds, respectively), along with the reference sequence score (the color transition point) for all
isoforms of prototypical prion-like proteins associated with human disease
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response to stimuli affecting the regulation of splicing.
Second, splice junctions that bridge short, high-scoring
regions could generate a complete PrLD, even if the
short regions in isolation are not sufficiently prion-like.
The ActiveDriver database [44] is a centralized re-

source containing downloadable and computationally ac-
cessible information regarding “high-confidence” protein
isoforms, post-translational modification sites, and dis-
ease associated mutations in human proteins. We first
examined whether alternative splicing would affect pre-
dicted aggregation propensity for isoforms that map to a
common gene. In total, of the 39,532 high-confidence
isoform sequences, 8018 isoforms differ from the
highest-scoring isoform mapping to the same gene
(Additional file 2). Most proteins maintain a low aggre-
gation propensity score even for the highest-scoring iso-
form. However, we found 159 unique proteins for which
both low-scoring and high-scoring isoforms exist (Fig. 3a;
414 total isoforms that differ from the highest-scoring
isoform), suggesting that alternative splicing could affect
prion-like activity. Furthermore, it is possible that
known, high-scoring prion-like proteins are also affected
by alternative splicing. Indeed, 15 unique proteins had at
least one isoform that exceeded the PAPA threshold, and
at least one isoform that scored even higher (Fig. 3b).
Therefore, alternative splicing may affect aggregation
propensity for proteins that are already considered high-
scoring PrLD candidates.
Strikingly, many of the prototypical disease-associated

prion-like proteins were among the high-scoring pro-
teins affected by splicing. Consistent with previous ana-
lyses [45], PrLDs from multiple members of the hnRNP
family of RNA binding proteins are affected by alterna-
tive splicing. For example, hnRNPDL, which is linked to
limb girdle muscular dystrophy type1G, has one isoform
scoring far below the 0.05 PAPA threshold and another
scoring far above the 0.05 threshold. hnRNPA1, which is
linked to a rare form of myopathy and to amyotrophic
lateral sclerosis (ALS), also has one isoform scoring
below the 0.05 PAPA threshold and one isoform scoring
above the threshold. Additionally, multiple proteins
linked to ALS, including EWSR1, FUS, and TAF15 all
score above the 0.05 PAPA threshold and have at least
one isoform that scores even higher. Mutations in these
proteins are associated with neurological disorders
involving protein aggregation or prion-like activity.
Therefore, in addition to well-characterized mutations
affecting aggregation propensity of these proteins, al-
ternative splicing may play an important and perva-
sive role in disease pathology, either by disrupting the
intracellular balance between aggregation-prone and
non-aggregation-prone variants, or by acting synergis-
tically with mutations to further enhance aggregation
propensity.

The fact that numerous proteins already linked to
prion-like disorders have PAPA scores affected by alterna-
tive splicing raises the intriguing possibility that additional
candidate proteins identified here may be involved in
prion-like aggregation under certain conditions or when
splicing is disrupted. For example, the RNA-binding
protein XRN1 is a component of processing-bodies (or
“P-bodies”), and can also form distinct synaptic protein
aggregates known as “XRN1 bodies”. Prion-like domains
have recently been linked to the formation of membrane-
less organelles, including stress granules and P-bodies
[46]. Furthermore, dysregulation of RNA metabolism,
mRNA splicing, and the formation and dynamics of mem-
braneless organelles are prominent features of prion-like
disorders [46]. However, XRN1 possesses multiple low-
complexity domains that are predicted to be disordered,
so it will be important to determine which (if any) of these
domains are involved in prion-like activity. Interestingly,
multiple β-tubulin proteins (TUBB, TUBB2A, and
TUBB3) are among proteins with both low-scoring and
high-scoring isoforms. Expression of certain β-tubulins is
misregulated in some forms of ALS [47, 48], β-tubulins
aggregate in mouse models of ALS [49], mutations in α-
tubulin subunits can directly cause ALS [50], and micro-
tubule dynamics are globally disrupted in the majority of
ALS patients [51]. The nuclear transcription factor Y sub-
units NFYA and NFYC, which both contain high-scoring
PrLDs affected by splicing, are sequestered in Htt aggre-
gates in patients with Huntington’s disease [52]. NFYA
has also been observed in aggregates formed by the
TATA-box binding protein, which contains a polygluta-
mine expansion in patients with spinocerebellar ataxia 17
[53]. BPTF (also referred to as FAC1 or FALZ, for Fetal
Alzheimer Antigen) is normally expressed in neurons in
developing fetal tissue but largely suppressed in mature
adults. However, FAC1 is upregulated in neurons in both
Alzheimer’s and ALS, and is a characterized epitope of
antibodies that biochemically distinguish diseased from
non-diseased brain tissue in Alzheimer’s disease [54–56].
HNRNP A/B constitutes a specific member of the hnRNP
A/B family, and encodes both a low-scoring and a high-
scoring isoform. The high-scoring isoforms resembles
prototypical prion-like proteins, containing two RNA-
recognition motifs (RRMs) and a C-terminal PrLD (which
is absent in the low-scoring isoform, and hnRNP A/B
proteins were shown to co-aggregate with PABPN1 in a
mammalian cell model of oculopharyngeal muscular
dystrophy [57]. Alternative splicing of ILF3 mRNA
leads to the direct inclusion or exclusion of a PrLD in
the resulting protein isoforms NFAR2 and NFAR1, respect-
ively [58, 59]. NFAR2 (but not NFAR1) is recruited to stress
granules, its recruitment is dependent upon its PrLD, and
recruitment of NFAR2 leads to stress granule enlargement
[60]. A short “amyloid core” from the high-scoring NFAR2
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PrLD forms amyloid fibers in vitro [40]. ILF3 proteins co-
aggregate with mutant p53 (another PrLD-containing
protein) in models of ovarian cancer [61]. ILF3 proteins are
also involved in the inhibition of viral replication upon in-
fection by dsRNA viruses, re-localize to the cytoplasm in
response to dsRNA transfection (simulating dsRNA viral
infection), and appear to form cytoplasmic inclusions [62].
Similarly, another RNA-binding protein, ARPP21, is
expressed in two isoforms: a short isoform containing two
RNA-binding motifs (but lacking a PrLD), and a longer
isoform containing both RNA-binding motifs as well as a
PrLD. The longer isoform (but not the short isoform)

is recruited to stress granules, suggesting that the re-
cruitment is largely dependent on the C-terminal
PrLD [63]. Furthermore, most of the proteins
highlighted above have PrLDs that are detected by
both PAPA and PLAAC (Additional file 2), indicating
that these results are not unique to PAPA.
Collectively, these observations suggest that alternative

splicing may play an important and pervasive role in
regulating the aggregation propensity of certain proteins,
and that misregulation of splicing could lead to an im-
proper intracellular balance of a variety of aggregation-
prone isoforms.

Fig. 3 Alternative splicing influences predicted aggregation propensity for a number of human PrLDs. a Minimum and maximum
aggregation propensity scores (indicated in blue and orange respectively) are indicated for all proteins with at least one isoform
below the classical PAPA = 0.05 threshold and at least one isoform above the PAPA = 0.05 threshold. For simplicity, only the highest
and lowest PAPA score are indicated for each unique protein (n = 159), though many of the indicated proteins that cross the 0.05
threshold have multiple isoforms within the corresponding aggregation propensity range (n = 414 total isoforms; Additional file 2). b
For all protein isoforms with an aggregation propensity score exceeding the PAPA = 0.05 threshold and with at least one higher-
scoring isoform (n = 48 total isoforms, corresponding to 15 unique proteins), scores corresponding to the lower-scoring and higher-
scoring isoforms are indicated in blue and orange respectively. In both panels, asterisks (*) indicate proteins for which a PrLD is also
identified by PLAAC. Only isoforms for which splicing affected the PAPA score are depicted
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Disease-associated mutations influence predicted
aggregation propensity for a variety of human PrLDs
Single-amino acid substitutions in prion-like proteins
have already been associated with a variety of neuro-
logical disorders [46]. However, the role of prion-like ag-
gregation/progression in many disorders is a relatively
recent discovery, and additional prion-like proteins
continue to emerge as key players in disease path-
ology. Therefore, the list of known prion-like proteins
associated with disease is likely incomplete, and raises
the possibility that PrLD-driven aggregation influences
additional diseases in currently undiscovered or un-
derappreciated ways.
We leveraged the ClinVar database of annotated

disease-associated mutations in humans to examine the
extent to which clinically-relevant mutations influence
predicted aggregation propensity within PrLDs. For
simplicity, we focused on single-amino acid substitu-
tions that influenced aggregation propensity scores.
Of the 33,059 single-amino acid substitutions (exclud-
ing mutation to a stop codon), 2385 mutations increased
predicted aggregation propensity (Additional file 3). Of
these proteins, 27 unique proteins scored above the 0.05
PAPA threshold and had mutations that increased pre-
dicted aggregation propensity (83 total mutants), suggest-
ing that these mutations lie within prion-prone domains
and are suspected to enhance protein aggregation (Fig. 4a).
Additionally, 24 unique proteins (37 total mutants) scored
below the 0.05 PAPA threshold but crossed the threshold
upon mutation (Fig. 4b).
As observed for protein isoforms affecting predicted

aggregation propensity, a number of mutations affecting
prion-like domains with established roles in protein aggre-
gation associated with human disease [21–25, 27–34, 64]
were among these small subsets of proteins, including
TDP43, hnRNPA1, hnRNPDL, hnRNPA2B1, and p53.
However, a number of mutations were also associated
with disease phenotypes that have not currently linked to
prion-like aggregation. For example, in addition to
hnRNPA1 mutations linked to prion-like disorders (which
are also detected in our analysis; Fig. 3, and Additional
file 3), K277 N, P275S, and P299L mutations in the
hnRNPA1 PrLD increase its predicted aggregation pro-
pensity yet are associated with chronic progressive mul-
tiple sclerosis (Additional file 3), which is currently not
considered a prion-like disorder. It is possible that, in
addition to known prion-like disorders, certain forms of
progressive multiple sclerosis (MS) may also involve
prion-like aggregation. Intriguingly, the hnRNPA1
PrLD (which overlaps with its M9 nuclear localization
signal) is targeted by autoantibodies in MS patients
[65], and hnRNPA1 mislocalizes to the cytoplasm and
aggregates in patients with MS [66], similar to observa-
tions in hnRNPA1-linked prion-like disorders [33].

Many of the high scoring proteins with mutations
affecting aggregation propensity have been linked to pro-
tein aggregation, yet are not currently considered prion-
like. For example, missense mutations in the PrLD of
light chain neurofilament protein (encoded by the NEFL
gene) are associated with autosomal dominant forms of
Charcot-Marie Tooth (CMT) disease [67]. Multiple mu-
tations within the PrLD are predicted to increase aggre-
gation propensity (Fig. 4a and Additional file 3), and a
subset of these mutations have been shown to induce
aggregation of both mutant and wild-type neurofilament
light protein in a dominant manner in mammalian cells
[68]. Fibrillin 1 (encoded by the FBN1 gene) is a struc-
tural protein of the extracellular matrix that forms fibril-
lar aggregates as part of its normal function. Mutations
in fibrillin 1 are predominantly associated with Marfan
Syndrome, and lead to connective tissue abnormalities
and cardiovascular complications [69]. While the major-
ity of disease-associated mutations affect key cysteine
residues (Additional file 3), a subset of mutations lie
within its PrLD and are predicted to increase aggrega-
tion propensity (Fig. 4a), which could influence normal
aggregation kinetics, thermodynamics, or structure. Mul-
tiple mutations within the PrLD of the gelsolin protein
(derived from the GSN gene) are associated with Finnish
type familial amyloidosis [also referred to as Meretoja
syndrome [70–72];] and are predicted to increase aggre-
gation propensity (Fig. 4a). Furthermore, mutant gelsolin
protein is aberrantly proteolytically cleaved, releasing
protein fragments that overlap with the PrLD and are
found in amyloid deposits in affected individuals [for re-
view, see [73]].
For proteins that cross the classical 0.05 aggregation

propensity threshold, proteins exhibiting large relative
changes in predicted aggregation propensity upon
single-amino acid substitution likely reflect changes in
intrinsic disorder classification implemented in PAPA
via the FoldIndex algorithm. Therefore, these substitu-
tions may reflect the disruption of predicted structural
regions, thereby exposing high-scoring PrLD regions
normally buried in the native protein. Indeed multiple
mutations in the prion-like protein p53 lead to large
changes in predicted aggregation propensity (Fig. 4b,
Additional file 3), are thought to disrupt p53 structural
stability, and result in a PrLD that encompasses multiple
predicted aggregation-prone segments [74]. Additionally,
two mutations in the Parkin protein (encoded by the
PRKN/PARK2 gene), which has been linked to Parkin-
son’s disease, increase its predicted aggregation propen-
sity (Fig. 4b, Additional file 3). Parkin is prone to
misfolding and aggregation upon mutation [75, 76] and
in response to stress [77, 78]. Indeed, both mutants asso-
ciated with an increase in predicted aggregation propen-
sity for Parkin were shown to decrease Parkin solubility,
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and one of the mutants forms microscopically-visible
foci in mammalian cells [75]. It is important to note
that, while both mutations that increase predicted aggre-
gation propensity disrupt the catalytic site of Parkin,
aggregation of Parkin may also contribute to disease
pathology.

A survey of post-translational modifications within human
PrLDs
Post-translational modifications (PTMs) represent a
form of protein sequence variation in which the intrinsic
properties of amino acids in synthesized proteins are
altered via chemical modification. Recently, information

Fig. 4 Disease-associated mutations influence predicted aggregation propensities of known PrLDs and new candidate prion-like proteins. a
For all disease-associated single-amino acid substitutions that map to high-scoring PrLDs (PAPA score > 0.05) and increase predicted
aggregation propensity score, scores corresponding to the wild-type and mutant sequences are indicated in blue and orange respectively.
b Wild-type and mutant aggregation propensity scores are similarly plotted for all proteins with wild-type PAPA score < 0.05 but mutant
PAPA score > 0.05. In both panels, asterisks (*) indicate proteins also containing a PLAAC-positive PrLD, and amino acid substitutions are
indicated above each bar
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derived from multiple centralized PTM resources, as
well as individual studies, have been combined into a
single database describing a broad range of PTM sites
across the human proteome [44]. PTMs could directly
affect protein aggregation by increasing or decreasing in-
herent aggregation propensity. Indeed, changes in PTMs
have been associated with a variety of aggregated pro-
teins in neurodegenerative diseases [79–81], and PTMs
can influence liquid-liquid phase separation [82, 83],
which has recently been linked to low-complexity do-
mains and PrLDs. Therefore, PTMs likely play an im-
portant role in regulating the aggregation propensity of
certain PrLDs.
Using centralized PTM databases, we mapped PTMs

to human PrLDs. While the contribution of each of the
canonical amino acids to aggregation of PrLDs has been
fairly well-characterized [7, 84], consistent effects of each
type of PTM on aggregation of PrLDs have not been
defined. Therefore, we mapped PTMs to PrLDs using a
relaxed aggregation propensity threshold (PAPA cutoff =
0.0, rather than the standard 0.05 threshold), which
accounts for the possibility that PTMs could increase ag-
gregation propensity or regulate the solubility of proteins
whose aggregation propensity is near the standard 0.05
aggregation threshold.
For each PTM type, distributions for the number of

modifications per PrLD are shown in Fig. 5a, and PTMs
mapped to PrLDs are provided in Additional file 4.
Although PTMs are likely important regulators of aggre-
gation for certain PrLDs and should be examined experi-
mentally on a case-by-case basis, we explored whether

any PTMs were globally enriched or depleted within
PrLDs. Since PrLDs typically have unusual amino acid
compositions (which would affect the gross total for some
PTMs within PrLDs), the number of potentially modifi-
able residues for each type of PTM was first calculated for
the whole proteome and for PrLDs and statistically com-
pared (see Methods for detailed description).
Arginine methylation was the only PTM type significantly

enriched in human PrLDs (Fig. 5b and Additional file 5). In
contrast, serine phosphorylation, threonine phosphoryl-
ation, tyrosine phosphorylation, lysine acetylation, lysine
methylation, and lysine ubiquitination are significantly de-
pleted within human PrLDs. The global underrepresenta-
tion of nearly all PTM types within PrLDs is particularly
surprising since PrLDs are typically intrinsically disordered,
and many of the PTM types studied here are enriched
within intrinsically disordered regions vis-à-vis ordered re-
gions [85]. However, it is important to note that the fre-
quency of each PTM within PrLDs may be influenced by
the amino acid compositions associated with the flanking
regions surrounding PTM sites. For example, regions flank-
ing phosphorylation sites are typically enriched in charged
residues and depleted in neutral and aromatic residues [86].
Similarly, the flanking regions of arginine methylation sites
are significantly associated with increased net charge
and high glycine content (among other properties) and
decreased glutamine and glutamic acid content [87].
Regions flanking lysine methylation sites are also
enriched in glycine, aromatic residues, and threonine,
and depleted in non-aromatic hydrophobic residues,
glutamine, and glutamic acid. This highlights an

Fig. 5 Certain PTM types are enriched or depleted within human PrLDs. a Distributions depicting the number of modifications within each PrLD
for each of the main PTM types. b Estimated degree of enrichment (blue) or depletion (red) for each PTM type within human PrLDs. Error bars
represent the standard error
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important point: while these features are consistent
with PTM sites occurring preferentially within intrin-
sically disordered regions, they may be specific for dis-
ordered regions of particular amino acid compositions.
Therefore, although PrLDs are typically considered in-
trinsically disordered, the Q/N-richness of most PrLDs
may result in fewer PTMs compared to non-Q/N-rich
intrinsically disordered regions.
Nevertheless, the global depletion of PTMs within

PrLDs does not imply a lack of importance for PTMs
that do occur within PrLDs. The mapping of PTMs to
PrLDs may catalyze the experimental determination of
the effects of each individual PTM on PrLD aggregation.

Sequence variation at the genetic, transcriptional, and
posttranslational levels is associated with disease-relevant
aggregation of a PrLD-containing protein – a case study
of hnRNPA1
We were surprised to find that the hnRNPA1 PrLD is
affected by every form of sequence variation examined
in the present study, including genetic variation, alterna-
tive splicing, multiple disease-associated mutations, and
post-translational modification (Fig. 6a). The short iso-
form, hnRNPA1-A (320 amino acids), scores just below
the 0.05 PAPA threshold. Multiple mutations within the
hnRNPA1 PrLD increase prion propensity and in vivo
aggregation [33]. The long isoform, hnRNPA1-B (372
amino acids), scores substantially higher than the short
isoform (PAPA scores are 0.093 and 0.042, respectively),
and contains the region affected by the disease-
associated mutations. It is possible that mutations within
the hnRNPA1 PrLD, in combination with the high
scoring isoform, have particularly potent aggregation-
promoting effects. Under the current model for prion-
like aggregation, the high-scoring protein isoform (which
is typically less-abundant than the low-scoring isoform
[88, 89]) could “seed” protein aggregates, which may
then be capable of recruiting the lower-scoring isoform.
Although this is currently speculative, it is supported by
a recent study, which showed that mutation in the TDP-
43 PrLD and cytoplasmic aggregation of TDP-43 in ALS
patients was associated with dysregulation of hnRNPA1
mRNA splicing [89, 90]. This dysregulation led to in-
creased abundance of the high-scoring hnRNPA1-B iso-
form and subsequent aggregation of the hnRNPA1
protein [89]. Finally, 31 unique posttranslational modifi-
cations map to the hnRNPA1 long-isoform PrLD,
particularly to sites immediately flanking the highest-
scoring PrLD region. It may also be possible that pertur-
bations in posttranslational regulation of hnRNPA1,
could influence protein aggregation in vivo. For example,
phosphorylation of certain modification sites within the
hnRNPA1 PrLD are differentially modified upon osmotic
shock, which promotes accumulation of hnRNPA1 in

the cytoplasm [91], and a variety of PTMs within the
PrLD regulate additional aspects of hnRNPA1 localization
and molecular interactions [92]. Together, these observa-
tions suggest that multiple types of sequence variation
may conspire to simultaneously influence hnRNPA1-
related disease phenotypes.
While our study has focused predominantly on how

sequence variation directly influences the predicted ag-
gregation propensity of PrLDs, it is important to note
that aggregation of PrLD-containing proteins may be
contingent upon other domains or conditions. To illus-
trate, we analyzed FUS in a similar manner. Mutations
in FUS have been implicated in ALS, and FUS aggregates
are observed in a number of ALS cases [27, 28]. Further-
more, phosphorylation at multiple sites within the FUS
PrLD has been shown to decrease FUS phase separation
and aggregation in vitro and in vivo [93, 94]. Indeed,
PAPA identifies a high-scoring PrLD near the N-
terminus of FUS that contains multiple known phos-
phorylation sites (Fig. 6b). Additionally, one of the muta-
tions in the ClinVar database results in a truncation in
the middle of the PrLD, potentially leading to the pro-
duction of highly aggregation-prone PrLD fragments.
However, most disease-associated mutations occur in a
nuclear localization sequence at the extreme C-terminus
of FUS [95]. These mutations disrupt the nucleocyto-
plasmic shuttling of FUS and lead to its accumulation in
cytoplasmic granules in ALS patients [95]. The FUS
PrLD is highly aggregation-prone and is capable of form-
ing aggregates with the parallel in-register β-sheet archi-
tecture characteristic of classical prion aggregates [94].
Therefore, aggregation of FUS may be due to a combin-
ation of the aggregation-prone PrLD, cytoplasmic mislo-
calization of FUS, and/or changes in PTM dynamics
within the PrLD, as has been proposed recently [96].

Discussion
Numerous studies have explored the pervasiveness of can-
didate PrLDs across a variety of organisms. Although initial
prediction of prion propensity among reference proteomes
is an important first step in identifying candidate PrLDs,
these predictions do not account for the richness of se-
quence diversity across individuals of the same species.
Here, we complement these studies with an in-depth ana-
lysis of human intraspecies sequence variation and its ef-
fects on predicted aggregation propensity for PrLDs.
Prion aggregation is strongly (though not exclusively)

dependent on the physicochemical characteristics of the
aggregating proteins themselves. While analyses of refer-
ence proteomes necessarily treat protein sequences as
invariable, protein sequence variation can be introduced
at the gene, transcript, or protein levels via mutation,
alternative splicing, or post-translational modification,
respectively. Importantly, these protein changes can

Cascarina and Ross BMC Genomics           (2020) 21:23 Page 10 of 18



exert biologically-relevant effects on protein structure,
function, localization, and physical characteristics, which
could influence prion-like behavior.

Broadly, we found that protein sequence variation is
common within human PrLDs, and can influence pre-
dicted aggregation propensity rather substantially. Using

Fig. 6 The hnRNPA1 PrLD is affected by genetic, post-transcriptional, and post-translational sequence variation. a Aggregation propensity scores
for all hnRNPA1 splice variants, as well as all disease-associated variants, are plotted separately. Note that the N319S, D314V, and D314N
mutations correspond to N267S, D262V, and D262N mutations in the short isoform, which are the more commonly referenced locations of these
mutations [33]. b For comparison, similar analyses were performed for FUS. For each line in both plots, regions corresponding to FoldIndex scores
> 0.0 (which are not assigned aggregation propensity scores in PAPA) are plotted as thin grey segments, whereas all regions scored by PAPA
(FoldIndex< 0.0) are plotted as thick colored segments. All PTMs mapping to regions with relatively high-scoring regions (PAPA> 0.0) are
indicated by vertical red lines, with line styles indicating distinct types of PTMs. For simplicity, only PTMs mapping to the longest isoform are
indicated. The classical PAPA = 0.05 threshold is indicated with a dashed grey line
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the frequency of observed single-amino acid variants
from a large collection of human exomes (~ 60,700 indi-
viduals), we estimated the range of aggregation propen-
sity scores by generating all pairwise combinations of
variants for moderately high-scoring proteins. Aggrega-
tion propensity score ranges were often remarkably
large, indicating that sequence variation could, in theory,
have a dramatic effect on the prion-like behavior of
certain proteins. However, it is important to note that
not all variant combinations may naturally occur. For
example, it is possible that certain variants commonly
co-occur in vivo, or that some variants are mutually ex-
clusive. Indeed, it is likely that aggregation propensity
acts as a selective constraint which limits the allowable
sequence space that can be viably explored by PrLDs.
Conversely, our method conservatively assumed that all
single amino acid variants were rare, even though some
variants are substantially more common [43]: it is pos-
sible that some double, triple, or even quadruple variants
may occur in a single individual with some regularity.
Therefore, while our method for sampling sequence var-
iants may over- or under-estimate aggregation propen-
sity ranges for some PrLDs, our results nevertheless
highlight the sequence diversity within PrLD regions
across individuals. In principle, subtle changes in prion-
like behavior could have phenotypic consequences, and
may explain at least a small portion of human pheno-
typic diversity, although we emphasize that this is cur-
rently speculative.
We also identified a variety of proteins for which alter-

native splicing influences predicted aggregation propen-
sity, which has a number of important implications.
According to the prion model of protein aggregation, it
is possible that aggregation of high-scoring isoforms
could seed the aggregation of lower-scoring isoforms, as-
suming at least a portion of the PrLD is present in both
isoforms. Importantly, this “cross-seeding” could occur
even if the aggregation propensity of the low-scoring
isoform is not itself sufficient to promote aggregation.
Additionally, tissue-specific expression or splicing of cer-
tain proteins could impact prion-like behavior, effect-
ively compartmentalizing or modulating prion-like
activity in specific tissues. This also implies that dysregu-
lation of alternative splicing could lead to overproduc-
tion of aggregation-prone isoforms. Interestingly, many
of the prion-like proteins found in aggregates in individ-
uals with neurological disease are splicing factors, and
their sequestration into aggregates may impact the spli-
cing of mRNAs encoding other aggregation-prone pro-
teins [89]. This was recently proposed to produce a
“snowball effect”, whereby aggregation of key proteins
result in the aggregation of many other proteins via an
effect on splicing or expression which could, in-turn,
affect the aggregation of additional proteins [97].

Protein sequence variation can be beneficial, function-
ally inconsequential, or pathogenic. Examination of
pathogenic sequence variants specifically (i.e. mutations
in PrLDs associated with human disease) yielded a num-
ber of new prion-like protein candidates. Many of these
new candidates have been associated with protein aggre-
gation in previous studies, yet are not widely classified as
prion-like, making them perhaps the most promising
candidates for future studies and in-depth experimenta-
tion. In addition to candidates with experimental sup-
port, a number of candidates have not been previously
linked to prion-like activity but may still have yet undis-
covered prion-like activity in vivo. It is worth noting
that, while PAPA and PLAAC predictions often overlap,
many of these new candidate PrLDs (when considering
disease-associated mutations) were only identified by
PAPA, so experimental confirmation of aggregation and
prion-like behavior is necessary.
One aspect of sequence variation that our study has

not addressed is genomic mosaicism among somatic
cells. Although it is convenient to treat individuals as
having a fixed genome sequence across all cells, in real-
ity genomic variation is introduced by replication errors
during cell division and by DNA damage in dividing and
post-mitotic cells [98]. Consequently, in principle, every
cell may possess a unique genome, resulting in a “mo-
saic” of different genotypes, even for closely-related cell
types. Genomic mosaicism is particularly important in
neurons due to their long lifespan and interconnectivity
(for review, see [99, 100]), and somatic cell mutations
accumulate in an age-dependent manner in neurons
[101]. At present, for some age-dependent prion-like dis-
orders such as ALS, the vast majority of cases are con-
sidered “sporadic”, with familial mutations in a limited
set of genes accounting for only ~ 5–10% of diagnosed
individuals. Genomic mosaicism may have particularly
insidious implications in conjunction with the prion-like
mechanism proposed for these disorders: if aggregation-
promoting somatic cell mutations occur within critical
PrLDs, highly-stable aggregates may persist and spread
in a prion-like manner even after the original mutation-
harboring cell has perished. Therefore, it is possible that
apparently sporadic cases may yet have a genomic origin
and involve mutation of PrLDs.
Post-translational modification represents the final

stage at which cells can modify protein properties and
behavior. In a number of cases, PTMs are associated
with protein aggregation across a diverse set of neurode-
generative disorders [79–81]. However, the precise ef-
fects of PTMs on aggregation propensity and whether
they play a causative role in protein aggregation are
often unclear. Nevertheless, one could speculate about
what the effects of each PTM might be with respect to
aggregation of PrLDs based on prion propensities for the
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20 canonical amino acids and the physicochemical char-
acteristics of the PTM. For example, charged residues
typically inhibit prion aggregation within PrLDs [7, 84],
so phosphorylation of serine, threonine, or tyrosine resi-
dues may tend to suppress prion-like activity [93]. Con-
versely, lysine acetylation or N-terminal acetylation
neutralizes the charge, increases hydrophobicity, and in-
troduces hydrogen bond acceptors, which may positively
contribute to prion activity. Arginine and lysine methyla-
tion does not neutralize the charge, but slightly increases
the bulkiness and hydrophobicity of the sidechain.
Asymmetric dimethylation of arginine is common within
proteins with PrLDs [102] and can weaken cation-pi in-
teractions with aromatic sidechains within PrLDs [103].
Recent studies implicate arginine methylation (which
was the only PTM type significantly enriched within hu-
man PrLDs in our study) as an important suppressor of
PrLD phase separation and pathological aggregation [for
review, see [82, 102]]; together with our data, this sug-
gests that arginine methylation may play a vital role in
regulating the aggregation propensity of a multitude of
PrLDs. Ubiquitination of lysine residues within PrLDs
may sterically hinder PrLD aggregation. There are likely
additional considerations that extend beyond the physi-
cochemical properties of PTMs that alter aggregation
propensity. For example, the proportion of any particular
PrLD-containing protein that is modified at a given time
in the cell dictates the effective concentration of each
species which may influence the likelihood of forming a
stable aggregate, analogous to the apparent resistance to
prion disease in humans that are heterozygous at pos-
ition 129 in the prion protein, PrP [104]. PTMs also
regulate subcellular localization, protein-protein interac-
tions, and structural characteristics, which may second-
arily influence PrLD aggregation propensity. As with any
attempt at generalizing predictions, the effects of PTMs
may be highly context-specific, depending on interac-
tions with particular neighboring residues. To facilitate
further exploration of PTMs within PrLDs, we mapped
PTMs from collated PTM databases to human PrLDs,
and provide these maps as resources to encourage case-
by-case experimental exploration.
As a final note, we would like to emphasize caution in

over-interpreting our observations. As mentioned above,
prion-like activity in vivo is strongly dependent upon the
physicochemical characteristics of PrLDs, which are
largely determined by the PrLD sequence. However,
prion-like aggregation can be influenced in vivo by fac-
tors other than inherent sequence characteristics, includ-
ing expression levels, subcellular localization, protein
chaperone activity, and molecular binding partners,
among others [105]. Additionally, for certain proteins,
non-PrLD regions may be responsible for protein aggre-
gation, or may influence the behavior of PrLDs via

intramolecular interaction. For example, phase separ-
ation of FUS relies on interactions between the FUS
PrLD and FUS RNA-binding domains [106]. Further-
more, multivalent protein-protein, protein-RNA, and
RNA-RNA interactions may contribute to the aggrega-
tion or phase separation for some proteins [107]. Many
PrLD-containing proteins also contain RNA-binding do-
mains, which may themselves be aggregation-prone
[108]. In some cases, PrLDs may even prevent irrevers-
ible aggregation by enhancing recruitment of the protein
to reversible protein granules induced by stress [109].
The influence of these factors will likely vary on a case-
by-case basis; two similarly aggregation-prone PrLDs
may be differentially regulated, leading one to aggregate
while the other remains functional/soluble. At the same
time, our prion prediction algorithm was developed in
the context of a eukaryotic model organism [7], thereby
incorporating at least some contribution from additional
cellular factors and a crowded intracellular environment.
Furthermore, prion-like aggregation is one of many pos-
sible mechanisms that can affect protein function upon
mutation or alternative splicing. We are not advocating
for a mutual exclusivity view of prion-like aggregation:
protein sequence variation can have multiple concomi-
tant consequences, and prion-like aggregation may sim-
ply be one of those consequences. For example,
mutations can disrupt native protein sequence, resulting
in loss of function of the protein. But those same muta-
tions may also enhance prion-like aggregation, leading
to a cytotoxic gain-of-function and a contribution to
overall disease pathology. Additionally, while we have fo-
cused in this study on mutations that increase predicted
aggregation propensity, mutations within PrLDs that de-
crease predicted aggregation propensity may be equally
important. Adaptive, reversible aggregation activity ex-
hibited by some PrLDs may involve a delicate balance in
kinetic and thermodynamic parameters, which could be
disrupted by mutations that either decrease or increase
predicted prion-like behavior. Mutations that decrease
predicted aggregation propensity may ultimately lead to
PrLD aggregation in vivo if the loss in inherent aggrega-
tion propensity is ultimately outweighed by an indirect
increase in aggregation propensity caused, for example,
by disrupted molecular interactions that normally se-
quester the PrLD. Therefore, sequence variants that
affect high-scoring PrLDs yet decrease predicted aggre-
gation propensity may still be of interest and utility, and
are retained in all supplementary resources.
Finally, while PrLDs have now been closely linked to

liquid-liquid phase separation, the degree of overlap be-
tween classically-defined PrLD sequence features and
those driving liquid-liquid phase separation of PrLDs has
not been explored in great detail. A small subset of fea-
tures important for phase separation have been
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determined experimentally [106, 110, 111]. However, at
present, a complete understanding of the effects of each
amino acid on liquid-liquid phase separation propensity
is currently lacking. Early phase separation prediction
algorithms (recently reviewed in [112]), though capable
of identify phase separating proteins from whole-
proteomes, base their predictions on a limited subset of
amino acids and are likely not optimized to resolve the
effects of single-amino acid substitutions. It is unclear
whether the amino acids that are classically considered
prion-promoting or prion-inhibiting will affect PrLD
phase separation in a similar manner. Therefore, it will
be interesting to delineate the amino acids favoring
liquid-liquid phase separation of PrLDs, solid phase
aggregation of PrLDs, or both processes.

Conclusions
Our analyses indicate that sequence variation within
human PrLDs is pervasive, occurs at each major stage of
protein production, and often influences predicted ag-
gregation propensity. Collectively, our results shed new
light on the relationship between protein sequence di-
versity and inherent aggregation propensity, highlight a
number of promising new prion-like candidates whose
aggregation propensities may be influenced by protein
sequence variation, and provide a variety of resources to
propel future protein aggregation research.

Methods
Data acquisition and processing
Human protein isoform sequences, along with PTM
sites, were acquired from the ActiveDriver database
[[44]; https://www.activedriverdb.org/; downloaded on
10/5/2018]. Corresponding clinical variants were derived
from NCBI’s ClinVar database [113, 114] (downloaded
in tab-delimited form from ftp://ftp.ncbi.nlm.nih.gov/
pub/clinvar/tab_delimited/ on 10/7/2018). For estima-
tion of the range of theoretical aggregation propensity
scores based on observed sequence variants, reference
sequences including > 6 million annotated single amino
acid variants were obtained from the neXtProt database
[[42, 115]; https://www.nextprot.org/; downloaded on 2/
12/2019].
All data processing, including data re-structuring,

quantification, calculation, statistical analysis, and plot-
ting was performed using in-house Python scripts. All
statistical analyses were performed using the built-in
Python stats module with default settings, except that all
statistical tests were two-sided. Where applicable, cor-
rection for multiple hypothesis testing was implemented
via the statsmodels package available for Python. All
plotting was performed using the Matplotlib and Sea-
born packages. All source code required to reproduce

the analyses in all figures and additional files are avail-
able at https://github.com/RossLabCSU.

Modifications to the original PAPA method
PAPA source code was downloaded (http://combi.cs.
colostate.edu/supplements/papa/) and augmented with
custom functions scripted in Python. Briefly, the original
PAPA algorithm assigns aggregation propensity scores
to each position in a protein based on a combined score
from 41 consecutive 41-amino acid windows (effectively,
an 81-amino acid window for each position) [7, 116].
Our modified PAPA algorithm differs from the original
PAPA algorithm in three key ways: 1) PAPA scores are
assigned to the last residue of the first sliding window,
which improves the scoring of protein termini and is
critical for mapping PTM sites to PrLDs; 2) overlapping
domains within a single protein that exceed a pre-
defined PAPA threshold are merged, which yields pre-
cise definitions of predicted PrLD boundaries and ac-
counts for multiple PrLDs within a single protein; and 3)
predictions of protein disorder are simplified by calculat-
ing the FoldIndex over each full window, rather than the
average of 41 consecutive windows. Additionally, for
many analyses, a relaxed aggregation propensity thresh-
old of 0.0 was chosen for two main reasons: 1) sequence
variation or post-translational modification may increase
aggregation propensity in some cases, such that the ag-
gregation propensity may lie beyond our classical 0.05
threshold upon modification or mutation, and 2) this
threshold captures ~ 10% of each proteome, yielding a
reasonable set of high-scoring proteins for analysis. The
modified version of PAPA (mPAPA) is available at
https://github.com/RossLabCSU/mPAPA.

Estimation of aggregation propensity ranges via
exhaustive pairwise variant combination
All possible pairwise combinations of single amino acid
variants (neXtProt database) within the PrLD regions for
proteins with a relatively high baseline aggregation pro-
pensity (PAPA score > 0.0) were generated computation-
ally and stored as independent sequences. Theoretical
sequence variants were then scored using our modified
PAPA algorithm, and the minimum, maximum, and ref-
erence sequence scores were subsequently compared. By
default, PAPA assigns an arbitrary score of − 1.0 to pro-
teins lacking a predicted intrinsically disordered region.
Therefore, variants with a theoretical minimum PAPA
score of − 1.0 were excluded from analyses.

Analysis of PTM enrichment/depletion within PrLDs
PrLDs are, by definition, biased in terms of amino acid
composition [2, 3]. Without controlling for compos-
itional biases, certain PTMs would be over- or under-
represented among PrLDs simply by virtue of the
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availability of modifiable residues. Therefore, when com-
paring protein modifications within PrLDs vs. the re-
mainder of the proteome, non-modified residues were
defined as residues capable of being modified by the
PTM of interest but with no empirical evidence of modi-
fication. For example, serine phosphorylation was ana-
lyzed by comparing the number of phosphorylated
serine residues within PrLDs to the number of non-
phosphorylated serine residues within PrLDs. Calcula-
tions were performed similarly for non-PrLD regions
(i.e. the remainder of the proteome). The degree of PTM
enrichment within PrLDs was then calculated as:

EPTM ¼ ln ORPTMð Þ
and

ORPTM ¼ f modPrLD

1− f modPrLD

 !
=

f modnonPrLD

1− f modnonPrLD

 !

where fmodPrLD and fmodnonPrLD represent the fraction of
modified residues out of potentially modifiable residues
for the given PTM type within PrLD and non-PrLD re-
gions, respectively. PTMs with fewer than 100 known
modification sites within the human proteome were ex-
cluded from analyses. Statistical enrichment or depletion
for each PTM type within PrLDs was evaluated using a
two-sided Fisher’s exact test, with Benjamini-Hochberg
correction for multiple hypothesis testing (with false dis-
covery rate threshold of 0.05).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-019-6425-3.

Additional file 1. PAPA scores derived from random sampling of
sequence variant combinations for proteins with high-scoring PrLDs. For
all proteins with a moderately high-scoring PrLD (PAPA> 0.0) and at least
one single-amino acid variant, the minimum and maximum aggregation
propensity scores obtained from randomly sampling PrLD sequence
variants, along with the corresponding reference sequence score, are
indicated (see Methods for a complete description of sequence variant
calculations).

Additional file 2. Aggregation propensity scores and inter-isoform score
comparison for all human protein isoforms. Predicted aggregation
propensity for all “high-confidence” human protein isoforms (derived
from ActiveDriverDB) was calculated using the modified PAPA algorithm
(see Methods section for details). Scores and corresponding full protein
sequences are indicated for all isoforms, along with the maximum PAPA
score among all isoforms mapping to the same gene, the difference
between the PAPA score for the indicated isoform and the maximum
PAPA score among related isoforms, and the protein sequence corresponding
to the highest-scoring related isoform. Additionally, the PLAAC algorithm was
used to analyze the same sequences. A binary variable indicates if the protein
contains a PLAAC-predicted PrLD that overlaps with the PAPA-predicted PrLD
for high-scoring proteins only and, if so, the position of the PLAAC-predicted
PrLD

Additional file 3. Comparison of wild-type and disease-associated
mutant PAPA scores. For all disease associated mutants in the ClinVar
database, mutant sequences were generated by incorporating the indicated
amino acid substitution at the appropriate position and re-scored using the

modified PAPA algorithm. For each variant, both wild-type and mutant
aggregation propensity scores are indicated, as well as the difference be-
tween mutant and wild-type scores. For each variant, the associated disease
phenotype annotation is also included. PLAAC predictions are also included,
as indicated for Additional file 2

Additional file 4. Comprehensive mapping of PTMs within moderately
high-scoring human PrLDs. Human PTMs derived from the ActiveDri-
verDB were mapped to all human PrLDs with PAPA score > 0.0. For each
protein the maximum PAPA score, moderately high-scoring PrLD sequence
(corresponding to all overlapping regions with PAPA score > 0.0), amino acid
positions bounding the PrLD sequence, and all PTMs mapping to the PrLD
region are indicated. PLAAC predictions are also included, as indicated for
Additional file 2.

Additional file 5. Statistical analysis of PTM enrichment/depletion
within human PrLDs. For each PTM type, statistical enrichment or
depletion within PrLDs was evaluated using a two-sided Fisher exact test
(see Methods section for detailed description).
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