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Abstract

employs neural networks.

absolute error of the inference from 0.134 to 0.128.

usage.

Background: One possible approach how to economically facilitate gene expression profiling is to use the L1000
platform which measures the expression of ~ 1,000 landmark genes and uses a computational method to infer the
expression of another ~ 10,000 genes. One such method for the gene expression inference is a D-GEX which

Results: We propose two novel D-GEX architectures that significantly improve the quality of the inference by
increasing the capacity of a network without any increase in the number of trained parameters. The architectures
partition the network into individual towers. Our best proposed architecture — a checkerboard architecture with a
skip connection and five towers — together with minor changes in the training protocol improves the average mean

Conclusions: Our proposed approach increases the gene expression inference accuracy without increasing the
number of weights of the model and thus without increasing the memory footprint of the model that is limiting its

Keywords: Neural network, Tower architecture, Gene expression, Checkerboard architecture

Background

Determining gene expression is valuable for various medi-
cal and biological researches (e.g., [1-5],); however in spite
of significant price drop in the last decade, gene expres-
sion profiling is still expensive for large scale experiments.
One of the approaches lowering the costs and allowing
larger-scale experiments is represented by the LINCS!
program which developed the L1000 platform based on
Luminex bead technology. The L1000 platform measures
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the expression profile of ~1,000 carefully selected land-
mark genes and then reconstructs the full gene profile of
~10, 000 target genes [6] which is much cheaper than mea-
suring the full expression profile directly. The inference of
the full gene expression profile from the expression of the
landmark genes was originally based on linear regression
and then improved by a deep learning approach called D—
GEX [7]. The original D-GEX is a pair of two artificial
neural networks (NNs) that are able to, in contrast to the
linear regression, reconstruct the non-linear patterns.
Inferring the full profile is a large-scale machine learn-
ing task that is computationally challenging as the tar-
get dimension is much higher than the input dimen-
sion [7]. A novel model based on the original D-GEX
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further improved the quality of the inference by introduc-
ing a novel family of adaptive activation functions called
transformative adaptive activation functions (TAAFs) that
allowed significantly lower error [8].

However, the model with TAAFs [8] still uses the same
architecture as the original D—GEX with the exception
of the adaptive activation functions. We present a novel
model based on a NN with a novel architecture that fur-
ther improves gene inference by replacing the dense layers
with a more complex structure while not increasing the
number of parameters and thus retaining the same mem-
ory constraints that are necessary for training the model
on GPUs. This paper introduces two essential architec-
ture changes that improve gene expression inference —
replacing the three interconnected dense layers of origi-
nal D-GEX by smaller dense units connected in a tower
or checkerboard pattern and adding skip connections.

Artificial neural networks are a powerful tool and lead
to state-of-the-art results in various fields such as com-
puter vision (e.g., image classification and segmentation),
speech recognition and machine translation. They are also
commonly used in biology [9-11]. Our work builds on the
D-GEX [7] and its extension with TAAFs [8].

D-GEX

The original D-GEX is actually a family of nine, simi-
lar architectures; a D—-GEX network consists of one to
three densely connected hidden layers with 3,000, 6,000,
or 9,000 neurons in each layer with the hyperbolic tangent
as the activation function [7]. Due to technical constraints,
the D-GEX approach consists of two networks of given
architecture each inferring half of the target genes such
that each network fits into the memory of the GPU used
for training. The original D-GEX also included a dropout
layer with rate either 0%, 10%, or 25% for better gener-
alization leading to 27 different networks. Most of the
presented D-GEX networks significantly outperformed
the linear regression that was used by the LINCS program
for the gene expression inference and k-nearest neighbors
(KNN) regression [7].

The extension of the D-GEX [8] significantly improves
the gene expression inference firstly by replacing the
hyperbolic tangent activation functions with the logistical
sigmoids and secondly by including novel transforma-
tive adaptive activation functions (TAAFs) which add four
additional parameters per neuron that control the scale
and translation of the inner activation function (i.e., the
sigmoid function). These parameters increase the total
number of parameters of the network only slightly as
most of a NN’s parameters are the weights of the connec-
tions; furthermore, the D—GEX with TAAFs outperform
the original D-GEX even when the number of neurons in
each layer is set such that the total number of parameters
is same for both the original and the modified D-GEX
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variants. The family of extended D-GEXs with TAAFs
is, however, otherwise without any other changes as the
same three-layered architectures were used to show that
the performance gains are due to the TAAFs.

Neural network architectures with parallel connections
Neural networks are often not as homogeneous as the
D-GEX networks and often include multiple parallel con-
nections or units that are not directly connected. One of
the simplest parallel architectures is the so-called multi-
column deep neural network (MCDNN) [12, 13] which is
actually an ensemble of individual "columns" which are
separately trained NNs. Other approaches include adding
units that are composed of several parallel tracks which
might even differ in the number of layers — e.g., the Incep-
tion modules and its variants [14] for image classification.
An important architecture with parallel connection is
represented by the ResNet family of networks [15] with
a residual skip connection which adds the output of a
layer to the output of the layer above. Both described
approaches are still being researched and resulted in net-
works such as Inception-ResNet [16] and DenseNet [17].

An approach similar to MCDNN is represented by par-
allel circuits (PC) [18, 19] which partition a network into
several, parallel columns of hidden layers that are not con-
nected to each other. The PCs were developed mainly
to reach weight reduction for speeding up the compu-
tations. Since PCs share an input and an output layer,
the weight reduction occurs only when the network has
two or more hidden layers [19]. The networks with PCs
were tested on five datasets from the UCI machine learn-
ing repository [20]; however, the experiments were done
using only a CPU, and thus only small networks were
tested — namely with 100 and 1,000 neurons. The sparsity
introduced by the PCs acted as a regularizer and helped to
reduce overfitting [19].

Methods

We have followed a similar experimental protocol as in [8]
— we have used the TAAFs and the same data (including
the partitioning into subsets for training, validation, and
testing); thus the results are directly comparable.

Data

The data from the Affymetrix microarray platform were
used to train the networks for inferring the gene expres-
sion profile from the landmark genes. We have used very
same data as used for training the D-GEX with TAAFs,
the details about the data preprocessing are available in
[8]. The data consists of 126,102 gene expression pro-
files; each is containing the expression of 942 landmark
genes and 9,518 target genes. The training set includes
88,256 profiles, the validation set of 18,895 profiles and
the testing set of 18,951 profiles. The training set was
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used directly for training the network, the validation set
for parameter selection and optimization process and
the testing set was used for reporting the performance
and comparison of different networks as it provides an
independent measure.

Network architectures

The main contribution of this work is the introduction of
a novel architecture for gene expression inference, which
leads to significant improvements in the quality of the
inference. The baseline model is a modification of D-GEX
with TAAFs [8] which consists of three hidden, densely
connected layers with 10,000 neurons in each layer — the
largest D—-GEX architecture consisted of only 9,000 neu-
rons in each layer [7] but adding more neurons has proved
beneficial — and an output layer. Each neuron contains
the TAAF with a sigmoid as the inner activation function
as in [8]; each hidden layer is with 25% dropout.

Tower architecture (T-D-GEX)

Since the baseline model consists of three densely con-
nected layers, a further increase in the number of neurons
in each layer is difficult as the number of connections
(weights) increases quadratically and even the baseline
model was near the memory limitations of used GPU.
Thus, similarly to PCs, we introduce towers of dense lay-
ers that are not connected to each other as depicted in
Fig. 1, which allows for a significant increase in the num-
ber of neurons without the increase in the number of
weights. Unlike the PCs [18, 19], the output layer is not
densely connected to all the towers but rather the out-
puts of individual towers are first averaged and only then
an output layer is added — otherwise the gains from the
tower architecture would be much smaller as the number
of connections between last hidden layer and the output
layer would not change. The D-GEX with the tower archi-
tecture is denoted T-D—GEX, the number of neurons in a
single layer of a tower was determined such that networks
with more columns have strictly fewer weights (yet more
neurons) as shown in Table 1 and Figs. 2 and 3.
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Checkerboard architecture (C-D-GEX)

The checkerboard architecture can be seen as an exten-
sion of the tower architecture. The tower architecture
consists of towers of densely connected layers where each
layer is connected to the layer that precedes it; there is no
information flow between the towers — the towers share
the input layer, and then their outputs are averaged before
the output layer. The checkerboard architecture addresses
this issue and divides each layer of a tower into halves
— each half is connected to the same half of the same
tower of the preceding layer; however, it is connected to
the other half of the same tower only every odd layer
while every even layer it is connected to the other half
of the neighboring tower resulting in a checkerboard-like
pattern of densely connected blocks. Both checkerboard
architectures used in this paper have the first hidden layer
without a dropout. The D-GEX with the checkerboard
architecture is denoted C-D-GEX.

Skip connections

Another improvement was the addition of a skip con-
nection in a ResNet-like manner [15] — we have added
a residual skip connection from first to second hid-
den layer to each tower; the output of the first hid-
den layer is added to the output of second hidden
layer before proceeding to the third hidden layer. Such
networks are denoted TR-D-GEX and CR-D-GEX,
respectively.

Training

Following the procedure in [7, 8], a pair of D-GEX net-
works is trained; each network is trained for predicting
expression levels of one half of target genes. A Nadam
optimizer [21] was used for the training; optimizer spe-
cific parameters were 81 = 0.9, B = 0.999, and schedule
decay was n = 0.004. The training procedure took 600
epochs and the learning rate was set to 5 x 10~ for epochs
1 —400, 5x 107 for epochs 401 — 475, 5 x 10~° for epochs
476 —550, 5 x 10~ for epochs 551 — 575, and 2.5 x 107
for epochs 576 — 600.

D-GEX T-D-GEX

—_—

—— oI e

—r—w/z—

C-D-GEX

—= Input

mmm Dense TAAFSs

m== AVG + Dense TAAFs

are averaged before the output layer

Flg. 1 The original C-D-GEX architectures and the novel architectures proposed in this paper. The outputs of the towers (or halves for C-D-GEX)
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Table 1 The summary of the parameterization of used
architectures — C-D-GEX, CR-D-GEX, T-D-GEX, and TR-D-GEX
do not differ in number of parameters and neurons. Note that
the total number of parameter remains approximately the same
across architectures

Towers Neurons/tower Neurons Parameters
1 10,000 34,759 257,149,036
2 7,227 48,121 257,119,561
3 5,941 58,228 257,068,283
4 5157 66,643 256,997,503
5 4,615 73,984 256,977,621
6 4,211 80,557 256,953,201
8 3,637 92,047 256,729,407
10 3,242 102,019 256,587,674
12 2,948 110,887 256,374,168

Activation function

We are using the modified D-GEX with transformative
adaptive activation functions (TAAFs) [8]. A TAAF is an
adaptive activation function that introduces four param-
eters that are learned during training and that allow for
translation and scaling of the inner activation function of
the TAAF. More specifically, let x; be individual inputs to
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a neuron and w; their weights, f an inner activation func-
tion (e.g., a logistic sigmoid), then the output of a neuron
with TAAF is:

i=0

a~f<ﬂ~Zwixi+y>+5, (1)

where o, B, v, and § are separate parameters for each
neuron that are trained together with weights w; [8].

Performance evaluation

Performance evaluation follows the same standards as in
[8]. The main metric for evaluation of the model per-
formance is denoted MMAE and it is the absolute error
averaged over individual samples and genes. Let S be a
set of evaluated samples, G a set of measured target genes,
¥(g,s) is the target expression of gene g € G for sample
s e Sand @m the prediction of expression of the gene
for the sample s by a model 71, then MMAE,,, is defined as:

1 1 —
MMAE,, = S Z al Z }y(g, ) —y@9,,. (2
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Fig. 2 The relationship between neurons per tower and number of towers when the number of weights is limited by the number of weights of a
single tower with 10,000 neurons. The dashed line represents the number of neurons in the output layer, the shaded region denotes the number of
towers for which the number of neurons in each layer of each tower is the most similar to the number of output neurons
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Fig. 3 The relationship between the total number of neurons and number of towers when the number of weights is limited by the number of
weights of a single tower with 10,000 neurons. The dashed line represents the number of neurons in the output layer, the shaded region denotes
the number of towers for which the number of neurons in each layer of each tower is the most similar to the number of output neurons

Implementation

The work was implemented in python 3, the neural
networks were implemented using keras [22] and ten-
sor manipulation framework Tensorflow [23]. Other used
packages are pandas [24], and NumPy [25] for data
manipulation and seaborn [26] and matplotlib [27] for
visualizations.

Results

We have evaluated both modifications of the D—GEX
architectures for nine different tower configurations. The
configurations differ in the number of towers; their
parameters are shown in Table 1 and the relationship
between them is shown in Figs. 2 and 3. For each con-
figuration, we have compared both possibilities for both
configurations — tower or checkerboard architectures
with or without the skip connection — resulting in a com-
parison of 2 x 2 x 9 = 36 different pairs of networks.
The detailed results for all four architectures and different
numbers of towers are shown in Table 2. The relationship
of MMAE and the number of towers for different archi-
tectures is shown in Fig. 4 — we can observe that the
MMAE drops quickly and then starts to rise again slowly.
The drop in MMAE at the beginning is due to increase

in the total number of neurons which then increases the
capacity of the network making it able to better learn the
relationships between the landmark and target genes. The
relationship between MMAE and the number of towers
seems to slightly differ across the architectures — e.g., the
TR-D-GEX reaches the minimum MMAE for the lowest
number of towers compared to other architectures — and
thus further research is needed.

The networks with five or more towers actually intro-
duce a bottleneck as the layers in individual towers contain
fewer neurons than the output layer — the last layer has to
infer the gene expression from a lower number of inputs
than is the number of inferred genes. The number of tow-
ers for which the number of neurons is closest to the
number of target genes is shown as a shaded region in Figs.
2, 3 and 4.

The T-D-GEX with one tower is the equivalent of the
original D-GEX but with more neurons in each layer as
the original D-GEX had at most 9,000 neurons in each
layer and the tested architectures are based on T-D-GEX
with 10,000 neurons. The increase in the number of neu-
rons together with the learning rate schedule and increase
in the number of training epochs led to the improve-
ment of the single tower D-GEX’s MMAE from 0.134 to
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Table 2 The MMAE of tested models on the test data.
Architecture similar to the D-GEX with TAAFs [8] is the T-D-GEX
with 1 tower, the overall best model is shown in bold

# Towers T-D-GEX C-D-GEX TR-D-GEX CR-D-GEX
1 0.131301 0.130796 0.129107 0.129163
2 0.130187 0.130281 0.128623 0.128437
3 0.129839 0.129969 0.128548 0.128187
4 0.129735 0.129872 0.128568 0.128078
5 0.129729 0.129883 0.128617 0.128053
6 0.129707 0.129799 0.128677 0.128053
8 0.129760 0.129874 0.128864 0.128095
10 0.129804 0.129881 0.129078 0.128218
12 0.129889 0.129891 0.129291 0.128353
D-GEX (1 x 9,000, tanh) [7, 8] 0.163684
D-GEX with TAAFs (3 x 9,000,TAAFo sigmoid) [8] 0.134015

0.131 even without the main architectural modifications.
However, the proposed architectural changes, namely the
CR-D-GEX (a checkerboard architecture with a skip con-
nection from first to the second layer), led to MMAE of
0.128 without any increase in the number of parameters
of the network and only a slight increase in the running
time which is due to more neurons (more operations to be
performed).

A Wilcoxon signed-rank test was used for pairwise
comparison of individual models. The test was used to
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compare the means of MAEs of individual samples (which
are assumed to be independent) at a significance level
o 10~*. The results for comparing different tower
configurations are shown in Fig. 5 and generally confirm
the U-shape of the model performance shown in Fig.4.
The comparison of different architectures for fixed tower
configuration is shown in Fig. 6 — the checkerboard archi-
tecture CR-D—GEX is statistically significantly better for
most configurations and not worse in all configuration
with the exception of the single tower configuration. We
have also compared the best architecture (CR-D-GEX
with 5 towers) with the best D-GEX with TAAFs from [8]
(3 x 9,000, TAAFo sigmoid) using the Wilcoxon signed-
rank test and t-test on MAEs of individual samples and
found that the CR—-D-GEX has significantly lower MMAE
with p—value < 107%. The 95% confidence interval for
MMAE determined using bootstrap on samples’ MAEs
with 10° iterations was [ 0.12717,0.12891] for the CR-D—
GEX with 5 towers and [ 0.13317, 0.13487] for the D-GEX
with TAAFs [8].

Practical impact on differential gene expression analysis

While the checkerboard architecture has statistically sig-
nificantly lower prediction error than the D-GEX with
TAAFs [8], the practical impact of this improvement
remains is unclear. We decided to demonstrate this impact
on the frequent task of detection of differential gene
expression. As there is no phenotype annotation available
for the samples, we have generated it artificially. We

Architecture
—e— CR-D-GEX

TR-D-GEX
—#- C-D-GEX
:;::::::.'.:'.::'.'.:.:'.::::.-.;.—.-..—.:.-..-.-.h_.;,,;
/.
0/0/.
6 8 10 19 14
towers

Fig. 4 The development of MMAE based on the number of towers for individual architectures. The shaded region denotes the number of towers for
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Fig. 5 Results of pairwise Wilcoxon signed-rank test on the MAEs for individual samples for different number of towers. A cell in row r and column ¢
is black if the model with r towers is statistically significantly better than model with ¢ towers, white if worse, and grey if no statistically significant

have run hierarchical clustering on 2,000 samples sam-
pled from the test data (i.e., unseen during the training
of the model), then selected two large and relatively dis-
tinct clusters (containing 414 and 462 samples respec-
tively). Then we have repeatedly sampled smaller datasets
for different sample sizes (12—-160) where each half of
samples was from the same cluster and have run differ-
ential gene expression analysis using parametric empirical
Bayes from the limma R package [28] on the ground
truth data (the actual gene expression) and on the gene
expressions inferred by the CR-D-GEX with 5 towers
and the default D-GEX (TAAFo) [8]. For each model and
each sampled dataset of a given size, we have calculated
the F; score of the prediction of the set of differen-
tially expressed (DE) genes compared to the DE genes
from the ground truth data found for the same sampled
dataset. Then we have calculated the pairwise differences
in the Fys, F1, F» scores, accuracy, and Matthews cor-
relation coefficient (MCC) for both models. The distri-
bution of values and the pairwise differences of F; and
MCC is shown in Figs. 7, 8, 9 and 10 for 10,000 repeti-
tions for each sample size. The differences of all scores
(Fos, F1, Fa scores, accuracy, and MCC) were statisti-
cally significant for all tested sample sizes when using

the Wilcoxon signed-rank test as all the p—values were
< 1078, To provide interpretation for the observed pair-
wise differences in F; score, the typical scenario was
that CR-D-GEX with 5 towers reported much fewer
false positive differentially expressed genes than TAAFo,
sometimes at the cost of a very small increase in false
negatives. Obviously, the advanced architectures can rea-
sonably improve differential gene expression analysis and
better approximate the gene sets reached with the origi-
nal gene expression data. The improvement most strongly
manifests for small sample sets, where even small changes
in gene expression values may result in significant gene set
changes.

Discussion

The experimental results suggest that the introduction
of Checkerboard and Tower architectures results in sta-
tistically significant improvement in the gene expres-
sion inference. At the same time, this improvement
manifests in the practical gain when finding differen-
tially expressed genes. We believe that this leads to
new state-of-the-art results. Even though we are using
a different normalization technique than other works
[7, 29, 30], the relative increase in accuracy is larger

T CTRCR

T CTRCR

CRTR C T
CRTR C T
CRTR C T
CRTR C T

T CTRCR

CRTR C T

T CTRCR

a: 1 b: 2 c: 3 d: 4 e: H

T CTRCR
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“En

T CTRCR

T CTRCR

T CTRCR

CRTR C T
CRTR C T
CRTR C T
CRTR C T

f: 6 g: 8 h: 10 1i: 12

Fig. 6 Results of pairwise Wilcoxon signed-rank test on the MAEs for individual samples for different architectures for fixed tower configuration. A
cell'in row r and column c is black if the model with architecture r-C-D-GEX is statistically significantly better than model with architecture c-D-GEX,
white if worse, and grey if no statistically significant difference was observed
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Fig. 7 Distribution of the F; scores obtained by the CR-D-GEX with 5 towers and the D-GEX with TAAF of 10,000 repetitions for each sample size.
The whiskers show the 10t and 90 percentiles

than in the earlier results. Our reimplementation of the
baseline D-GEX (without TAAFs) has MMAE 0.1637
while the best performing Checkerboard architecture
has MMAE of 0.1284 (1 — §122 ~ 18% improve-
ment). The presented improvements using the more com-
plex GAN approach have 1 — g%ggz ~ 6.5% improve-
ment [30] and 1 — 8:%381 ~ 9.6% in [29] over the
baseline D-GEX. Moreover, both approaches (Checker-

boards and GANSs) are not mutually exclusive and can

be potentially used together to reach even better per-
formance. Furthermore, the Checkerboard architectures
with TAAFs are conceptually much simpler than the usage
of GANs while reaching, at the very least, comparable
performance.

Conclusion
Gene expression profiling was made cheaper by the usage
of L1000 platforms and using computational techniques to
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Fig. 8 Distribution of pairwise differences of the F; score obtained by the CR-D-GEX with 5 towers and the D-GEX with TAAF of 10,000 repetitions
for each sample size. The whiskers show the 101 and 90t percentiles
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Fig. 9 Distribution of the MCCs obtained by the CR-D-GEX with 5 towers and the D-GEX with TAAF of 10,000 repetitions for each sample size. The

whiskers show the 101 and 90™ percentiles

infer the expression of the target genes. The quality of the
inference was improved by the D-GEX [7] and its exten-
sion with TAAFs [8]. We have improved the architecture
of D-GEX by introducing novel tower and checkerboard
architectures and together with a small modification of
the training parameters were able to improve the MMAE
from 0.134 [8] to 0.128 (4.5% MMAE decrease). The

improvement was tested using the Wilcoxon signed-rank
test and t-test on the MAEs of individual samples and was
found strongly statistically significant (p—value < 107°).
We have also indirectly checked the practical significance
of the improvement for the task of finding differentially
expressed genes — our proposed model led to a statis-
tically significant increase in the F; score for different

0.12 ~

0.10 ~

0.08
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MCC difference

0.02 -
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1 1 1
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Fig. 10 Distribution of pairwise differences of the MCCs obtained by the CR-D-GEX with 5 towers and the D-GEX with TAAF of 10,000 repetitions
for each sample size. The whiskers show the 10™ and 90t percentiles
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sample sizes (12 — 160). The best performing CR-D-GEX
architecture allows better gene expression inference from
the L1000 platform compared to the original CR-D-GEX.
We have also hypothesized that the optimal number of
towers for all tested architectures is such that the width of
a layer in a tower is close to the width of the output layer
and that the checkerboard architecture allows for lower
error compared to the tower architecture while keeping
the number of parameters constant.

Future work

There are several directions in which this work will be
expanded. Since the optimal number of towers for each
architecture was different, one of the direction is to
determine the relationship between the optimal number
of columns and the used architecture. Other directions
include a generalization of the checkerboard architecture
— the checkerboard architecture divided each layer in
each tower into halves and reconnected those in a certain
pattern; however, dividing the layers into multiple folds
and using more complex reconnection patterns might lead
to networks with better performance and thus further
improving the gene expression inference.
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