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Abstract

Background: Wheat (Triticum aestivium L.) is an important crop globally which has a complex genome. To identify
the parents with useful agronomic characteristics that could be used in the various breeding programs, it is very
important to understand the genetic diversity among global wheat genotypes. Also, understanding the genetic
diversity is useful in breeding studies such as marker-assisted selection (MAS), genome-wide association studies
(GWAS), and genomic selection.

Results: To understand the genetic diversity in wheat, a set of 103 spring wheat genotypes which represented five
different continents were used. These genotypes were genotyped using 36,720 genotyping-by-sequencing derived
SNPs (GBS-SNPs) which were well distributed across wheat chromosomes. The tested 103-wheat genotypes
contained three different subpopulations based on population structure, principle coordinate, and kinship analyses.
A significant variation was found within and among the subpopulations based on the AMOVA. Subpopulation 1
was found to be the more diverse subpopulation based on the different allelic patterns (Na, Ne, I, h, and uh). No
high linkage disequilibrium was found between the 36,720 SNPs. However, based on the genomic level, D genome
was found to have the highest LD compared with the two other genomes A and B. The ratio between the number
of significant LD/number of non-significant LD suggested that chromosomes 2D, 5A, and 7B are the highest LD
chromosomes in their genomes with a value of 0.08, 0.07, and 0.05, respectively. Based on the LD decay, the D
genome was found to be the lowest genome with the highest number of haplotype blocks on chromosome 2D.

Conclusion: The recent study concluded that the 103-spring wheat genotypes and their GBS-SNP markers are very
appropriate for GWAS studies and QTL-mapping. The core collection comprises three different subpopulations.
Genotypes in subpopulation 1 are the most diverse genotypes and could be used in future breeding programs if
they have desired traits. The distribution of LD hotspots across the genome was investigated which provides useful
information on the genomic regions that includes interesting genes.

Keywords: Linkage disequilibrium, Haplotype blocks, Genome-wide association study, Analysis of molecular
variance, Genotype-by-sequencing
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Background
Wheat (Triticum aestivum L.) is one of the most import-
ant cereal crops globally. It feeds more than a third of
the human population around the world. The genome of
bread wheat is an allohexaploid which contains three
different genomes A, B, and D [1–3]. Generally, the gen-
etic analysis of the wheat genome is very complex due to
the polyploidy nature and the large genome size. The
wheat genome is larger than Arabidopsis thaliana (~ 120
times), and Oryza sativa L. (~ 40 times) [4–6]. To well
understand the complexity of the wheat genome, it is re-
quired to use good type of molecular markers which re-
duces the size of this genome by digesting it to multiple
parts using restriction enzymes.
Generally, there are many types of molecular markers

which could be used in various genetic analysis such as
genetic diversity, genome-wide association studies, fin-
gerprinting, evolutionary origin, and breeding applica-
tions. The most common type of markers is single
nucleotide polymorphisms (SNPs) and simple sequence
repeats (SSRs) [7]. However, by comparing SNPs and
SSR markers, it was found that SNPs are excellent
markers for studies that require a high number of
markers such as association studies, QTL mapping,
population structure, and genomic selection [8–12]. Re-
cently, new techniques of sequencing have been devel-
oped to produce high-density genome-wide markers.
Genotyping-by-sequencing (GBS) is one of these tech-
niques which uses two different types of restriction en-
zymes (PstI/MspI) to reduce the complexity of large
genomes such as wheat [13, 14]. Using the GBS tech-
nique provides many advantages such as; low cost, fewer
purification steps, and easy sample handling [15].
Understanding the linkage disequilibrium (LD) be-

tween marker pairs is very important in association
mapping studies as it determines the resolution of the
association [16]. For example, if the LD rapidly decays,
the resolution of the association will be high and vice
versa [17]. Many previous studies discussed the relation-
ship between LD decay and the resolution of association
mapping in the wheat genome using different kinds of
markers such as SSR and DArT and found that the LD
varied among different wheat populations [18–21]. To
achieve a high-resolution association mapping, a large
number of markers should be used. GBS method pro-
duces such a high number of markers distributed across
the genome.
As wheat is one of the most important crops globally,

it is very important to study the global genetic variation.
This requires the collection of cultivars from different
countries. The USDA-ARS national plant germplasm
system is a good resource for plant breeders worldwide
as it contains a large number of accessions of wheat
(~ 58,000) which have been collected starting from 1897.

In 1995, the number of NSGC core accessions has been
reduced to only 10% of the total number of the collected
accessions following Brown 1989 [22] outline as described
in Bonman et.al [23].. Following this outline, a collection
of wheat accessions from all countries has resulted. This
core collection, or a sample from it, could be considered
as an ideal collection to study the genetic diversity of
worldwide wheat germplasm. Consequently, understand-
ing the genetic diversity in wheat germplasm is critical in
breeding programs as it enables the wheat breeders to
select the appropriate parents for the different breeding
purposes. It is also very important in further breeding
studies such as marker-assisted selection (MAS), genome-
wide association studies (GWAS), and genomic selection.
In the current study 103 spring genotypes representing 14
countries were collected from USDA gene bank and tested
for their agronomic traits under the Egyptian conditions
to increase the genetic diversity of adapted wheat geno-
types in Egypt.
The objectives from this study were to (1) understand

the genetic diversity and population structure in spring
wheat using 103-accessions representing different coun-
tries worldwide, (2) compare the genetic properties
among subpopulations, and (3) determine the patterns
of linkage disequilibrium (LD).

Results
Distribution of SNP markers across the different wheat
genomes
The total number of GBS derived SNPs from the tested
genotypes was 287,798 SNPs. After quality filtering, the
total number of high-quality SNPs was 36,720 which
were well distributed across the genome (Fig. 1). The
highest number of SNPs was located on genome B with
a percentage of 41% (15,172 SNPs) while, the lowest
number of SNPs located on genome D with a percentage
of 19% (7119 SNPs). There were 1161 SNPs located
within scaffolds with an unknown chromosomal loca-
tion. The number of SNPs/chromosome (Chro.) ranged
from 367 SNPs (4D Chro.) to 2764 SNPs (2B Chro.).

Genetic diversity and the polymorphism information
content (PIC)
The PIC value across chromosomes ranged from 0.1
(1598 SNPs) to 0.4 (6836 SNPs) with an average of 0.24
(Fig. 2a). Gene diversity (GD) ranged from 0.1 (829
SNPs) to 0.5 (10,554 SNPs) with an average of 0.29. The
percentage of heterozygosity extended from 0% (842
SNPs) to 100% (18 SNPs) with an average of 0.15,
respectively (Fig. 2b and c). Minor allele frequency ranged
from 0.1 (10,286 SNPs) to 0.5 (4384 SNPs) with an
average of 0.21 (Fig. 2d).
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Population structure and relationships
The STRUCTURE analysis software was used to identify
the number of subpopulations in the tested 103 geno-
types (Fig. 3). The number of clusters (K) was plotted
against ΔK to identify the suitable number of subpopula-
tions. The largest ΔK value was observed at K = 3
suggesting the presence of three subpopulations in the
tested genotypes (Fig. 3a and b). As illustrated in Fig. 3c,
there is a continuous-gradual increase in the assessed
log-likelihood with the increase in the number of K con-
firming the presence of three subpopulations in the
tested genotypes with the highest probability. The three
groups consist of 48, 46, and nine genotypes for the red,
blue, and green group, respectively (Fig. 3 and Table 1).
By comparing the results of STRUCTURE software and
the principle coordinate analysis, we found that both are

in agreement and dividing the tested genotypes into
three groups (Fig. 4 a and b). Based on both analyses,
the first group (48 genotypes) contained all of the
genotypes from Australia, Germany, Greece, and Kenya
while, the second subpopulation (46 genotypes) con-
tained the genotypes from Algeria, Ethiopia, and Tunisia.
The genotypes from the remaining countries such as
Egypt, Afghanistan, Canada, Iran, Kazakhstan, Morocco,
Saudi Arabia, and Oman were distributed among the
three groups. For example, most of the Egyptian geno-
types belonged to the first group except for six geno-
types that belonged to the third group. The percentage
of the membership of each country in the three sub-
populations is presented in Table 2.
Significant genetic differentiation was found among

the three subpopulations and expected heterozygosity

Fig. 1 The distribution of the 36,720 SNPs across the 21 chromosomes in the 103-spring wheat panel

Fig. 2 The distribution of polymorphic information content (PIC) (a), gene diversity (b), percentage of heterozygosity (c), and minor allele
frequency (d) for the 37,295 SNP markers in the 103-spring wheat panel
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(average distance) among genotypes in each subpopula-
tion (Table 1). Subpopulation 1 had the highest value of
expected heterozygosity with a value of 0.2671, followed
by the third subpopulation (0.23526) and the second
subpopulation (0.1776). The Fixation index (Fst) could
be considered as the best index for the determination of
the overall genetic variation among subpopulations. In
our studied materials, the highest genetic variation was
found in subpopulation 2 with the Fst value of 0.6142.
While subpopulation 1 showed lower genetic variation
among its genotypes with the Fst value of 0.1984
(Table 1). The analysis of kinship is illustrated as a gen-
etic clustering and indicated that the current panel of
genotypes was divided into three possible subgroups,
with considerable genetic differences among the geno-
types (Fig. 5).

Genetic differentiation of populations
The three subpopulations identified based on STRUCT
URE analysis were used to calculate the AMOVA and
genetic diversity indices in GenAlex 6.41 software. A sig-
nificant variation within and among the subpopulations
was found based on the AMOVA results. The total
variation between the tested genotypes could be classified
into two parts; variation among subpopulations with a
percentage of 15%, and variation within subpopulations
with a percentage of 85% (Table 3). The haploid number
of migrants (Nm) was 2.90 indicating that there is a high
gene exchange among subpopulations.

The allelic pattern across the populations
The average number of different alleles (Na) and effect-
ive alleles (Ne) were 2.528 and 1.781, respectively
(Table 4). The Shannon index (I), the diversity index (h),
and the unbiased diversity index (uh) had average values
of 0.636, 0.384, and 0.403 based on the average of the
three subpopulations (Table 4). Based on all allelic pat-
terns, subpopulation 1 was the most diverse subpopula-
tion when compared to subpopulations 2 and 3 as it has
higher numbers of all the diversity indices. Subpopula-
tion 3 was the least diverse subpopulation based on all
indices as might be expected with its low number of
lines. The percentage of polymorphic loci within sub-
populations was 99.71, 99.39, and 64.84 for the first,

Fig. 3 Analysis of population structure using 36,720 SNP markers: (a) estimated population structure of 103-spring wheat genotypes (k = 3). The y-
axis is the sub-population membership, and the x-axis is the genotypes, and (b) delta (Δ) K for different numbers of sub-populations, and (c) the
average of log-likelihood value

Table 1 STRUCTURE analysis of 103-spring wheat genotypes for
the fixation index (Fst) (significant divergences), average
distance (expected heterozygosity) and number of genotypes in
each subpopulation

Subpopulation Fst a Exp. Hetero b No of genotypes

Subpopulation 1 0.1984 0.2671 48

Subpopulation 2 0.6142 0.1776 46

Subpopulation 3 0.3090 0.2325 9
aFst is a measure of genetic differentiation; bExpected heterozygosity
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second, and third subpopulation, respectively with an
average of 87.99%.

Evaluation of linkage disequilibrium
The analysis of linkage disequilibrium showed that the
LD decayed with the genetic distance (Supplementary
Fig. 1). The values of R2 revealed that there is no high
LD among the 36,720 SNP pairs in the tested genotypes
with an average value of 0.138 (Table 5). However, it
was more useful to test the LD between each pair of
SNPs located on the same chromosome and determine
the average of the LD in each genome to identify the
pattern of LD in the three genomes. Table 5 represents
the average LD/chromosome and the number of

significant and nonsignificant LD between each pair of
SNPs located on the same chromosome. At the genome
level, the highest LD was found in the D genome with
an average of 0.1853, while the LD on both A and B
genomes was almost the same with an average of 0.1189
and 0.1124, respectively. The LD within each genome
ranged from 0.106 (1A) to 0.125 (4A), 0.098 (6B) to
0.122 (4B) and 0.167 (4D) to 0.241 (2D). The signifi-
cance of LD between each SNP pair located on the same
chromosome was tested using Bonferroni correction
(α = 0.01). The D Genome contained the highest signifi-
cant LD based on the average of chromosomes with
R2 = 0.887 followed by genomes A and B with an average
R2 of 0.818 and 0.815, respectively. Likewise, the highest

Fig. 4 a Principle coordinates analysis (PCoA) based on genetic distance (SNPs), b Dendrogram analysis based on the genetic distance calculated
by UPGMA

Table 2 The percentage of the membership of each country in the three subpopulations

Country Subpopulation 1 Subpopulation 2 Subpopulation 3 Number of genotypes

Afghanistan 11.11 88.89 0.00 9

Algeria 0.00 100.00 0.00 1

Australia 100.00 0.00 0.00 1

Canada 80.00 20.00 0.00 5

Egypt 64.71 0.00 35.29 17

Ethiopia 0.00 100.00 0.00 1

Germany 100.00 0.00 0.00 2

Greece 100.00 0.00 0.00 3

Iran 7.14 92.86 0.00 14

Kazakhstan 75.00 25.00 0.00 8

Kenya 100.00 0.00 0.00 5

Morocco 64.29 35.71 0.00 14

Oman 0.00 87.50 12.50 8

Saudi Arabia 28.57 71.43 0.00 7

Tunisia 0.00 100 0.00 1

Unknown countries 42.86 28.57 28.57 7
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LD as an average of all SNP pairs with non-significant
LD was found in genome D (0.149), while the LD
average of non-significant markers was approximately
the same in genome A and B with an average of ~ 0.084.
The ratio between the number of significant LD and

the number of nonsignificant LD could be arranged
from higher to lower as follows; 0.06, 0.05, and 0.04 for
genome D, genome A, and genome B respectively. At
the chromosome level, chromosomes 2D, 5A, and 7B
had the highest ratios between the number of significant
and non-significant LD with values of 0.08, 0.07, and

0.05, respectively. The R2 between each pair of markers
was plotted against genetic distance (kb). The LD decay
in each genome is illustrated in Fig. 6 and whole-genome
in Supplementary Figure 1. The LD decay in the D ge-
nome was slower than the LD decay in A and B genomes.
The LD decay in A genome was slower than the B genome
(Fig. 6a-d). The number of haplotype blocks was investi-
gated for the highest three chromosomes. Chromosome
2D was found to contain 28 haplotype blocks followed by

Fig. 5 Heat map of kinship matrix with the dendogram shown on the top and left based on the 36,720 SNP markers

Table 3 Analysis of molecular variance using 36,720 SNPs and
the genetic differentiation among the three subpopulations of
the 103-spring wheat panel

Source df SS MS Est. Var. % P value

Among Pops 2 47,935.156 23,967.578 676.092 15 0.001

Within pops 100 392,111.058 3921.111 3921.111 85 0.001

Total 102 440,046.214 4597.203 100 0.001

Nm (haploid) 2.900

Table 4 Mean of different genetic parameters including
number of different alleles (Na), number of effective allele (Ne),
Shannon’s index (l), diversity index (h), unbiased diversity index
(uh), and percentage of polymorphic loci (PPL) in each
subpopulation of the 103-genotypes

Subpopulations Na Ne I h uh PPL

Subpopulation 1 2.897 1.994 0.782 0.471 0.482 99.71

Subpopulation 2 2.869 1.921 0.002 0.445 0.457 99.39

Subpopulation 3 1.816 1.429 0.380 0.236 0.271 64.87

Mean 2.528 1.781 0.636 0.384 0.403 87.99
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chromosome 5A and 7B which contain 12 and 11 blocks,
respectively (Supplementary figure 2).

Discussion
The studied wheat genotypes were collected from differ-
ent countries representing five of the world continents
(Africa, Europe, Asia, North America, and Australia)
which enable us to estimate wheat genetic diversity in
the studied countries. The study was conducted using
36,720 SNPs which were well distributed across the
three hexaploid wheat genomes (A, B, and D). The high-
est number of SNPs were found on genome B (41%),
while the lowest number of SNPs were found on
genome D (19%) indicating that genome D is the
least diverse wheat genome (Fig. 1). The D genome
was reported to be the least diverse genome in pre-
vious studies which used different types of markers
such as GBS-SNPs, RFLP, SSR, AFLP, and DArT
markers [24–30]. Dubcovsky and Dvorak [1] con-
cluded that the proportion of diversity in Triticum

aestivum L. resulted in the polyploid nature of its
tetraploid ancestor with AABB. This conclusion
could be a good explanation of the high level of
diversity among hexaploid wheat genotypes and the
high number of SNPs in the A and B genomes.
The PIC values and genetic diversity are very help-

ful parameters to measure the polymorphism between
the genotypes used in breeding programs. Generally,
for multi-locus markers such as SSR markers, the PIC
values range from 0 to 1.0. According to Botstein
et.al [31, 32], multi-allelic markers could be classified
into three categories based on their PIC values. These
three categories are: (1) highly informative markers
with PIC values higher than 0.5, (2) moderately in-
formative marker with PIC value ranging from 0.25 to
0.5, and (3) slightly informative markers with PIC
values less than 0.25. However, for the bi-allelic
markers like SNPs, the highest PIC value is 0.5. As a
result of this bi-allelic nature, SNP markers could be
considered as moderate to low informative markers.

Table 5 Linkage disequilibrium between SNP markers located on the same chromosome and genome

Chromosome R^2 Number sig.
LD

Average Sig.
LD

Percentage of sig.
R^2

Number non sig.
LD

Average non sig.
LD

No. of sig. LD/ No. of non
sig. LD

1A 0.106696275 2673 0.773570652 4.6 55,965 0.074845024 0.05

2A 0.117889775 2973 0.79594235 4.8 58,919 0.083675849 0.05

3A 0.112887651 1876 0.852327861 3.4 54,032 0.087214164 0.03

4A 0.125257515 2590 0.862161693 4.6 53,148 0.089346816 0.05

5A 0.125428444 3419 0.809304824 6.2 52,153 0.080595484 0.07

6A 0.120074851 2829 0.794986633 5.9 44,846 0.077499696 0.06

7A 0.124468994 3482 0.835755958 3.9 86,668 0.095892112 0.04

mean 0.118957644 19,842 0.817721425 4.7 405,731 0.084152735 0.05

1B 0.114425037 2767 0.804864224 3.9 68,196 0.086411 0.04

2B 0.108414675 2979 0.821397105 3.4 85,494 0.083571122 0.03

3B 0.115633024 3343 0.797272582 4.0 80,596 0.087359648 0.04

4B 0.122410098 1520 0.837638581 4.0 36,103 0.092297717 0.04

5B 0.106133555 3151 0.828076529 4.2 72,350 0.074692834 0.04

6B 0.098446778 2543 0.799670654 3.4 72,669 0.073907947 0.03

7B 0.121483303 3397 0.814441598 4.8 67,784 0.086755649 0.05

mean 0.112420924 19,700 0.814765896 3.9 483,192 0.083570845 0.04

1D 0.186308632 1559 0.859202458 6.3 23,371 0.141422172 0.07

2D 0.240878007 2986 0.929159518 7.7 36,041 0.183853824 0.08

3D 0.206075532 1320 0.901496541 6.4 19,422 0.158811824 0.07

4D 0.16616349 239 0.905766016 3.7 6244 0.137853911 0.04

5D 0.178633759 505 0.89830723 3.6 13,699 0.152103713 0.04

6D 0.145398046 606 0.818621715 3.0 19,755 0.124746388 0.03

7D 0.173585725 1134 0.893450395 3.7 29,693 0.146093503 0.04

mean 0.185291884 8349 0.886571982 5.3 148,225 0.149269334 0.06

Genome
mean

0.137984
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The average PIC value obtained in this study is 0.24
which is similar to PIC values in previous studies [24,
33]. This PIC value was reported as a good indicator
of informative markers which could be used in study-
ing the genetic diversity in the different organisms
[34]. Based on the PIC values in our tested popula-
tion and the good distribution of the studied SNP
markers, we can conclude that these markers ex-
plained the genetic diversity in spring wheat and
could be used in other genetic studies such as
genome-wide association study to identify alleles con-
trolling target traits.

Population structure and relationships
Studying the population structure is very helpful in un-
derstanding the genetic diversity of the tested genotypes.
This is the first step in conducting the association map-
ping studies. In our tested materials, STRUCTURE ana-
lysis, as well as the PCoA, confirmed the presence of
three subpopulations. In each subpopulation, there were
genotypes from different countries and continents. This
result was expected due to the continuous gene flow of
wheat genotypes among the different countries historic-
ally to the present. This exchange resulted in the pres-
ence of diverse genetic backgrounds in the same
country, and thus the presence of genotypes from differ-
ent countries in the same subpopulation. The majority
of genotypes from Afghanistan, Iran, Oman, and Saudi
Arabia were clustered together in subpopulation 2,

while, the majority of genotypes from Egypt, Canada,
Kazakhstan, and Morocco were grouped in subpopula-
tion 1. Genotypes from Germany, Greece, and Kenya
were grouped in only one subpopulation. This informa-
tion is very important in selecting the candidate parents
for target traits in breeding programs as genetic distance
should be highly considered. Genetic diversity between
two genotypes from two different countries representing
two different continents may be very low and not useful
to use such parents in breeding programs. Understand-
ing this presence of population structure in the tested
103-spring wheat genotypes is very important. It must
be taken into account before conducting genome-wide
association studies (GWAS) as it could result in a
superior association between the studied trait and the
GBS-derived SNPs [35].

Genetic differentiation of populations
The result of AMOVA indicated the presence of highly
significant genetic diversity among the three subpopula-
tions (Table 2). The high level of genetic diversity within
the subpopulations could be due to the selection for spe-
cific traits that have been done by the wheat breeders in
the different countries for specifically targeted traits. In
addition, each subpopulation had wheat genotypes from
different countries. While the low level of genetic diver-
sity among the populations (15%) could be due to gene
flow resulted from the wheat germplasm flow among the
different regions. Therefore, it could be more useful to

Fig. 6 The rate of linkage disequilibrium (LD) decay of the genome A (a.), genome B (b.) and genome D (c.) of the 103-spring wheat based on
the 36,720 SNP markers. (d.) comparison between LD decay (distance) among the three genomes

Mourad et al. BMC Genomics          (2020) 21:434 Page 8 of 12



select genotypes as parents, in the breeding programs
for improving target traits, from the same subpopulation
than selecting from different subpopulations. However,
this may change depending on the breeding goals.
Making crosses among genotypes from different sub-
populations may be required to incorporate haplotypes
from different founder populations. Similar results of
high genetic diversity within the subpopulations and low
diversity among the subpopulations were found in
winter and synthetic wheat genotypes [24, 36]. In order
to identify the level of gene flow among the subpopula-
tion, Nm (haploid) was calculated. It was reported that,
if the Nm (haploid) value was 1.00 or lower, this
indicates the low level of gene flow [37]. In our tested
materials, Nm (haploid) was 2.900 which is much higher
than 1.00 indicating the high level of gene flow between
the subpopulations. This result supports the distribution
of the genotypes from one country in the three sub-
populations in the tested plant material.
Based on all the allelic pattern indices (Na, Ne, I, h,

uh, and PPL) among the three subpopulations, sub-
population 1 is the most diverse subpopulation as it
shows the highest values of all the indices. This result is
expected as this subpopulation contains genotypes from
11 different countries compared with the other two sub-
populations which contain genotypes from ten and two
different countries, respectively (Supplementary Table 1).
Based on these results, we can conclude that the studied
103-spring wheat genotypes, especially subpopulation 1,
provide a broad and useful source of genetic diversity in
wheat. This set of genotypes could be used in future
breeding programs to increase the genetic diversity
among wheat genotypes. Increasing genetic diversity is
very useful in conducting genome-wide association stud-
ies (GWAS) and marker-assisted selection (MAS) for
identifying genes controlling important traits in wheat.
Moreover, selection among the genotypes in subpopula-
tion 1 for target traits will be fruitful for the genetic
improvement of wheat.

Linkage disequilibrium and kinship between the studied
genotypes
The determination of the LD magnitude and decay is
very important as they affect the resolution of associ-
ation mapping and the SNP markers required for con-
ducting association studies [16]. The extent of LD differs
across genomes in many species. As wheat has three
different genomes, we analyzed the LD decay in each
genome. The LD decay was estimated when the values
of LD declined below 0.1 based on the curve of the non-
linear logarithmic trend line. The LD decayed in genome
D at higher distances than genomes A and B. The lowest
rate of LD decay was observed in genome B. This result
suggested that fewer markers are needed to detect target

QTLs located on genome D using GWAS than those
needed for detecting QTLs on the other genomes [38].
By looking at the number of markers in each genome,
the D genome had the lowest number of SNPs (20%)
followed by genomes A and B, respectively. This indi-
cates that the current set of material and SNPs are very
appropriate to conduct GWAS to identify alleles associ-
ated with target traits in wheat. The high and low LD
found across the three genomes provide a high chance
to detect target QTL with large and small effects in the
current materials [39]. The same results of LD decay
pattern across the three genomes of wheat were reported
by Liu et al. (2017) and Ayana et al. (2018) [38, 40].
Interestingly, high LD regions at a high genetic distance

were observed in each genome. These high LD regions
which were among low LD regions are called LD hotspots.
Visibly, LD hotspot regions in genome A and D were
higher than those in genome B. According to the LD sig-
nificance level between the markers, the ratio of the num-
ber of significant to non-significant markers was higher in
genome D (6%) and A (5%) than in genome B (4%) which
means that genome B had the highest number of markers
in non-significant LD (Table 5). Therefore, it is very im-
portant to understand the structure of LD in the wheat
population and the distribution of LD hotspot regions in
each genome. Understanding the LD structure enables to
identify the genetic regions associated with agronomic
traits and determining the density of markers needed to
associate the genotypes with the studied traits [16].
The pattern and number of LD hotspots in the genome

provide useful information in determining marker density.
The greater the recombination rate, the greater the need
for higher marker density as the greater chance for the LD
to be broken by a recombination event when QTL and
the marker are close together [41]. By looking at the LD
plot including the three genomes (supplementary Figure
2), hotspots genomic regions were clearly found at a high
genetic distance and separated the low LD regions.

Conclusion
In conclusion, the analysis of population structure and
LD decay were genetically dissected in a set of 103 wheat
core collection genotypes from different countries. The
current material was divided into three possible subpop-
ulations. The most diverse genotypes were found in sub-
population 1 and they can be used in the future
breeding program by crossing among parents with target
traits. The population structure was also very useful to
determine the appropriate GWAS statistical methods
that can be used to detect QTLs in these populations.
Moreover, the genetic diversity of markers in the current
population suggested that the markers are informative
and polymorphic. The genetic properties of this popula-
tion including the number of genotypes and SNP
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markers allow this population to be used for further gen-
etic studies to genetically improve spring wheat through
advanced breeding programs. We identified the distribu-
tion of LD hotspots across each genome and the whole
genome which provided useful information on the possi-
bility of genomic regions that may include interesting
genes.

Methods
Plant materials
A set of 103 spring bread wheat genotypes were ob-
tained from the USDA-ARS worldwide core collection
and used in this study. The genotypes are representing
fourteen different countries (Table 2). Out of the 103
tested genotypes, fifteen are local varieties that are
usually planted in Egypt. The remaining 88 genotypes
were from other countries, evaluated in Egypt, and found
to perform well. Hence those 88 genotypes were adapted
to the Egyptian environmental conditions and would be
used as global parents for cultivar improvement.

DNA extraction, genotype-by-sequencing (GBS), and SNP
calling
DNA was extracted from all the tested genotypes from 2
to 3 leaves of 2 weeks old seedlings using BioSprint 96
DNA Plant Kits (Qiagen, Hombrechtikon, Switzerland).
The extracted DNA was digested for GBS purpose using
two different restriction enzymes, PstI and MspI. The
Illumina, Inc. NGS platforms were used to generate the
sequencing of the pooled libraries. TASSEL 5.0 v2 soft-
ware GBS pipeline was used to identify SNPs [42].
Chinese Spring genome v1.0 from the International Wheat
Genome Sequencing Consortium (IWGSC) was used as a
reference genome for SNP calling and GBS tags were
aligned using Burrows-Wheeler Aligner [43]. Generated
SNPs were filtered for minor allele frequency (MAF) less
than 5%, missing data less than 20%, missing genotypes less
than 30%, and maximum heterozygosity 35%.

Data analysis
Genetic properties of markers
Genetic diversity statistics of all the 36,720 SNP markers
such as polymorphic information content (PIC), gene
diversity, percentage of heterozygosity, and minor allele
frequency (MAF) were calculated using PowerMarker
software V 3.25 [44]. The following formula was used to
calculate the PIC according to [31].

PIC ¼ 1−
Xn

j¼1
P2
ij−

Xn¼1

j¼1

Xn

k¼ jþ1
2P2

ijP
2
ik

Where Pij and Pik are the frequencies of jth and kth
alleles for marker i, respectively.

Analysis of population structure
To estimate the number of subpopulations in the
current tested genotypes, a model-based (Bayesian)
method with the filtered SNPs (36,720) was used.
STRUCTURE 3.4.0 software was used to analyze popula-
tion structure [45]. Burn-in iteration was 100,000
followed by 100,00 Markov chain Monte Carlo (MCMC)
replications after burn-in for each run. In this analysis,
allele frequencies and the admixture correlated models
were considered. Five impended iterations were used in
the STRUCTURE. The hypothetical number of the sub-
population (k) extended from 1 to 10. STRUCTURE
HARVESTER [46] was used to identify the best k, where
k is the number of subpopulations [47]. The genetic
distance among the tested genotypes was calculated
using TASSEL v.5.2.5 software [42]. Based on this
genetic distance, principal coordinate analysis (PCoA)
was performed.

Analysis of molecular variance (AMOVA) and genetic
diversity indices
For this analysis, 14,400 SNPs based on the highest PIC
values (from 0.282 to 0.375) were used. The number of
subpopulations based on the STRUCTURE analysis was
considered in the AMOVA. The genetic indices such as
fixation index (Fst), different alleles (Na), number of ef-
fective alleles (Ne), Shannon’s index (I), the diversity
index (h), the unbiased diversity index (uh), and percent-
age of polymorphic loci (PPL) were calculated. The
AMOVA and estimation of genetic indices were per-
formed using GenAlex 6.41 [48].

Linkage disequilibrium (LD) structure
The LD between each pair of the 36,720 SNPs was cal-
culated as the squared allele frequency correlation coeffi-
cient (R2) using TASSEL v.5.2.5 software [42]. The LD
was calculated separately for each chromosome in each
genome (A, B, and D) in order to understand the struc-
ture of LD in the current population. To identify the
significant LD, Bonferroni correction (α = 0.01) was
applied [12]. The kinship matrix between the tested
genotypes as well as the LD decay for each genome was
calculated using GAPIT, R package [49].

Haplotype block analysis
In each genome, the chromosome contains the highest
significant LD percentage was tested for the number of
haplotype blocks using Haploview 4.2 software [50]. To
perform this, the SNP data for the target chromosome
was used to calculate the pair-wise LD between SNPs.
The haplotype blocks were constructed using the four-
gamete method and a cutoff 1% was used [51, 52].
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